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The superfluid-insulator transition of bosons is strongly modified by the presence of fermions. Through an
imaginary-time path-integral approach, we derive the self-consistent mean-field transition line, and account for
both the static and dynamic screening effects of the fermions. We find that an effect akin to the fermionic
orthogonality catastrophe, arising from the fermionic screening fluctuations, suppresses superfluidity. We ana-
lyze this effect for various mixture parameters and temperatures, and consider possible signatures of the
orthogonality-catastrophe effect in other measurables of the mixture.
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I. INTRODUCTION

The superfluid to insulator (SI) transition of bosons pro-
vides a conceptual framework for understanding quantum
phase transitions in many physical systems, including super-
conductor to insulator transition in films,'=> wires,*~ Joseph-
son junction arrays,'®'? quantum Hall plateau transitions, 3
and magnetic ordering.'* Theoretical work on this subject
elucidated many dramatic manifestations of the collective
quantum behavior in both equilibrium properties and out of
equilibrium dynamics.”>~!7 In many cases, however, we need
to understand the SI transition not in its pristine form but in
the presence of other degrees of freedom. For example, in the
context of the superconductor to insulator transition in films
and wires, there is often dissipation due to the fermionic
quasiparticles, which may dramatically change the nature of
the transition.'>!8-22 Remarkable progress achieved in recent
experiments with ultracold atoms in optical lattices (see Ref.
23 for a review) makes these systems particularly well suited
for examining quantum collective phenomena, not only as
exhibited directly in the superfluid phase but also through its
interplay with other correlated systems under study.

A class of systems that can provide an insight on the role
of dissipation and of a fermionic heat bath on the superfluid-
insulator transition are Bose-Fermi mixtures of ultracold at-
oms in optical lattices. Earlier theoretical work on these sys-
tems focused on phenomena within the superfluid phase,
where coupling between fermions and the Bogolubov mode
of the bosonic superfluid is analogous to the electron-phonon
coupling in solid state systems. Several interesting phenom-
ena have been predicted, including fermionic pairing,?*-2¢
charge density wave order,”’° and formation of bound
fermion-boson molecules.?'3> Yet when Bose-Fermi mix-
tures were realized in experiments,*° the most apparent
experimental feature was the dramatic loss of bosonic coher-
ence in the time of flight experiments even for modest den-
sities of fermions. This suggested an interesting possibility
that adding fermions can stabilize the Mott states of bosons
in optical lattices. Theoretical work addressing these experi-
ments, however, suggested that in the case of a homogeneous
Bose-Fermi mixture at constant and low temperatures, the
dominant effect of fermions should be screening of the
boson-boson interaction, which favors the superfluid
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state.”**04! Hence, the loss of coherence observed in experi-
ments was attributed to effects of density redistribution in the
parabolic trap or reduced cooling of the bosons when fermi-
ons were added into the mixture.

In this paper, we argue that adding fermions into a
bosonic system can actually stabilize bosonic Mott states
even for homogeneous systems. While all previous theoreti-
cal analysis represented the effect of fermions on bosons as
an instantaneous screening, in this paper, we take into ac-
count retardation effects, which arise from the presence of
very low-energy excitations in a Fermi sea. We show that
such retardation gives rise to an effect which is analogous to
the so-called orthogonality catastrophe, which is a well
known cause for x-ray edge singularities and emission
suppression*?*? in solid state systems.

Our paper provides an alternative theoretical approach to
the analysis of the Bose-Fermi mixtures. Rather than doing
perturbation theory from the superfluid state, we consider the
Mott insulating state of bosons as our starting point. This is a
convenient point for developing a perturbation theory, since
deep in the Mott state the bosonic density is uniform and
rigid and is accompanied by a simple Fermi sea of fermions.
In general, the SI transition can be understood as Bose con-
densation of particle and holelike excitations'> on top of a
Mott state. In the absence of fermions, this condensation re-
quires that the energy cost of creating particle- and holelike
excitations, i.e., the Hubbard U, is compensated by the ki-
netic energy of these excitations, which is proportional to
both the filling factor and the single particle tunneling. Add-
ing fermions to the system reduces the energy cost of creat-
ing either a particle or a hole excitation due to screening,’*4
but it also reduces the effective tunneling of bosons. The
latter effect can be understood from the following simple
argument. Consider a particle (or a hole) excitation on top of
a Mott state of bosons. For fermions, this extra particle ap-
pears as an impurity on top of a uniform potential. When the
bosonic particle moves to the neighboring site, the “impurity
potential” for all fermions changes. For individual fermionic
states, the change of the single particle wave function may be
small. However, the effective tunneling of the bosonic par-
ticle is proportional to the change of the entire many-body
fermionic wave function, and therefore we will need to take
a product of all single particle factors. Even when each of the
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factors is close to 1, the product of many can be much
smaller than 1. This is the celebrated “orthogonality-
catastrophe” argument of Anderson.** It can also be thought
of as a polaronic effect in which tunneling of bosons is
strongly reduced due to “dressing” by the fermionic screen-
ing cloud. We see that both the interaction and the tunneling
are reduced by adding fermions. It is then a very nontrivial
question to determine which effect dominates, and whether it
is the superfluid or the insulating state that is favored by
adding fermions into the system. Indeed, the main focus of
our work is to understand how the Fermi-Bose system pits
the bosonic superfluidity against the trademark dynamical
effect of free fermions. A related work, which addresses fer-
mionic dynamical effects on the nature of the superfluid-
insulator transition, is Ref. 45.

In this paper, we derive the SF-Mott insulator critical line
by constructing a mean-field theory that contains both the
static screening and dynamical orthogonality catastrophe of
the Fermions. For this purpose, we resort to a path-integral
formulation of the mean-field Weiss theory for the SF-
insulator transition.!> After demonstrating our approach by
deriving the mean-field transition line for a pure bosonic
system, we derive the path-integral approach to the Fermi-
Bose system, and analyze the results in various limits.

Our analysis will rely on several simplifying assumptions.
We consider only homogeneous systems, which is not the
case for realistic systems in parabolic confining potentials.
We do not allow formation of bound states between particles,
which limits us to small values of the Bose-Fermi interaction
strength. The latter assumption becomes particularly restrict-
ing in one dimensional systems,??#¢*% where even small in-
teractions are effective in creating bound states. We do not
take into account effects of nonequilibrium dynamics, which
are important for understanding behavior of real experimen-
tal systems whose parameters are being changed. Finally, we
assume that there are only two fundamental states for bosons
in the presence of fermions: the superfluid and the Mott in-
sulator. When our analysis shows proliferation of particle-
and holelike excitations inside a Mott state, we interpret this
as the appearance of the superfluid state. We do not consider
the possibility of exotic phases, such as the compressible
state suggested recently by Mering and Fleischhauer.*® While
these limitations make it difficult to make direct comparison
of our findings to the results of recent experiments,’-37 we
believe that our work provides an alternative conceptual
framework which can be used to address real experimental
systems.

A. Microscopic model

The Hamiltonian for the Bose-Fermi system we analyze is
given by

H=HB+HF+Hint

HB=E[%UBnA?_Mﬁi]_%% JCOS(¢i_¢j)7 (1)
i ij
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Hp=- <2> Tptle =2 wptlen  Hiy= 2 Upphidlé;.
ij i i

‘Hp describes the bosonic gas using the phase and number
operators in each well: 71;, ¢;. J is the strength of the Joseph-
son nearest-neighbor coupling (note that J=~nt, where n is
the filling factor and ¢ is the hopping amplitude for individual
bosons), and Uy and u are the charging energy and chemical
potential, respectively. H describes the Fermions, with hop-
ping Jr and chemical potential wuy. The two gases have the
on-site interaction Uppg. For simplicity, we use the rotor rep-
resentation of the Bose-Hubbard model, but our results are
easily generalized to its low-filling limit. The pure Bose gas
forms a superfluid when J/A~ 1, where A~ U is the charg-
ing gap.'>!” The fermions encourage superfluidity, on the
one hand, by partially screening charging interactions and
reducing the local charge gap.**4! However, at the same
time, the fermions’ rearrangement motion in response to bo-
son hopping is slow and costly in terms of the action it
requires. This motion results in an orthogonality catastrophe
that suppresses superfluidity.

Our derivation of the phase diagram is based on the mean-
field approach, which in the case of purely bosonic systems
is equivalent to the analysis in Refs. 15, 17, and 49-52, but
which can be generalized to study Bose-Fermi mixtures. The
idea is to use the Weiss approach of reducing the many-site
problem in the Hamiltonian (1) to a single-site problem by
assuming the existence of the expectation value for the phase
coherence of bosons:

(e)y=r. (2)

In the local problem, one can calculate a self-consistent
equation for r that will produce the transition point. This
procedure cannot be simply followed once the fermions are
thrown into the mix, since even with Eq. (2), the Hamil-
tonian H is nonlocal; this problem is addressed by using the
imaginary-time path-integral formulation.

B. Overview

This paper is organized as follows. In Sec. II, we derive
the path-integral formulation for the mean-field phase bound-
ary of a pure Bose gas as a function of the parameters in its
Hamiltonian and temperature. In Sec. III, we build on this
formalism to account for the weakly interacting Bose-Fermi
mixture. We find a new condition for the superfluid insulator
transition in terms of the Boson parameters, as well as the
interaction strength, Urp, and the Fermion’s density of states,
p. Our main result is presented in Sec. IV in Eq. (30). The
mean-field condition is plotted for the cases of fast and slow
fermions, for zero temperature, as well as at a finite tempera-
ture. We conclude the paper with a summary and discussion
in Sec. V.

Our main findings are that even a moderately weak inter-
action with slow fermions inhibits superfluidity in the
bosons. The dynamical response of the slow fermions pro-
duces a large cost in terms of the action for bosonic number
fluctuations. This effect of the orthogonality catastrophe of a
fermionic screening gas is most apparent where the on-site
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charging gap of the Bosons is small (A<<U). In Sec. IV, we
also derive approximate simple expression for the phase
boundaries for this case at zero and low temperatures, Eqgs.
(31) and (32). Our analysis shows that the phase boundary
becomes nonanalytical, and superfluidity is dramatically sup-
pressed.

II. PURE BOSE-GAS PHASE DIAGRAM USING THE
PATH-INTEGRAL APPROACH

We begin our analysis with the pure bosonic gas. We will
use this case, where no fermions are present, to derive and
demonstrate our path-integral approach to the mean-field
superfluid-insulator transition. We will first use the mean-
field ansatz, Eq. (2), to reduce the partition function to a
path-integral over a single-site action. Analyzing the single-
site action will reveal the mean-field condition for superflu-
idity. We note that a similar approach for the superfluid-
insulator transition for a purely bosonic system was used in
Ref. 50.

The first step is to transform the Hamiltonian Hpz of Eq.
(1) into a single-site Hamiltonian. Using Eq. (2), we can
write

1 1 . )
HB — HB] = 5U3ﬁ$ - /.IJ’ZAI - ZEJ(r*eld;j + re_ld;j), (3)

where z is the coordination of the lattice. The action for site
Jj therefore becomes

. 1 . . 1
szfdr[i(;bj j—EzJ(e’d’.ir*+e_'¢fr)+EUnjz»—,unj}.

(4)

Thus the partition function for a single site is

Z= f D[gb(r)] E e—fng[iqsn—er cos ¢+(l/2)Un2_,u,n]’ (5)
{n(n)}

where we assumed that r is real, and dropped the index j.

The self-consistent condition for superfluidity equates the
degree of phase ordering on site j with r, which was substi-
tuted for the neighbors of site j. This mean-field equation,
Eq. (2), becomes

1
r=sz[¢j(T)] 2 cos ¢;(0)exp(-$;)
{nj(D}

B
_ ZEJ f DIHA]S | dr cos (0)cos(d(m))
{n(n} 70

B
Xexp{—f dT[—ingZ)+%Un2—Mn}:|, (6)
0

where cos ¢(0) was expanded in r to its lowest power.

Our goal is to simplify condition (6); for this purpose, we
integrate over the phase variable ¢. Let us concentrate first
on the partition function Z in the denominator of Eq. (6). In
the limit of r—0, ¢ only appears in the Berry-phase term,
which using integration by parts becomes

PHYSICAL REVIEW B 77, 144511 (2008)

B B
i f dme=in(0)($(B) - $(0)) — i f drgpi.  (7)

0 0

Because n(0) is an integer and ¢(7) is periodic on the seg-
ment [0, 3], the first term is always a multiple of 27, and
can be omitted. Furthermore, without an r term, the angle
variables in each time slice, ¢(7), become Lagrange multi-
pliers which enforce number conservation in the site:

B
f D[¢(T)]€Xp<— lf dT(l’ﬁ) =[12780= 11278, u0)-
0 T T
8)

Thus 7i(7)=0, and we can write the single-site partition func-
tion as

7= 2 e—ﬁ((l/2)Unz—,un)_ (9)

n

The numerator of Eq. (6) is more involved. The phase
¢(7) now also appears through the cos[@(7)] cos[(0)]
term. A ¢'*(™) term is indeed a creation operator; therefore,
we expect that the cosine factors in the path integral will
change the number of particles n(7) at 7, and at 7=0. Let us
demonstrate this by concentrating on the term cos ¢(0)
=2(e/9 1¢7%) and integrating over ¢(0):

fd¢(o)%(e—i¢(0)ﬂdf+i¢(0) + e—i(/)(r)ridr—i¢>(0))

= (Oan(0).1 + Oan(0)-1)» (10)

where An(7)=n(7)dr=lim._on(7+€)—n(7—¢€). The same
expression results from the integration on the 7, time slice.
Thus the integration of the ¢(7) variables in the numerator of
Eq. (6) still gives n(7)=0 as long as 7# 0, 7. The numerator
of Eq. (6) can now also be reduced to a simple sum over
n(7), but with a jump in the boson number at 7, and 7:

n(n)=n= 6(7)0(1, - 7). (11)

Now that the integration over the ¢(7) variables is com-
plete, we can write the mean-field condition for superfluidity
as a single sum. Since the + and — choices in Eq. (11) give
rise to the same contribution in the mean-field condition, we
can choose the plus, n(7)=n+ 6(7)6(7,—7), and write

72,2 ),
J ” B 1 B
=Z—E f dr = exp —f d™H.(n)
Zn:—oo 0 2 7
7
Xexpl—J dTHC(n+1)], (12)
0

with Hc(n):%Unz—,u,n. For a pure Bose gas, we obtain the
well known Weiss mean-field rule for X-Y magnets:
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2J/2 Z e BH) _ g=BH(n+1)

- ) 13
Ew e_,BHF(") n=E_°° Hc(n + 1) - H((l’l) ( )

n=—

Note that for boson-only models, one can carry out the
mean-field analysis in the framework of the Bose-Hubbard
Hamiltonian directly, as done, e.g., in Refs. 51 and 52. In that
case, however, the sum over n states will be from 0 to %, as
opposed to the current rotor-model treatment.

III. EFFECTIVE BOSONIC ACTION FOR THE
SUPERFLUID-INSULATOR TRANSITION OF THE
FERMI-BOSE MIXTURE

The addition of fermions to the bosonic gas affects the
bosons in two distinct ways. The first is static: the Fermions
shift the chemical potential and the interaction parameters of
the Bosons.”** However, in the superfluid phase, Boson
number fluctuations become dominant, and the screening
problem becomes a dynamical one. The Fermi screening
cloud requires a finite time to form, and, in addition, it costs
a prohibitively large action in some cases. While the former
static screening effect enhances superfluidity, the latter dy-
namical effect suppresses it. The advantage of the imaginary-
time path-integral formalism, which was developed in the
previous section, is that it deals with both effects on the same
footing, and allows the inclusion of the fermionic collective
dynamical response in a one-site bosonic action.

A. Static screening effects

Let us now consider the Fermi-Bose mixture of Eq. (1).
The most straightforward effect of the fermions is to shift the
chemical potential and interaction parameters. We will first
calculate this effect using a hydrodynamic approach.?*#? By
denoting the density of state (DOS) of the fermions at the
Fermi surface as p, and neglecting its derivative, we can
write a charging-energy equation for the mixture per site:

1
E .= Ech)(nF) - Mphp+ _U”%; — pgng + Upgngng, (14)

2
with
F F
dE,(< )=E =u+p'n —dZE](C )= -
dnp g F’ dn%

By finding the minimum with respect to the Fermion density,
np, we find

np=ny— Upgpng. (15)

and the total charging energy is
_ 1 2 2 0
E.=Ey+ 2(U_ Upgp)ng = (up— Upgnpng.  (16)

Therefore, the charging parameters of the Bose gas are renor-
malized by the presence of the fermions to

6=U—U12FBP’ ﬁBzﬂB—UFB”%- (17)

This charging-energy renormalization makes the Mott lobes
shrink in the u-J parameter space by the ratio U/ U: adding
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the fermions mitigates any static charging effects, since the
mobile fermions can screen any local charge even when the
bosons are localized.

An important note is that in order for the hydrodynamic
approach to be correct, the electronic screening should not
exceed one particle. This restricts the perturbative regime to

In addition, for the Fermi-Bose mixture to be stable, we must
have U >0, and thus also

Uzgp < U, (19)

which in the regime of interest is a less restrictive condition
than Eq. (18).

The DOS, p, in genergal depends on the specific band
structure and chemical potential of the fermions. Neverthe-
less, we can gain intuition for this quantity by considering a
band with roughly linear dispersion, such that the bandwidth
is W=ﬁvF277T, with a being the lattice constant. The DOS
must then scale as p~ i%v ~ a[,;wF. Upon setting a=1, we see
that the DOS is roughly p~ 1/p, and reflects the time it takes
for fermions to move between neighboring sites. Therefore,
below we refer to fermions with a high (low) DOS as slow
(fast) fermions. The important parameter in the discussion of
fermionic screening, as we shall show below, is pU; when
this parameter is large, fermionic screening is not important,
since the time it takes for screening clouds to form is larger
than the time of a virtual number fluctuation of the Bose gas.
In addition, and perhaps more importantly, the larger pUgp
is, the more effective the orthogonality catastrophe is, in the
suppression of superfluidity. To estimate the latter, we con-
sider the fermionic dynamical response next.

B. Fermion’s dynamical response

The superfluid bays between the Mott lobes in the tradi-
tional u—J phase diagram are affected strongly by a more
subtle and intriguing effect: dynamical screening motion of
the fermions. The analysis of this effect makes the path in-
tegral necessary. We construct the path integral starting with
the action

Spp= f dT(— i (¢ + ngidhy) + Hp+ Hy+ 2 Upgnng,
+ UFB”Bi(éjéi - "10?)> (20)

with n=(¢/¢;), and where ¢ and ¢' should be construed as
Grassman variables. The first term in the second line pro-
duces the shift in the chemical potential, as in Eq. (17), but U
is not yet renormalized. The U renormalization is a second
order effect, which we analyze by producing a perturbation
series in UgpgAnp;, where AnFizéjéi—ng. An effective action
for the bosons is then obtained by integrating over the fer-
mionic variables:

144511-4



SUPERFLUID-INSULATOR TRANSITION IN FERMI-BOSE...
off " N
eS8 =exp f dT(iE npip;— HB> f D[¢]D[ET]
J
J

= Zp exXp f d’T(lE nB]d)j - ﬁ3>
J
Xe(1/2)U%de'rldeznj(Tl)<AnFj('rl)Anpj(Tz))nj(Tz)’ (21)

where ﬁB is the pure bosonic Hamiltonian with the renor-
malized charging energy and chemical potential, Eq. (17).
From Eq. (21), we see that the integral over the fermionic
degrees of freedom gives rise to a new Boson interaction
term. It is given as a polarizability bubble for the fermions:

-1
i - & )i+ 0)— &)
(22)

(AnpAng(0)), = T— 2 E

with &;=€;— up being the fermionic kinetic energy relative to
the Fermi surface. After some manipulations (see Appendix)
we obtain

ap-molp®, ol <1/p

23
clw?, |w| > 1/p. @3)

(AngAng(0)), = {

and as we discuss below; the perturbative analysis is valid
when pUpp<1. The first low-frequency term in Eq. (23)
yields the static screening, Eq. (17), i.e., a=U%gp. The sec-
ond term describes the dynamical response, producing the
action term

*WU}ZFBP
o 2wl

Soc= TE 7 (24)

This term yields logarithmic contributions to the action,
whose effects are familiar from electronic systems as or-
thogonality catastrophe in metal x-ray absorption
spectrum,*>3 the Kondo effect,’® and Caldeira-Leggett
dissipation.>> Here, its effect is to suppress superfluidity,
since it couples to the number fluctuations. At angular fre-
quencies greater than 1/p, the interaction term decays
quickly (c is a positive constant), and hence A=1/p serves
as a UV cutoff. It also implies that the screening and loga-
rithmic contributions to the action can only appear with a
time lag 7;~ p.

The next step is to calculate the action S[(n(7))] with
n(7)=n+6(7)6(7,—7) as in Eq. (12). We have

S[l’l(’T)] =Scharging+SA+S0C~ (25)

First, Separging=J/5(5Un(7)?~ fin(7)). However, the cutoff A
=~ 1/p of the fermions’ polarizability implies that the screen-
ing cloud forms only after the time p~ 1/vy. The instanta-
neous screening is thus modified by the action (when Tp
<1):
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2
UFBP

(1)~

B-7 B+
cosh
P P

cosh

71
X| 7 —pln| cosh —

P cosh? =

p
(26)

While S,4,4im assumes that the polarizability, Eq. (23) has
the term ap for all frequencies; the correction term S* takes
into account the cutoff in the static screening term. Instead of
the fermionic screening in the wake of a change of ny at 7
=0 being Any~ 6(7), we have Any~ arctanh(7/p). Consid-
ering in addition the periodic nature of imaginary time, we
obtain Eq. (26).

Finally, S contains the contribution due to the orthogo-
nality catastrophe:

) 0’ sin(7T7)
. _1 Uts .
2 [cos(wTy) ] || =yn sin(wT/A)

(27)
In Eq. (27), we defined the dissipation parameter

y=Upgp". (28)

Note that we are restricted to y<<1 in the perturbative re-
gime, Eq. (18).

IV. MEAN-FIELD PHASE DIAGRAM AND THE
ORTHOGONALITY CATASTROPHE

The mean-field transition line is obtained, as in Sec. II,
from Eq. (12), which here takes the form

* B
= drye=Snl, (29)
n=—ow J0
Substituting S[1(7)]=S arging+ S +5°¢ from Egs. (26) and
(27), we obtain the mean-field condition for the transition
line:

B ~ —~
1=Zam » dry exl- A, lexpl— HH(n+ 1)
n=—o0 J(0
~ A sin(wT/A) ) Y
-H.(n)-SN7]- (—sm(wﬁ) (30)

with ﬁc(n)=%l7n2—ﬂn, and SM(7) given in Eq. (26). This is
our main result.

Equation (30) allows us to calculate the mean-field SF-
insulator phase boundary for weakly interacting mixtures for
a range of temperatures and Fermi DOS. To illustrate Eq.
(30) predictions for the transition line, Figs. 1 and 2 show the
boundaries for bosons and fermions interacting with Ugp
=0.1U and Upp=0.25U, respectively, for a range of fermion
velocities, or DOS p. In Fig. 3, we plot the effect of slow
fermions, with p=3.5/U, on the bosonic SF transition for a
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FIG. 1. (Color online) Zero-temperature mean-field phase dia-
gram of the Fermi-Bose mixture with Uzp=0.1U. (a) Renormalized
chemical potential, i/ U vs bare J/rU phase boundary. From bot-
tom left to top right, the fermions DOS is p-U=3.5,3,2.5,...,0.5.
A dashed red line marks the uncoupled Bose gas, Upp=0, but can
barely be distinguished from the p=0.5 line. (b) Charge offset 7
=i/ U vs bare J/U phase boundary. From left to right at 7=0, the
fermions DOS is p-U=3.5,3,2.5,...,0.5.

range of interactions Upg. The superfluid-insulator transition
boundary at finite temperature for Upp=0.25U is shown in
Fig. 4 for a range of temperatures for fast and slow fermions.
In all figures, we assume z=06.

One easily drawn qualitative conclusion is that slow elec-
trons mostly inhibit superfluidity, which is the mark of the
orthogonality catastrophe. The most dramatic suppression ef-

fect occurs near the degeneracy points, where =/ U=m
+1/2. Let us obtain closed-form expressions for the SF-
insulator boundary there. A helpful observation is that if the
charging gap nearly vanishes, it suffices to consider the low-
est nearly degenerate charge states in Eq. (30).

When the degeneracy is exact, e.g., at n=1/2, we obtain
for the critical J vs temperature:

) A (sin(ﬂ'T/A))V
=), —_

T o3l )
~—|— | B|{-,1- —, 31
477T( A )P\ TV G
where we neglected screening retardation, i.e., S, altogether.
This is valid for T7'-Y<<A'=?/y. B(m,n) is the beta function.

sin(7T7)
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Upp=0.25U
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FIG. 2. (Color online) Zero-temperature mean-field phase dia-
gram of the Fermi-Bose mixture with Upz=0.25U. (a) Renormal-
ized chemical potential, &/ U vs bare J/U phase boundary. From
bottom left to top right, the fermions DOS is p-U
=3.5,3,2.5,...,0.5. The dashed red line is the uncoupled Bose gas,

Upp=0. (b) Charge offset 7=j/U vs bare J/U phase boundary.
From left to right at 7=0, the fermions DOS is p-U
=3.5,3,2.5,...,0.5. (c) A focus on the area near degeneracy, n
=1/2, in (b). In this plot, we can see the strong effect of the or-
thogonality catastrophe for slow electrons. The intercept of the
boundary with the 7 axis becomes singular and scales as J/U
~10.5-1|'-7, illustrating Eq. (32).
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FIG. 3. (Color online) Zero-temperature mean-field phase dia-
gram of the Fermi-Bose mixture with Fermi dispersion p=3.5/U.
(a) Renormalized chemical potential, @/U vs bare J/U phase
boundary. From bottom left to top right, the fermions DOS is
Urpp/ U=0,0.05,0.1,...,0.25. Upp=0 is shown as a dashed red
line. (b) Charge offset 7=i/U vs bare J/U phase boundary. From
left to right at 7=0, the fermions DOS is Upp/U=0.25,0.2,...,0,
with Upp=0 shown as a red dashed line.

Figure 4(b) shows Eq. (30) in this limit. Whereas for pure
bosons the critical J is linearly proportional to 7, the inter-
action with fermions makes the critical J required for super-
fluidity increase dramatically and obey J.~ T'~7.

A similar analysis can be done at zero temperature
slightly away from degeneracy at n—1/2=€<<1. In this re-
gime we obtain

Lra-y. (2

J [~ e<UT g(:sﬁ)y
eU

T4l T T ey

where ignoring screening retardation is valid if €'~

<(A/U)""7/. Here, too, the critical hopping as a function
of € is linear, J.~|€| for pure bosons, but increases dramati-
cally to J,~ |€|'~” when the bosons interact with the fermi-
ons. This dependence is demonstrated in Fig. 2(c).

As described above, the effects of the orthogonality catas-
trophe are most evident near the degeneracy points. In the tip
of the Mott lobes, it is the fermionic screening that plays the
most dominant role, by suppressing the charging gap for
bosonic charge excitations, and therefore always enhancing
superfluidity. However, this effect becomes less and less evi-
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FIG. 4. (Color online) Temperature dependence of the SF-
insulator boundary for Ugzp=0.25U. (a) The SF-insulator boundary
for T=0,0.04,...,0.2 (from left to right at 7=1/2) with fast fermi-
ons, p=0.5. The dashed red line is the uncoupled Bose gas bound-
ary, Upp=0. (b) Same as (a) with slow fermions, p=3/U. (c) The
critical boson hopping J/U vs T/U, for fermion DOS p-U
=0.5,1,...,3.5. The linear curve of the uncoupled Bose gas be-
comes a cusp as the bosons couple to slow fermions, as also calcu-
lated in Eq. (31).
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dent with slower fermions, as Up becomes large (c.f. Figs. 2
and 3).

V. DISCUSSION
A. Regime of applicability

Our theory of the SF-insulator transition applies to the
weakly coupled Bose-Fermi mixtures, with Uzp<<U, but a
second parameter that is required to be small is Upgp<<1
[see Eq. (18)]. The latter is required for the perturbation
theory of Eq. (21) to be justified. As explained above, this
condition can be easily understood by noting from Eq. (15)
that the response of the Fermi gas to the appearance of a
boson in a particular site is Ang=Upgp, which clearly must
be lower than 1. Even more importantly, the perturbative
analysis is valid so long that no localized states form in the
fermionic spectrum when a site’s potential changes by Upp;
this, too, is true when pUrp<<1 at large dimensionality.

The formation of a localized state at larger values of
Uppp, and therefore where y>1, is likely to suppress the
orthogonality-catastrophe effects, perhaps in analogy to the
behavior of a Kondo-impurity in a metal: when a Kondo
impurity localizes an electronic state it becomes inert. There-
fore, the largest suppression of the SF-INS boundary is likely
to occur when Uggp~1, as y~1.57 The regime y>1 lies
beyond the scope of this paper, but we intend to approach it
in a later publication. Note that this regime can still occur
when Upp<<U.

We note also that since our theory is concerned with weak
Fermi-Bose coupling, it ignores Fermi-Bose bound pair for-
mation, as well as p-wave superconducting correlations,
which may be important only at parametrically low tempera-
tures.

B. Relation to experiment

Our theory provides the mean-field phase diagram under
the assumption of a grand-canonical ensemble with fixed
chemical potentials. Experiments, on the other hand, are con-
ducted in finite nonuniform traps, and therefore to compare
their results with the thermodynamic phase diagram we pro-
vide, the chemical potential of the interacting Bose and
Fermi gases must be determined for particular trap geom-
etries, using, e.g., the local density approximation approach,
as in Refs. 24 and 25.

Experiments on Bose-Fermi systems show a strong sup-
pression of superfluidity. Reference 33 describes a system
where J/U~1/20, Jp/J~5, and Ugg~-2U, i.e., the Bose-
Fermi system is strongly interacting. Thus our theory of
orthogonality-catastrophe effects is not directly applicable
here. We note, however, that at large values of U, bound
composite fermions would form.3? These will have a weak-
ened Upp and a strongly enhanced DOS, p. This makes it
possible to observe orthogonality-catastrophe SF suppression
even in this regime.

C. Relation to dissipative phase transitions

At weak Upg, we find that fermions, through their or-
thogonality catastrophe, by and large inhibit superfluidity,
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particularly when the fermions are slow. This effect is ex-
tremely reminiscent of dissipative superconducting-metal
phase transitions in Josephson junctions.

Typically, dissipative effects as in resistively shunted Jo-
sephson junctions (RSJJs) are thought to strengthen phase
coherence.”®> However, in our case, since the Bose-Fermi
mixtures couple through a capacitive interaction, as opposed
to the phase-phase interaction in superconducting systems
expressed in a Caldeira-Leggett®>° term or its modular
equivalent,’® we encounter a suppression.

Another important distinction is that the Caldeira-Leggett
analysis of a single RSJJs, and of 1d superfluids, associates
(quasi-long-range) phase ordering with the long-time behav-
ior of (¢/?Me=i#0)y However, in the mean-field theory of the
SF-insulator transition, the onset of true long-range phase
order we encounter is associated with the less restrictive time
integral of the aforementioned correlation, as in Eq. (30).%!
The dynamics of the fermionic screening gas modifies this
integral only quantitatively, but it does not affect the nature
of the transition.

The less restrictive condition for ordering in the mean-
field analysis reflects the assumed higher dimensionality of
the systems we consider. Concomitantly, in low dimensional
systems with short-range interactions only, the Mermin-
Wagner theorem rules out the formation of long-range order.
For Josephson junctions, for instance, phase slips are the
domain-wall-like defects which make the order parameter
fluctuates. Similar defects are absent from our analysis since
their cost in terms of action is too prohibitive due to the
assumed high connectivity of the system. Therefore, we can
make the mean-field assumption of a nonfluctuating order
parameter. This assumption is fully justified above the lower
critical dimension (although our analysis will only be valid at
and above the upper critical dimension).

D. Summary and future directions

In this paper, we concentrated on the effects of the or-
thogonality catastrophe on the superfluid-insulator transition
line, and showed how slow fermions inhibit superfluidity
through dissipation capacitatively coupled to number fluc-
tuations. The orthogonality catastrophe should also be evi-
dent in other measurements, which may give an independent
estimate of the dissipation present. This might be most ap-
parent in revival experiments, where the system is shifted
from a superfluid phase into the insulating phase and re-
leased after ¢,,.5 We expect that the revival decay time will
be smaller with increasing dissipation. We intend to address
the dynamical effects in Fermi-Bose mixtures in a future
work.

Another interesting angle for future work is the appear-
ance of a supersolid at the special point of Fermionic
half-filling;*® extending our formalism to account for this
possibility could be done by considering the fermionic den-
sity correlations near nesting vectors of the Fermi gas.
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surface renders the dispersion for low-energy excitations es-
sentially one dimensional.

Let us assume, for simplicity, that the fermionic Hamil-
tonian is

2k
H=twp, (k] - kp)(Efee+E5,8). (A1)
APPENDIX: FERMIONIC RESPONSE FUNCTION k=0
For completeness, we provide here a simple derivation of ~ The density of states per site for this Hamiltonian is
the Fermionic response function, Eq. (23), for fermions in 1
one dimension. Once our result is set in terms of the fermi- = PR (A2)
onic density of states at the Fermi surface, it applies in any Ur
dimension, since the existence of a (d—1)-dimensional Fermi For the Hamiltonian (A1), Eq. (22) reads
|
R 1
Co=(Anpbng(0),=T— 2 > (A3)
Ferr V2 stk ooy (10 = 10k = kp) (" + @) = fiv (k| = kp) |

This formula sums over the contributions of particle-hole excitations of four kinds: both particle and hole are right movers
(ky,k,>0), both particle and hole are left movers (k;,k,<0), and two mixed cases. In order to avoid the absolute value, we
concentrate on the first case, and multiply by 4:

e dky (' dky 1 1
C,=4T ; — ,
_277(%1/2)”/2 2mi(w — w/2) —hvplk, —kp) i(0" + 0/2) — fivp(ky — kf)

(A4)

where we also shifted ' by w/2. We now separate from this sum the contributions from large |w’|>#v gkz. These high-energy
modes contribute an w-independent term to the static screening. Corrections to this constant are easily seen to be quadratic in
o (e.g., set k;,k,—0). The low-w’ terms, however, will give rise to a |w| contribution, which we are after. The k integrals can
be easily done in the limit |0’ = w/2|<#v kg, and we obtain

1 ( v pkp—i(0' — w/2) ) ( ho ek — i(0' + w/2) )
(0] =
Qmhvp)? —hvpkp—i(w — w/2) —hvpkp—i(0 + w/2)

C,=c—-4T >

o' =27(n+1/2)+w/2

—4T >

o' =27(n+1/2)+w/2

)2[ imsgn(w' + w/2)][-imsgn(w’ — w/2)]. (A5)

1
(27hv

The w dependence arises from the region where the two sign
functions give opposite results: —|w|/2 <o’ <|w|/2. Thus,

o 1

C,=c' —4T—
27T (2hvg)?

2, (A6)

where the last factor of 2 is since ¢’ contains the contribu-
tions for —|w|/2 <’ <|w|/2 assuming the same sign as for
the rest of the frequency range. The final answer is thus

) (A7)

as reported in Eq. (23).

1. Bosonization approach to the polarization calculation

One-dimensional fermionic systems are most effectively
described in terms of a bosonized action. Let us rederive Eq.

(23) using this simpler approach. We define the two fields 6
and ¢. Using here the convention

1 1
—VoO=p.+pr, —Vé=pr-pL, (A8)
T T

where pp; are the right-moving and left-moving densities,
respectively. The Hamiltonian of 1d Fermions is

Hzﬁfdx(vehvdﬂ), (A9)
2

and vy is the Fermi velocity.
The Hamiltonian (A9) can be turned into an imaginary-
time Lagrangian:
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vpﬁ

dx(V& + ). (A10)

The density-density correlation we would like to calculate is
now given as a path integral over the 6 field:

Co= (AnpAnp () =2-=(VOV &), (A11)

i)
Here we need to pause and explain the extra factor of 2: the
expectation value in the brackets only takes into account
particle-hole excitations that are contained within the same
branch of the fermionic spectrum, right moving or left mov-
ing. We must also include, however, excitations with the par-
ticle part being a right mover and the hole being a left mover,
and vise versa. These give exactly the same contribution (as
is also seen in the first approach), and therefore it is sufficient

PHYSICAL REVIEW B 77, 144511 (2008)

to simply multiply the expectation value by 2.
With that in mind, we proceed to write

c __ko dk i 1
27720Fﬁ 0, 2 moh
Vg
ki wz/vlzp
Xf dk| 1= ———>—
—kp k +(1)/UF
;o r dk ol 1 ,
~c' - =c'—|lo|—F55=c¢
ﬂlv;ﬁ . K+ (wlvp)? m}%ﬁz
(A12)

where in the last step we simply calculated the residue of the
k integral.
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