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ABSTRACT
We investigate the role of neutron star superfluidity for magnetar oscillations. Using a plane-
wave analysis, we estimate the effects of a neutron superfluid in the elastic crust region. We
demonstrate that the superfluid imprint is likely to be more significant than the effects of
the crustal magnetic field. We also consider the region immediately beneath the crust, where
superfluid neutrons are thought to coexist with a type II proton superconductor. Since the
magnetic field in the latter is carried by an array of fluxtubes, the dynamics of this region differ
from standard magnetohydrodynamics. We show that the presence of the neutron superfluid
(again) leaves a clear imprint on the oscillations of the system. Taken together, our estimates
show that the superfluid components cannot be ignored in efforts to carry out ‘magnetar
seismology’. This increases the level of complexity of the modelling problem, but also points
to the possibility of using observations to probe the superfluid nature of supranuclear matter.
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1 IN T RO D U C T I O N

Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters
(SGRs) are widely believed to be magnetars; neutron stars powered
by an ultrastrong magnetic field (see Woods & Thompson 2004, for
a review). Observations (mainly conducted by X-ray satellites) have
established basic parameters like the magnetic field intensity, B ∼
1015 G, and spin period, P ∼ 10 s, for this class of objects. They have
also revealed a complex emission pattern with alternating periods
of burst activity and quiescence. SGRs, which are typically more
active than AXPs, are the only ones exhibiting giant flares. These
flares, which are believed to be triggered by some sort of instability
in the magnetic field (Duncan & Thompson 1992; Thompson &
Duncan 1995), are by far the most energetic events associated with
magnetars.

An exciting contribution to magnetar phenomenology was pro-
vided by the recent discovery of quasi-periodic oscillations (QPOs)
in the late tail spectrum of the two giant flares (Israel et al. 2005;
Strohmayer & Watts 2005; Watts & Strohmayer 2006). There may
also be evidence for a single QPO in the data of the third known
flare, observed back in the 1970s (Barat et al. 1983). The frequen-
cies of the most prominent QPOs lie in the range 30–100 Hz, exactly
where one would expect to find the seismic oscillation modes of the
magnetar’s crust (Hansen & Cioffi 1980). This is consistent with
the theoretical expectation that the energy released in a giant flare is
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sufficient to fracture the crust and excite its normal modes (Duncan
1998). If this interpretation of the QPOs is correct then we may
have the opportunity to carry out magnetar ‘asteroseismology’; a
comparison between theoretically predicted mode frequencies and
the QPO data, with the ultimate goal of constraining the properties
of neutron star matter (Samuelsson & Andersson 2007).

Indeed, several recent papers have attempted to constrain the
bulk equation of state of neutron star matter, assuming that the
observed QPO frequencies are identified with the first few toroidal
seismic modes of the crust (see Strohmayer 2007 for a recent review
and references). This is natural as a first step, but in reality the
situation is likely to be more complicated. As suggested by Levin
(2006) and Glampedakis, Samuelsson & Andersson (2006), the
strong magnetic field would likely couple an oscillating crust to
the liquid core on a very short time-scale. Then, the observed QPOs
would be a manifestation of the coupled crust–core dynamics rather
than the dynamics of the crust alone. Possible evidence that the
magnetic core plays an active role is given by the presence of a
low-frequency QPO in the data of the 2004 December flare in SGR
1806−20. This QPO is difficult to reconcile with the seismic mode
interpretation (Israel et al. 2005). It is therefore conceivable that
magnetar ‘seismology’ also probes the (much less well known)
properties of the interior magnetic field. This obviously comes at
a price. We now have to model global crust–core oscillations, a
problem that is considerably more challenging than that of pure
seismic crust modes.

Another aspect of neutron star physics, which is directly relevant
to the mode interpretation of the QPOs, has received almost no
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attention so far. Young and mature neutron stars (older than a month
or so) are sufficiently cold that the bulk of their interior liquid
matter is in a superfluid state. In the crust, for densities above the
neutron drip density ρ ≈ 4 × 1011 g cm−3, the ‘dripped’ neutrons are
expected to form a superfluid below a temperature ∼5 × 109 K. The
dynamical role of these ‘free’ neutrons could be important. After all,
they account for ∼80 per cent of the total mass in the crust. Similarly,
in the liquid core we expect to find both neutrons and protons in a
superfluid state (below a similar threshold temperature). In the outer
core, the protons most likely form a type II superconductor, provided
that the interior magnetic field does not exceed a critical value,
H c2 ∼ 1016 G (Baym, Pethick & Pines 1969). As a consequence,
any magnetic field that penetrates the proton plasma will form a
large number of quantized magnetic fluxtubes.

It is clearly relevant to ask to what extent the physical compo-
nents (the crust and the magnetic field) that play the leading role
in the magnetar QPO problem are sensitive to neutron and proton
superfluidity/superconductivity. The aim of this investigation is to
provide an insight into this issue, and improve our understanding
of the relative importance of the multifluid aspects of the magnetar
oscillation problem. By carrying out a local analysis, i.e. consider-
ing uniform parameter model, we learn how the shear waves in the
neutron star crust are affected by the presence of a superfluid neu-
tron component. Similarly, a local analysis in the core tells us how
the Alfvén waves are altered by the presence of the neutron super-
fluid (which provides the bulk of the core mass). Not surprisingly,
the entrainment between neutrons and protons turns out to be the
key parameter in these problems. This initial (order of magnitude)
analysis serves as a useful guideline for future (more detailed) work
for realistic neutron star models.

2 MULTIFLUID DY NA MICS OF THE C RU ST

2.1 Lagrangian perturbation equations

We want to model linear perturbations in a neutron star crust pene-
trated by a superfluid neutron component. It is natural to use a La-
grangian picture to describe this problem. Hence, we combine the
two-fluid Lagrangian perturbation equations (Andersson, Comer &
Grosart 2004) with the relevant elastic terms and the magnetic force
(Glampedakis & Andersson 2007). Since all known magnetars are
slowly rotating, with periods of several seconds, it makes sense to
focus on the non-rotating problem. Then, we need an equation for
the superfluid neutron displacement which can be written

(1 − εn)∂2
t ξ

n
i + εn∂

2
t ξ

c
i + ∇i δ� + ξ j

n ∇j∇i�

− (∇i ξ
j
n )∇j μ̃n + ∇i�nμ̃n = 0. (1)

We label the variables associated with the neutrons by a constituent
index n. �n represents a Lagrangian variation along the neutron flow
(associated with the displacement ξ i

n). The variable δ� represents
the (Eulerian) perturbation of the gravitational potential � and μ̃n

is the chemical potential (scaled with the neutron mass) for the
neutrons. We have

�nμ̃n =
(

∂μ̃n

∂nn

)
nc

∇i(nnξ
i
n)

+
(

∂μ̃n

∂nc

)
nn

∇i(ncξ
i
c ) + ξ i

n∇i μ̃n,
(2)

where nn and nc are the number densities of the neutrons and the
baryons making up the crust nuclei, respectively. The variables
associated with the crust nuclei are labelled by the constituent
index c.

The parameter εn (assumed constant in the following) encodes
the entrainment effect. In the crust, the entrainment is due to Bragg
scattering of the free neutrons on the crystal lattice (see Chamel
& Haensel 2008, for a recent review of the pioneering work in
this area). The available results are somewhat uncertain due to, for
example, many-body effects. Further work on this problem should
be encouraged.

Finally, it should be noted that we are not accounting for effects
due to the presence of neutron vortices, e.g. the mutual friction and
the vortex tension here. In principle, these effects will be present
even in the very slowly rotating magnetars, and it will be interesting
to consider them at a later stage (see van Hoven & Levin 2008, for a
relevant recent discussion). Our initial aim is to explore the leading
order effects of the problem.

The corresponding equation of motion for the crust nuclei can be
written
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2
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n
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− (∇i ξ
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el
i + �cf

mag
i . (3)

Here, �c represents the Lagrangian variation along the crust motion
(associated with a displacement ξ i

c), and
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+
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(4)

It is also worth noting that

nnεn = ncεc. (5)

The charged component equation includes both elastic and mag-
netic contributions. The former can be written

�cf
el
i = 1

ρc
∇j σij , (6)

where

σij = μ
(∇i ξ

c
j + ∇j ξ

c
i

) − 2

3
μ(∇ lξ c

l )δij (7)

(here one should not confuse the shear modulus μ with the chemical
potentials μx). Meanwhile, the magnetic term follows from the
standard electromagnetic Lorentz force. That is, in this case we
have

f
mag
i = f L

i = 1

cρc
εijkJ

jBk. (8)

Eliminating the total current with the help of Ampére’s law, i.e.
J i = (c/4π) εijk ∇ j Bk, this becomes

f L
i = Bj

4πρc
(∇jBi − ∇iBj ). (9)

Working out the Lagrangian variation using (Glampedakis & An-
dersson 2007)

�c

(
Bj

ρc

)
= 0, (10)

we arrive at

�cB
i = −Bi∇j ξ

j
c (11)

and

�cBi = Bj∇i ξ
j
c − Bi

(∇j ξ
j
c

) + Bj∇j ξ
c
i . (12)

Finally, using

�c(∇jBi) = ∇j (�cBi) − Bl∇j∇i ξ
l
c, (13)
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we obtain from (9)

�cf
mag
i = Bj

4πρc
[∇j (�cBi) − ∇i(�cBj )]. (14)

These are all the relations we need to solve the problem. As far as
we are aware, this is the first time that the perturbation problem
for combined superfluidity, elasticity and magnetic fields has been
formulated. The equations we have given can be directly applied to
studies of global mode oscillations of a superfluid neutron star with
a crust.

For later convenience, it is useful to note that we could equally
well have worked with Eulerian variations. In fact, since f i

L = 0
in the background configuration we must have �cf

mag
i = δf mag

i .
Moreover, one can show that in the case of an incompressible fluid
and a uniform background field (see below) we have

�cf
mag
i = δf

mag
i = v2

A

[
(B̂j∇j )2ξ c

i − B̂j B̂l∇i∇lξ
c
j

]
, (15)

where ‘hats’ denote unit vectors. We have also defined the Alfvén
wave velocity

v2
A = B2

4πρc
. (16)

It is important to note that in the superfluid system the Alfvén
velocity scales with the number density of charged nucleons, not
the total baryon number density (Mendell 1998).

2.2 Plane-wave analysis

As a first step towards understanding the problem, let us consider
the simple case of a uniform, non-rotating background. For an in-
compressible model, we have

∇i ξ
i
x = 0 −→ �xμ̃x = 0. (17)

Then, the problem simplifies to (note that we will have δ� =
∇ i� = 0 for a uniform background)

(1 − εn)∂2
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n
i + εn∂

2
t ξ

c
i = 0 (18)

(1 − εc)∂
2
t ξ

c
i + εc∂

2
t ξ

n
i = �cf

el
i + �cf

mag
i . (19)

We also need

�cf
el
i = v2

s ∇2ξ c
i , (20)

where the shear velocity, vs, is defined by

v2
s = μ

ρc
. (21)

Note that the shear velocity scales with the number density of nucle-
ons locked in the crust lattice, not the total nucleon number density
as would be the case if there were no superfluid component. This
distinction has not been made in previous work where the crust is
modelled as a single component (see e.g. Duncan 1998; Piro 2005).

We now consider short wavelength (� the radius of the star)
wave propagation in this system. Making the standard plane-wave
Ansatz (see Sidery, Andersson & Comer 2008, for a recent analysis
of the analogous non-magnetic two-fluid problem)

ξ x
i = Ax

i e
i(ωt+kj xj ), (22)

where the index x is either n or c, we have

kiAx
i = 0, (23)

i.e. the waves are transverse, and
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j
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]
. (24)

From equation (18), we immediately get the relation

An
i = − εn

1 − εn
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i . (25)

Using this in equation (19), we arrive at[
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where we have introduced

ε� = 1 − εn

1 − εn − εc
. (27)

Defining

ω2
0 = v2

s k
2 (28)

the frequency of ‘pure’ elastic waves, and the Alfvén wave fre-
quency

ω2
A = v2

Ak2, (29)

we have an equation for Ac
i ,[

ω2

ε�

− ω2
0 − (B̂j k̂

j )2ω2
A

]
Ac

i = −ω2
A(B̂j k̂

j )(B̂lAc
l )k̂i . (30)

In order to arrive at the final dispersion relation, we first note that
contracting the above equation with k̂i leads to the constraint

ω2
A(B̂j k̂

j )(B̂lAc
l ) = 0. (31)

Thus, we can either choose to look for solutions where ki is or-
thogonal to the local magnetic field or we see that the polarization
Ac

i , and hence An
i , must be orthogonal to both ki and Bi . Since

the right-hand side of (30) vanishes in both cases we find that all
non-trivial solutions must be such that

ω2

ε�

− ω2
0 − (B̂j k̂

j )2ω2
A = 0. (32)

That is, we have the general dispersion relation

ω2 = ω2
0ε�

[
1 + (B̂j k̂

j )2 ω2
A

ω2
0

]
. (33)

Note that, in the degenerate case when Bik
i = 0 we cannot uniquely

determine the polarization; it can lie in any direction in the plane
orthogonal to ki . Also, it is clear that such waves do not depend on
the magnetic field at all. Generically, the polarization is, however,
well defined (up to scale since we have a homogeneous system) to
be orthogonal to both ki and Bi .

We need to estimate the magnitude of the various terms. Let us
first focus on the entrainment. Using (5), we find that

1 − εn − εc = 1 − εn

xc
, (34)

where xc = ρc/ρ. We can express this in terms of the effective
mass of the free neutrons, m∗

n. Then, we have (see Prix, Comer &
Andersson 2002, for a discussion of the analogous problem in a
superfluid neutron star core)

εn = 1 − m∗
n

mn
(35)

and it follows that

ε� = xc

(
1 − xn

mn

m∗
n

)−1

= xc

χ
. (36)

It is easy to show that χ−1/2 encodes the difference between the
superfluid result and the standard result for a single component
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Figure 1. This figure illustrates the density dependence of the different
parameters that affect the wave propagation in the crust. We show, as func-
tions of the total baryon number density nb, the superfluid neutron fraction
xn = nn/nb (dash–dot, left-hand scale) for the equation of state discussed
by Douchin & Haensel (2001), a fit to the effective neutron mass m∗

n/mn

(solid, right-hand scale) based on the numerical results of Chamel (2006)
(data points indicated by diamonds), and the ratio between the Alfvén
and the shear wave speeds (vA/vs)2 (dashed, left-hand scale). The overall
effect that the presence of the crust superfluid has on the local wave propa-
gation, compared to the standard single component crust, is (as discussed in
the main text) represented by χ−1/2 (solid, left-hand scale). The horizontal
dashed grey line indicates unity on the left-hand scale.

crust, i.e. with ρc → ρ in (21). This may be the most meaningful
comparison to make, since all previous studies of crust oscillations
have assumed the single component model.

What do we learn from these results? First of all, we see that in the
limit m∗

n → mn, when the medium effects that lead to the effective
mass differing from the bare mass are not so great, we have ε� →
1 and χ → xc. The waves in such a system, cf. (33), are the usual
shear waves with a (as we will see later) relatively small magnetic
correction. Of course, the results could still differ significantly from
the standard single component model. The largest effect that one
would expect would be, for xc ≈ 0.8 cf. Fig. 1, a frequency increase
by about a factor of 2. However, the effective mass is expected to be
larger than the bare mass so let us consider the opposite limit, which
may well apply in parts of the neutron star crust (see e.g. Chamel
2006). Then we have m∗

n 	 mn. Using also xc ≤ 1, we see that
ε� ≈ xc or χ → 1. In this limit, it is very difficult for the free
neutrons to move relative to the crust. The upshot of this is that
the waves in the system tend to the frequency predicted for a pure
elastic crust without a superfluid component.

These two extremes show that the presence of the superfluid in
the neutron star crust can have a significant effect on the waves in
the system. According to the data in Fig. 1, the combined effect is
at the 10 per cent level (compared to the single component crust
result). The results clearly show that the superfluid component must
be considered if we want to develop high-precision magnetar crust
seismology. Of course, in reality we are mainly interested in the
global oscillations. Then the local effects that we have worked out
will be (in some sense) averaged throughout the crust. One may
expect this to decrease the role of the superfluid since the effective

neutron mass may only be large in parts of the crust. Of course,
the real answer requires a detailed mode calculation. This problem
remains to be solved. In order to provide reliable results, such an
effort should draw on more complete studies of the entrainment for
the crust superfluid. One should also worry about the relevance of
vortex pinning and the mutual friction.

Finally, let us discuss the relative importance of the magnetic
field. Scaling to ‘typical’ values, we have

μ ≈ 1013

(
vs

108 cm s−1

)2(
ρ

1014 g cm−3

)
dyne cm−2. (37)

Then, it follows from (33) that we need to consider(
ωA

ω0

)2

≈ 0.08

(
vs

108 cm s−1

)−2(
ρ

1014 g cm−3

)−1(
B

1015 G

)2

.

(38)

This shows that we can safely ignore the magnetic effects in the
high-density region of the crust, cf. Fig. 1. In order for the magnetic
term to dominate at the base of the crust, we need B ∼ 1016 G,
stronger than the field strength inferred for magnetars. Of course,
one has to be a little bit careful here. First of all, it is entirely possible
that the interior field is stronger than the exterior dipole field which
leads to the observed braking of the magnetar spin. Secondly, (38)
indicates that the magnetic terms will dominate as we approach the
surface of the star. However, our analysis breaks down completely
in the surface region. Basically, the ideal magnetohydrodynamics
(MHD) approximation is only valid as long as the Alfvén wave
speed is significantly below the speed of light. If this is not the case,
one cannot neglect the displacement current (see Blaes et al. 1989
for a detailed analysis). Hence, we require

ρ 	 108

(
B

1015 G

)2

g cm−3. (39)

It is interesting to compare (39) to the estimated density for the top
of the crust, cf. for example equation (1) from Piro (2005),

ρtop ≈ 2.3 × 109

(
T

3 × 108 K

)3 (
26

Z

)6 (
A

56

)
g cm−3, (40)

where A is the number of nucleons and Z is the charge per ion,
respectively. This density is scaled to iron, which means that the
fiducial values should be relevant near the top of the crust. This sug-
gests that our approximation remains valid throughout a magnetar
crust. The displacement current becomes important in the neutron
stars envelope. The nature of this transition is an important problem
that deserves more attention.

3 MU LT I F L U I D DY NA M I C S O F T H E C O R E

3.1 Lagrangian perturbation equations

The magnetohydrodynamics (MHD) problem in the core is, in the
simplest case, formulated in terms of three distinct fluids associated
with the neutrons, protons and electrons. The former two particle
species are expected to be superfluid and superconducting, respec-
tively. Due to the smallness of the electron mass, the electron fluid
degree of freedom can be suppressed and the MHD equations ef-
fectively lead to a two-fluid model (Mendell 1998). The protons in
the outer core are expected to form a type II superconductor (Baym
et al. 1969) which means that the magnetic field is carried by a large
number of fluxtubes, each with a flux quantum φ0 = hc/2e. This
should be the case provided the magnetic field is below the critical
value H c2 (Baym et al. 1969). This critical value represents the field
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strength at which the magnetic fluxtubes overlap and can no longer
be treated individually. Above this threshold, the magnetic field be-
haves ‘classically’. It should be noted that, even though the critical
field is large, this is not an unrealistic possibility for magnetars given
that the magnetic field in the interior could be considerably higher
than the exterior dipole field. Hence, one ought to consider both
superconducting and normal protons. The latter case is, however,
trivial. The desired result follows immediately from the previous
section, e.g. (33), if we take the limit μ → 0.

For a non-rotating star, we again neglect the vortex-mediated
mutual friction and the neutron vortex tension. Omitting also a
small entrainment induced magnetic term that originates from the
London field by means of which the proton superconductor rotates
(see Glampedakis et al., in preparation for discussion), the superfluid
neutron dynamics is still governed by (1).

The combined proton–electron dynamics is a little bit more com-
plicated. As discussed by Glampedakis et al. (in preparation), the
relevant equation of motion takes the form(
∂t + vj

c ∇j

) (
vc

i + εcw
nc
i

) + ∇i(μ̃ + �) + εcw
nc
j ∇iv

j
c

= 1

ρc

(
f L

i + t c
i

)
, (41)

where vi
c and vi

n are the velocities, wi
nc = vi

n − vi
c and we have

(again) neglected the mutual friction. There are two force terms on
the right-hand side of this equation. The first, f i

L, is the usual electro-
magnetic Lorentz force given by (8). The second, t i

c, represents the
smooth-averaged tension of the magnetic fluxtubes. Remarkably,
the Lorentz force does not play a role in the final superconducting
MHD equations. As discussed by Glampedakis et al. (in prepa-
ration) (see also Mendell 1998), it is exactly cancelled by a term
originating from the fluxtube tension. In the case of a non-rotating
star, this leads to the magnetic force taking the form

f L
i + t c

i = mcc

4πe
Wj

c

[∇j (Hc1Ŵc
i ) − ∇i(Hc1Ŵc

j )
]
, (42)

where the lower critical magnetic field H c1 = H c1(ρc) ≈ 1015 G.
We have defined the vector W i

c , representing the (averaged)
canonical proton vorticity (Prix 2005). This means that we have1

W i
c ≈ e

mcc
Bi. (43)

From this, we see that, as expected, the magnetic force (42) does not
have a component along the magnetic field. However, the approxi-
mation (43) neglects a small term proportional to the London field.
This piece is aligned with the charged component’s rotation axis,
and if it is misaligned with the magnetic field (the generic situation)
then the magnetic force will have a component along Bi . Of course,
this contribution is very small and can likely be neglected in most
situations of interest.

Comparing the form of the magnetic forces in the normal and
superconducting cases, it is easy to see some generic differences,
some of which appear due to the density dependence of the critical
field H c1. It is clear that the terms in the force (42) that contain

1 Strictly speaking, this expression is only valid for the non-rotating back-
ground. Perturbations of W i

c will also contain the perturbed fluid velocities.
However, as long as we are focusing on the leading order contributions these
can be neglected. That this is a legitimate approximation is easy to see since
the characteristic frequency

e

mcc
B ≈ 1019

(
B

1015 G

)
s−1

is much higher than any other relevant frequency in the problem.

the gradient of H c1 have no correspondence in the standard Lorentz
force (8). However, the two forces are different even for the case of
a uniform incompressible background. In this case, the perturbed
form of the force (42) is

δf
mag
i = 1

ρc
δ(f L

i + t c
i ) ≈ Hc1

4πρc
Bj

[∇j δB̂i − ∇i δB̂j

]
. (44)

This expression can be compared to the perturbed Lorentz force (8),

δf L
i = BBj

4πρc

[∇j δB̂i − ∇i δB̂j

] + Bj

4πρc

[
B̂i∇j δB − B̂j∇i δB

]
.

(45)

The two forces will differ unless the second term in (45) van-
ishes. This requires that the following condition is satisfied (using
δB = B̂j δB

j )

(gij − B̂i B̂j )B̂k∇j δB
k = 0. (46)

For a generic perturbation, this will not be the case. The conclu-
sion of this discussion is that one should be careful before using
intuition gained from standard MHD problems in the case of a su-
perconducting core. There is certainly more2 to the problem than a
simple ‘replacement’ B2 → BH c1.

The superconducting MHD equations form a closed system once
we provide a relation between the magnetic field and the fluid ve-
locity. This relation follows from the magnetic induction equation.
Neglecting the coupling forces between the electrons and the neu-
tron and proton fluids (see Glampedakis et al., in preparation for
discussion), the induction equation takes the standard form,

∂tB
i ≈ εijkεklm∇j

(
vl

cB
m
)
. (47)

Its perturbed form is given by (10) from which we obtain the Eule-
rian perturbation of the magnetic field,

δBi = Bj∇j ξ
i
c − ∇j

(
ξ j

c Bi
)
. (48)

Using this result, we find (for a uniform background and incom-
pressible perturbations)

δf i
mag ≈ c2

AB̂j B̂l(gik − B̂i B̂k)∇j∇lξ
c
k , (49)

where

c2
A = Hc1B

4πρc
. (50)

We now have all the relations we need to discuss short wavelength
waves in the superfluid/superconducting system.

3.2 Plane-wave analysis

Most of the analysis works out exactly as in the crust problem
(obviously in the μ → 0 limit). The only difference is the form of
the perturbed magnetic force. Making the plane-wave assumption,
we see that

�cf
mag
i = −c2

Ak2(B̂j k̂j )2
[
ξ c
i − (B̂lξ c

l )B̂i

]
. (51)

Comparing the magnetic forces in the normal and superconducting
cases (equations 21 and 51, respectively), we see that the character-
istic speeds are different, c2

A = (H c1/B) v2
A. This is a well-known

effect (Easson & Pethick 1977; Mendell 1998). The two veloc-
ities would differ by a factor ∼103 for a canonical pulsar with

2 For an interesting recent discussion on how superconductivity may affect
the stability properties of the star, see Akgün & Wasserman (2008).
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B = 1012 G. However, the effect will not be as dramatic for magne-
tars for which B ≈ H c1 ≈ 1015 G.

Combining the perturbation equations as in the previous section,
we readily arrive at[

ω2

ε�

− c2
Ak2

(
k̂j B̂

j
)2

]
Ai

c = −c2
Ak2

(
k̂j B̂

j
)2 (

B̂jA
j
c

)
B̂i . (52)

Working things out as in the crust case, we project this equation on
to k̂i . Since kiA

i
c = 0, it then follows that we have the constraint

c2
A

(
k̂j B̂

j
)3 (

B̂jA
j
c

) = 0. (53)

This has the same implications as in the crust problem. It follows
that the right-hand side of (52) must vanish. Hence, we have the
dispersion relation,

ω2 = ε�c
2
Ak2

(
k̂j B̂

j
)2 = ε�

Hc1B

4πρc
k2

(
k̂j B̂

j
)2

. (54)

Our main interest here concerns the role of the superfluid neutron
component. Its presence is reflected by the entrainment factor in
(54). To quantify its relevance, we express the entrainment in terms
of the effective proton mass, i.e. we use εc = 1 − m∗

p/mp. Then it
follows, since the proton fraction in the core is small, that

ω2 ≈ mp

m∗
p

c2
Ak2. (55)

Since it is expected that 0.3 < m∗
p/mp < 0.7 (see Prix et al. 2002,

for discussion), we see that the presence of the superfluid neutrons
will lead to a ∼20–80 per cent increase in the frequency of the core
waves. This effect is large enough that it cannot be neglected. It may,
in fact, be observable. If one accepts the argument that the magnetic
field couples motion in the crust to the core, and that the core fluid
is therefore partaking in the oscillation, then the entrainment will
affect the observed frequencies.

We cannot at this point say much about the global oscillations
of a magnetic neutron star core; it is a problem that remains to
be solved in detail. It is complicated by the likely presence of an
‘Alfvén continuum’ (Levin 2007). At this point, it is not clear to what
extent the continuum prevails in more detailed neutron star models.
However, it is easy to see how the presence of the superfluid will
manifest itself in the continuum toy model considered by Levin
(2007). The frequency range of the continuum will simply scale
according to (54).

4 C O N C L U D I N G R E M A R K S

In this paper, we have investigated the role of neutron star super-
fluidity for magnetar oscillations. The results impact on attempts
to use data from observed QPOs in the tails of magnetar flares to
place constraints on neutron star parameters (see e.g. Samuelsson
& Andersson 2007). Using a plane-wave analysis, we estimated the
effects of the neutron superfluid in the elastic crust region. This,
the first ever, analysis of the combined magnetic-elastic-superfluid
crust problem demonstrated that the superfluid imprint is likely
to be more significant than the effects of the crustal magnetic
field. This is, of course, assuming that the SGR flare mechanism
does not deposit sufficient heat in the crust to raise the system
above the superfluid transition temperature. Available estimates, e.g.
Kouveliotou et al. (2003), suggest that this is unlikely. We also con-
sidered the region immediately beneath the crust, where superfluid
neutrons are thought to coexist with a type II proton superconduc-
tor. Since the magnetic field in the latter is carried by an array of
fluxtubes (see Glampedakis et al., in preparation, for discussion),
the dynamics of this region differ from standard MHD. We showed

that the presence of the neutron superfluid (again) affects the oscil-
lations of the system. This accords well with previous results of, in
particular, Mendell (1998).

Our estimates show that the superfluid components cannot be
ignored in efforts to carry out magnetar seismology. This increases
the level of complexity of the modelling problem, but also points to
the exciting possibility of using observations to probe the superfluid
nature of supranuclear matter. Future work needs to extend our
analysis to consider the global oscillations of magnetic-superfluid-
elastic neutron stars. This is a very interesting problem because,
in addition to enabling a more detailed seismology analysis, it may
also provide insight into rotational glitches in magnetars (Dib, Kaspi
& Gavriil 1992). It is generally believed that superfluidity plays a
key role in radio pulsar glitches. Recent developments in modelling
these events are showing some promise (Glampedakis & Andersson
2008), and it would obviously be highly relevant to extend this
analysis to strongly magnetized systems.
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