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By applying the formulation developed in I and using several semiphenomenological two

nucleon potentials, properties of the 3 P2 pairing originating from spin-orbit forces are inves

tigated at high density (p;;.::; 2 X 1014gcm -a) in neutron star matter. All the possible types of 

solutions are obtained by solving a coupled integral gap equation through an iterative proce

dure. Two of these five solutions represent axially symmetric energy gap. By a kind of 

self-consistency implied in the coupled gap equation the most general solution shows remark

able deviation from axial symmetry as a result of the mixing mainly of m1= ±2, 0 components 

but the resulting gap is nodeless. The total energy shifts are very close for all the types of 

solutions. Although calculations show the largest energy shift for the most general solution, 

this conclusion is a delicate quantitative one. The 3P2 gap at high densities depends criti

cally on the effective mass and short-range behavior of nuclearforces, especially on the strong 

repulsive core of two-nucleon forces. In any case there exists Reutron superfl.uidity due 

to the ap2 pairing at least in the density region p~(2......,5) X1014gcm- 3• Consequences of the 

calculated results are discussed, and an argument is given to the connection between the mass 

of the pulsar and the strong density dependence of neutron superfl.uidity. 

§ 1. Introduction 

Realization of superfluidity of the 3P2 type in neutron star matter has been 

pointed out in previous paper 1.1
) In connection with this suggestion the follow

ing points should be remarked: 

(1) Superfluidity of neutrons exists owing to the 3P 2 pairing even in the 

high density region of neutron stars (p;?,:2 X 1014g cm-3
) where the superfluidity 

due to the usual 1S 0 pairing disappears. This is a reliable theoretical consequence 

that nonzero angular momentum pairing does indeed take place. 

(2) Recently, Baym, Pethick, Pines and Ruderman have pointed out an evi

dence for the superfluidity of both neutrons and protons in the interior of the 

pulsar on the basis of the slow relaxation after the discontinuous speed up of 

the rotation of the Vela pulsar which is considered to occur as a result of 

"starquake ".2
) Unless mass of a neutron star is much smaller than M 0 , a large 

portion of neutrons are in the 3P 2 superfluid state, while protons are in the 1S 0 

superfluid state. 

(3) The 3P 2 pairing originates from strong spin-orbit forces mainly due to 

the vector meson exchange in the intermediate and innermost regions, r ..--..-I"""' 2 
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Superjluid State in Neutron Star Matter. II 115 

fm and r;S1 fm respectively, r being the internucleon distances.3
) Nuclear forces 

in the innermost region are closely related to the upper limit of the density, 

beyond which the 3P2 super:fluidity disappears. 

(4) Properties of neutron stars (thermal, rotational, magnetic and so on) 

are considerably affected by those of the neutron matter in the 3P 2 superfluid 

phase. It is also interesting to see how the shape of the Fermi surface deforms 

due to the anisotropy of the 3P 2 gap and which direction of the deformation is 

preferable with respect to the rotation axis. 

From the viewpoint of many-body theory of neutron stars it is important to 

determine basic properties of the 3P 2 energy gap. Formulation to treat the non

zero angular momentum pairing has been developed in I. The gap equation is 

a coupled integral equation for :five independent components, and is not easy to 

solve. Thus far, only simple special solutions have been dealt with. In I we 

have calculated the maximum I m 1 1 coupling case, where only m1 = ± 2 components 

are included. Another type of special solutions (m1 = 0 only) 1) has been discussed 

by Hoffberg, Glassgold, Richardson and Ruderman.4
) Angle dependence of the 

energy gap changes depending on what components in the gap matrix defined by 

Eq. (9) play an important role. There may be nodes of the energy gap in some 

directions. For example, the 3P2 gap vanishes at e = 0 and n for the maximum 

I m1 1 coupling. The existence of nodes of the energy gap has much influence on 

properties of matter such as specific heat5
) and moment of inertia.6

) It is one 

of the aims of this paper to find the most general solution and the angle depen

dence of the energy gap, with ellucidating physical meaning of special solutions. 

Previous calculations were performed by making use of phenomenological 

nonlocal separable potentials which simplify calculations. It is another aim of 

this paper to obtain more reliable conclusions by using semiphenomenological 

two-nucleon forces. In particular we pay attention to the effect of repulsive core. 

For the potentials with singular repulsive core, the usual way to calculate the 

energy gap (two-step method) is to get the reaction matrix at the Fermi surface 

and next to solve the gap equation neglecting the momentum dependence of the 

reaction matrix elements in a narrow region near EF.5
)•

7
) It is inevitable to in

troduce a parameter, an interval of integration, in the last step. On the other 

hand, it has been conjectured by Cooper, Mills and Sessler8
) and rigorously shown 

by Marumori, Murota, Takagi, Tanaka and Yasuno9
) that the gap equation is 

not altered even in the presence of a singular potential because the quantity such 

as L1 (k) 1..; ek
2 + L12 (k) has dual roles not only to include the pairing ~orrelation 

near EF but also to imply the short-range correlation far from EF. Therefore, 

if we employ a soft core potential, we can perform calculations unambiguously. 

The 1S0 pairing in nuclear matter was successfully treated by this procedure by 

Ishihara, Tanaka, Yasuno and one of the authors (R.T.) .10
) We adopt this pro

cedure (one-step method) in this paper. 

As in I, a small effect of the 3F 2 coupling due to tensor force is neglected. 
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116 T. Takatsuka and R. Tamagaki 

Because this effect is attractive, the conclusions obtained here are not weakened 

by including this tensor coupling effect, except for the case of the critical situa

tion where the gap becomes vanishingly small. 

In § 2, we recapitulate the formula in I which we need for calculations of 

the 3P 2 gap equation. Two-nucleon potentials employed in calculations are ex

plained in § 3. In § 4 we investigate two simple solutions with axial symmetry 

which are important to choose starting values for more general solutions. Also 

dependences on potential properties and effective mass are investigated~ Mixing 

of different components in the gap matrix and departure from axial symmetry 

as a result· of this mixing are obtained by looking for more general solutions in 

§ 5. Section 6 is devoted to discussions of calculated results. In § 7 main con

clusions are summarized and an argument is given concerning the mass of the 

Vela pulsar. 

§ 2. Gap equation for 3 P2 pairing 

In this section, we briefly summarize the treatment of the patrmg interac

tion with nonzero angular momentum in I. If the attractive interaction is do

minant in a particular pair state A (l, s, j), super:fluidity is mainly determined.· by 

this A-state pair interaction and the remaining parts of the interaction are to be 

treated in terms of quasiparticle operators after a generalized Bogoliubov trans

formation corresponding to the A-pair interaction. As far as we are concerned 

with calculations of the energy gap and of the energy shift of the ground state 

due to the A-pairing, we can simplify the problem in such a way that the sys

tem under consideration is described with a model Hamiltonian with the A-pair 

interaction only: 

H"'=Ho+Hp~lr 

where 

(2) 

and 

is a boson operator representing a tl-pair. For simplicity, we take into account 

the effect of one-body potential by introducing the effective mass M* into S!c,, the 

kinetic energy measured from the Fermi energy. Hereafter k and k denote the 

magnitude and the direction of the nucleon wave number vector k, respectively. 

The transformation of the Fermi gas state I @0) into the super state I ?P'0) is 

given by the following generalized Bogoliubov transformation: 
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Superjluid State in Neutron Star Matter. II 

I ?JI'o) = eisl (j)o) , 

S =- i 2::. {¢Amj (k) bfmj (k) - c/Jfm/k) bAm/k)} • 
kmj 

Quasiparticle operators akp (p = 1, 2) are obtained by the transformation 

where 

and 

117 

(4) 

(5) 

(6) 

By use of Eq. (6), the model Hamiltonian HA is rewritten m terms of quasi

particle operators : 

H-,..~H 00 (constant terms) +Hu(a, a* terms) +H20(a*a*, aa terms). (7) 

Elimination of the dangerous terms H 20 leads to a gap equation, and the energy 

gap D-,.. (k) is given by the (2 X 2) gap matrix JIA (k) In spm space in the fol

lowing wa.y: 

(8) 

where 

[GAm/k) ]0"
1
,0"

2 
= (1/21/20"10"2ism~~) (slmllmj- mllljmJ) Y~.mj-ms (k), · (10) 

and the total energy shift LJE is given by the following relation: 

(11) 

The quasiparticle kinetic energy Hn becomes 

Hu = 2::. 2::. v'e,.2 + DA2 (k) a~pakp. 
k p 

(12) 

Here, we write down explicitly the gap equation for LlAmJ(k) in the case of 
3P 2 pairing (J.;s=1,l=1,j=2): 

I
Ll .(k) = _ _!_ sdk'k'2(k'IV lk) sdk'l:.t~LJA/.l(k')Tr[G-,..t~(k')Gfmj(k')] 

"J..mJ n A v' g~, + DA2 (k') ' 

l
D-,..2 (k) =i ~ ~ Ll-,..mJ(k)Llft~(k)Tr[GAm/k)Gft~(k)], (13) 

[GAmj(k) ]0"
1

,0"
2
= (1/2 1/20"10"211mll) (11mllmj- m~~l2mJ) Yl,mj-ms (k). 

The condition that the t!ansformation (5) is invariant under time reversal leads 

to the relation ¢fm/k) = (- )f+mi¢A-•rn/k), from which we get 

Jfm/k) = (- )i+mj d"J..-mj (k) • (14) 

Then, L1AmJ (k) Is expressed by only five independent variables as follows: 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

6
/1

/1
1
4
/1

8
4
8
8
1
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



118 T. Takatsuka and R. Tamagaki 

{ 

Ll2 (k) =o2 (k) + ~r;2 (k), 

L11 (k) =o1 (k) + zr;1 (k)' 

Llo (k) =oo (k), 

(15) 

where o2 (k), r;2 (k), o1 (k), r;1 (k) and o0 (k) are real. Substituting Eq. (15) into 

Eq. (13) we obtain the following nonlinear coupled· integral equations: 

X 2[o2 (k') sin20- 01 (k') sin (j cos (j cos ¢- 7J1 (k') sin (j cos 0 sin ¢ 
Sn 

- .. }r, 00 (k') sin
2
8 cos 2¢ J /J si, + D>-

2 
(k'), 

r;2 (k) = - ~ f dk'k'
2
<k'l V>-lk) f dk' 

(16 ·1) 

X 2 [r;2 (k') sin20- r;1 (k') sin 8 cos 8 cos ¢ + o1 (k') sin 8 cos 8 sin ¢ 
8n 

+ .)r, 00 (k') sin
2
8 sin 2¢ J /J §'~, + D>-

2 
(k'), 

o1 (k) = - ~ f dk'k'
2
<k'l V>-lk) f dk' 

X 2[-o2 (k') sin 8 cos 8 cos ¢ + r;2 (k') sin 8 cos 8 sin¢ 
Sn 

(16·2) 

+ o1 (k') (1- _!_ sin28) + _!_ o1 (k') sin28 cos 2¢- _!_r;1 (k') sin28 sin 2¢ 
2 . 2 2 

- .. }r, 00 (k') sin 8 cos 8 cos ¢ J /J §'~, + D>-
2 
(k'), 

X 2[- r;2 (k') sin 8 cos 8 cos ¢-02 (k') sin 8 cos 8 sin¢ 
8n 

(16 ·3) 

·+ r;1 (k') (1- _!_ sin28)- _!_ r;1 (k') sin28 cos 2¢- _!_01 (k') sin28 sin 2¢ 
2 2 2 

+ ..;'~ o0 (k') sin 8 cos 8 sin¢ ]/J si, + D>-
2 
(k'), 

Oo(k) =- ~ S dk'k'
2
<k'J VxJk) Sdk' 

(16 ·4) 
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Superjluid State in Neutron Star Matter. II 119 

- v'~ o1 (k') sin (} cos (} cos ¢ + *'lJ1 Ck') sin (} cos (} sin ¢ 

+ o0 Ck') ( ~ + cos
2
(}) ]/ V g~, + D>.

2 
Ck'), (16. 5) 

where 

D>.
2 
Ck') = 

8

1
n [ 3 Ca22 Ck') + 1J22 Ck')) sin

2
(} + 3 Col Ck') + r;1

2 
Ck')) ( 1- ~ sin

2
(}) 

+ _!_00
2 Ck') (1 + 3 cos2

(}) 

2 

+ .J() Coo (k') 1j1 (k') + v'6o1 (k') 1J2 (k') - v'6r;1 (k') 02 (k')) sin(} cos (} sin¢ 

- v'6 Coo (k') o1 (k') + v6o1 Ck') o2 Ck') + v'6r;1 Ck') r;2 (k')) sin e cos e cos ¢ 

+_!_(3o12 (k') -3r;12(k') -2v'6oa(k')o2(k'))sin2(} cos 2¢ 
2 

+ ~ (2v'6aa (k') r;2 (k') - 6a1 (k') r;1 (k')) sin2
(} sin 2¢ J. C17) 

The coupled equations (16) combined with Eq. C17) are not easy to solve. 

But if we find suitable starting values, we can solve these equations numerically 

by the iterative method. Therefore, the first step in computation is to find a 

set of starting values so as to converge iterations. In order to find such a set we 

begin with particular cases in which physical ln:eaning is clear' and then -treat 

more general cases. That is, we start with solving the gap equations for the 

max1mum !mil coupling (only mi= ±2 components are used) and the mi=O 

coupling. 

§ 3. Potentials for 3P2 state 

In this section, we explain the potentials used in our calculations of the 3P2 
energy gap. 

C1) Nonlocal separable potential 

This potential is one of nonlocal separable potentials without repulsive core 

adjusted to nucleon-nucleon scattering phase shifts up to E}l~ap; < 400 MeV by 

Mongan:11
) 

<k'! V>.!k) =·- l£h£(k') h£ (k), 
2 
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120 T. Takatsuka and R. Tamagaki 

with l = 1, n = 1, C A= 5.349 (MeV· fmYI\ a A= 1.509 fm -t. This potential is adopted 

in order to compare our results in this paper with those in I for I mil =2 by use 

of the dispersion relation, and also those of Ref. 4) for mi = 0 calculated with 

Tabakin's nonlocal separable potential which is essentially the same as Mongan's. 

The results by use of this potential shown later are consistent with those of the 

previous works. 

(2) OPEG 

Local potentials referred to as OPEG (Gaussian soft core potential with the 

OPEP tail) is the most reliable among potentials used here. Its inside properties 

have been determined semiphenomenologically. The sp2 effective potential is 

V0 (r) has Gaussian repulsive core and VLs (r) is strongly attractive for r,:S1 fm. 

Two potentials of this type are employed in calculations. The one is OPEG 
30-1 in Table II of Ref. 12) *) with 2 Ge V repulsive core and a steep VLs(r) 

with -1500 MeV at r = 0, which partially cancel each other in the sp2 state and 

give 500 MeV core to VA. (r) as shown in Fig. 1. The other is a slightly mo

dified version of OPEG so- 2 in Ref. 12) with 300 MeV core and a softened 

spin-orbit potential (VL8 (r=0)= -100 MeV). Modification is done only in VL8 (r) 

by changing the depth of the Gaussian term, to improve the sp2 fit slightly: from 

C{}.ls= -100 MeV (original in Table II of Ref. 12) to C{}l8 = -150 MeV (mo

dified). We denote this as OPEG so- 2M, which is almost the same as OPEG 

so -1 for r?0.8 fm and has a somewhat shrinked core with 150 MeV in VA. (r) 

80 

-40 

-80 

(MeV) 

r(fm) 

2.4 2.8 

0.6 

Fig. 1. Local effective potentials 

v ... (r) for OPEG and G3RS 

types in the 3P2 state. The 

values attached to the arrows 

are V ... =Va+VLs at r=O. 

· cf;... (r) is the correlated 3P2-

pair radial wave function cal

culated from G3RS 30-1 for 

m*=l and EF=lOOMeV. The 

corresponding uncorrelated 

function h(kFr) normalized 

to c/J;. (r) at r=1.4 fm is also 

shown for comparison. 

*> The abbreviations, 30 and tE, stand for the triplet odd and singlet even states of the two

nucleon system, respectively. 
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Super.fluid State in Neutron Star Matter. II 121 

as shown in Fig. 1. The calculated sp2 phase shifts are shown 1n Fig. 2. 

(3) G3RS 

Local potentials referred to as G3RS (Gaussian soft core potential with three 

ranges) have the following form: 

V;, (r) = Va(r) -0.4 VT(r) + VLs(r) + i V w(r) + 2VLL(r), 

3 

vi (r) = 'E Vin exp [- (r/r;inYJ for i=C, T, LS, W, LL. 
n=l 

In this case, 2.43 Ge V core potential is denoted by G3RS 30 -1 and 350 MeV 

core potential by G3RS so- 2 in Table III of Ref. 12). As shown in Fig. 1, 

V>- (r) of G3RS so -1 is more attractive outside a stronger repulsive core than 

that of OPEG so -1 and V>- (r) of G3RS so- 2 has a more shrinked repulsive 

core than that of OPEG so- 2M. G3RS so -1 can be regarded as an extreme 

of OPEG so -1 type and G3RS so- 2 as the other extreme of OPEG so- 2M 

type. The matrix elements of Gaussian potentials are easily calculated, and we 

can shorten the computing time by making use of this type. Calculation for 

general solutions is made by use of G3RS so -1. The calculated sp2 phase 

shifts are shown in Fig. 2. 

phase shifts 

OPEG 
1
£-1 

200 300 400 

0 50 100 

500 600 

150 

OPEG 
3
0-1 

700 £CLAB> (MeV) 
N-N 

Et: (MeV) 

Fig. 2. 3P 2 scattering phase shifts calculated from OPEG (solid lines) and G3RS (dashed lines) with 
3
F2 coupling and G3RS (dotted curves) without 3F2 coupling. 1D2 scattering phase shifts ob

tained from OPEG 1E-112> are shown for discussions in § 6-3. The indicated solutions of phase 

shift analysis follows the figure caption of Fig. 1 in I. 

§ 4. Axially symmetric energy gap 

Generally speaking, the sp2 gap equation is expressed by Eq. (16), where 
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122 T. Takatsuka and R. Tamagaki 

all the m1 components (m1 = 2, 1, 0, -1, - 2) are coupled. As the first step, if we 

impose the condition that the existence of a gap deforms the Fermi sphere in an 

axially-symmetric way, the axial-symmetry of D-,.2 (k) in Eq. (17) leads to the 

following relations, equivalent to Eq. (4) in Ref. 4) given by Hoffenberg et al.: 

l 
tJor;1 + ·/6tJ1r;2- ·/6r;1tJ2 = 0 , 

tJo(J~ + -./6(}1(}2 + v'trfj1/j2 = 0 , (
18

) 

2-./6tJor;2- 6(}1'71 = 0 , 

3(}1
2-3f712-2-./6tJotJ2=0. 

From Eq. (16) together with Eq. (18), we get tJ2 = '72, tJ1 = '7h then the solutions 

satisfying this condition reduce to only two simple ones: 

Sol. 1: the solution with only m1 = 2, -2 components ((}1 = '71 = (}0 = 0), 

Sol. 2: the solution with only m1 =0 component (tJ2=r;2=tJ1=r;1=0). 

These two simple solutions satisfy Eq. (16) self-consistently and exhaust all the 

solutions obtained under the condition of axial symmetry of the energy gap. 

4-1 Solution with maximum Jm1 1 coupling and potential dependence of 3P2 

energy gap 

This solution (Sol. 1) corresponds to the case in which only the pair states 

with the complete alignment of the spin and angular momenta are selected. The 

energy gap D.,. (k) = .J3I8rc J 2 (k) sin 8 vanishes at 8 = 0 and rc, and the deforma

tion of the Fermi sphere is axially symmetric and oblate. Putting (}1=f71=tJo=O 

and (}2 = '72 = J 21 -./2 in Eq. (16), we have 

J2(k) = _l_ sdk'k'2<k'l V.,.Jk) sdk' (3l8rc)J2(k')sin28 . (19) 
rc . .Js%, + (3l8rc) J22 (k') sin28 

The resulting energy gaps J2 (k) calculated from various potentials are shown 

m Fig. 3 for the effective mass parameter m*=M*IM=1 and EF=100 MeV. 

In the region of large k where the short range correlation plays an important 

role, J 2 (k) becomes negative due to the effect of repulsive core, because 

J2 (k) IE (k) = sdk (3l8rc) sin
2
8J2 (k) I .J Sk2 + (3l8rc) J22 (k) sin28 

means the pair correlation function of both the BCS type and the short-range 

repulsion. In Fig. 1 a correlated pair wave function 

¢-,. (r) = 1"' dkk2
}1 (kr) J2 (k) IE (k) 

for EF= 100 MeV and m* = 1 is shown so as to illustrate such a situation. Short

range correlation is not very strong except for G3RS 30 -1. 

The resulting energy gaps Ll2 (kF) at the Fermi surface for various cases are 

given in Table I, which shows the existence of the 3P 2 gap larger than about 1 

MeV in so far as the 3P 2 potentials reproduce well the 3P2 phase shifts below 
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~2(k) 

4 
(MeV) __ . G3RS 30-2 

3 

2 

;' ' _. ....... I 
/ \ OPEG 30-2M 

I \ 
I \ 
I........---... \ 

~~ .................. 

I I 

I / / / / 

" I I / 

!
// 

I I 
I 

II 

'I" I 

OPEG 30-1 

_____ LMongan's 

' -----
\ ----', -----' ----

\ 

' ' 

123 

' ~---.-----.T----.--~--~~~-'~-,----,---~.-----r=~~~~~~--k 
I ' ..... 6 7 s~g--- 10----11 <t _,) 2 3 5~~----- m 

-1 

-2 

'j------/---
G3RS 30-1 

.... -.......... 

Fig. 3. Energy gap function J 2 (k) calculated from various potentials for the effective mass para

meter m*=1 and the Fermi energy EF=100 MeV. 

Table I. Values of the energy gap in MeV at k=kF in the case of Sol. 1 (m1=±2) and 

Sol. 2 (m1=0) calculated from various potentials for typical values of EF and m*. 

m1 \ EF \ m* \ OPEG 30-1\0PEG 30-2M\ G3RS 30-1 \ G3RS 30-2 \ MONGAN'S 

50 1 0.28 0.39 0.63 0.37 0.72 

1 1.04 1.12 1.65 1.95 L84a) 

75 
0.8 0.02 0.01 0.38 0.54 0.37a) 

1 1.54 1.89 1.83 3.98 2.81 

±2 100 0.9 0.89 1.14 1.05 2.51 1.42a) 

(Sol. 1) 0.8 0.11 0.39 0.27 1.43 0.66a) 

125 1 1.65 2.34 1.32 5.61 3.44a) 
--

150 1 1.47 2.41 0.79 6.50 3.95 
--

175 1 0.55 2.22 0.38 6.70 4.12a) 

200 1 0.01 1.60 <0.01 6.31 4.26 

0 
75 0.8 0.02 0.01 0.53 0.78 

(Sol. 2) 
100 1 2.22. 2.72 2.64 5.71 4.03 

a) calculated by use of the dispersion relation in I. 

E~t.B)< 400 MeV and the effective mass M*-:::::.M. The dependences of /12 (kF) 

on various factors are summarized as follows: 
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124 T. T akatsuka and R. Tamagaki 

(i) Dependence on potential properties 

It is found that the magnitude of the energy gap J 2 (kF) depends sensitively 

on the properties of the matrix elements <kl V>-lkF) shown in Fig. 4. The mag

nitude of J2 (kF) is mainly determined by the matrix elements <kl V>-lkF) neigh

bouring k = kF in so far as the tail of the matrix elements for k?:_ 5 fm has the 

6 

<k I Vsp
2

lkF> 

(fm3
• MeV) 

G3RS a-0-1~ ... ---- .... ,. ...... 
/' ... , 

. i' .......... 

OPEG s-0-1 / '',, 
I ', ...... 

7 B 

...... 
........... 

9 

....... ---... ...... _ 
10 11 k(frrr'> 

~------------ .. ""' 
OPEG 

3
0-2M Mongan's 

Fig. 4. k-dependence of the 3P 2 matrix element (kl V,dkF> of various potentials for Ep=lOO MeV. 

The cross on the k=kp line is the extrapolated value of 3P 2 reaction matrix element (kFI GikF> 

for OPEG 30-1 obtained by Ikeuchi et al.13) 

same qualitative feature. This aspect can be seen by comparing the matrix ele

ments of OPEG so- 2M with that of G3RS so- 2 to produce a very large 

J2 (kF). Also, the k-dependence of the matrix elements influences considerably 

the energy gap. For example, although the matrix element <kFI V>-lkF) of G3RS 
80-1 is slightly more attractive than that of Mongan's potential, J 2 (kF) for the 

former is smaller than that for the latter. This is caused by the fact that the 

former has a strong repulsive tail for k?:_3.5 fm- 1 and the latter has a long at

tractive tail, that is to say, by the different short-range correlation. This state

ment can be confirmed by comparing the OPEG 30 -1 and the OPEG so- 2M 

cases. 

(ii) Dependence on effective mass 

The m*-dependence of the energy gap J 2 (kF) is given in Table I for EF= 75 

and 100 MeV and illustrated in Figs. 5 (a) and 5 (b) for EF= 100 MeV. The 

strong m *-dependence shown there means that one should be careful in choosing 

the effective mass from the neutron single particle potential Vn (k). In the den-
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Super.fiuid State in Neutron Star Matter. II 125 

sity region, p~2r-..~8 X 1014g cm-3 (EF~50"-'120 MeV), m* is estimated as 0.84, 

0.81 and 0.71 corresponding to p=2.3, 4.0 and 7.8 X 1014g cm-3 from Vn(k) ob

tained for OPEG potential in the work on the equation of state and models of 

neutron stars by Ikeuchi, Nagata, Mizutani and Nakazawa.13
) 

To test the accuracy of the effective mass approximation in this density 

region, calculations of .:12 (k) are made by usc of the following Vn (k) at EF= 75 

MeV: 

Vn in MeV and k in fm- 1
, 

which is adjusted to the one obtained by Ikeuchi et al.13
) for k<kF and tends to 

zero as k~oo. J2(kF) thus calculated for G3RS 30-1 is 0.44MeV, which is 

slightly larger than J2 (kF) = 0.38 MeV by the effective mass approximation with 

m* =0.8. This means the adequateness of this approximation. 

For m*::::::::0.8, the 3P2 gap exists but becomes quite small: J2(kF) =O.lr-..~0.4 

MeV at p = 2rv5 X 1014g cm- 3 for potentials with repulsive core. However, if m* 

becomes smaller than 0.7 at higher densities (p2:8 X l014g cm- 3
; EF?::I20 MeV) 

as inferred from Ref. 13), the 3P 2 gap disappears. If the effective potential in 

the 3P 2 state has no short-range repulsion, we have somewhat wider density re

gion where the 3P 2 gap exists. Even in such a case, the reduction of m* acts 

to diminish or vanish the 3P2 gap, as indicated by Fig. 6 in I. Here we want 

to remark that the value of m* at the high density (p2:6x1014gcm-3 ;EF>100 

MeV) should not be taken too seriously, since the Brueckner theory adopted to 

L1
2
(kF) get the single particle en-

(MeV) ergy become's less reliable 

2 m*=l· G3RS 
9
0-1 at such high densities than 

( a) 

( b) 

-1 

Fig. 5. Dependence of the energy gap .12 (kp) on the effective 

mass parameter m* for Ep=100 MeV; Fig. 5(a) for G3RS 
30-1 potential and Fig. 5(b) for OPEG 30-1 potential. 

at lower densities. 

iii) Dependence on density 

The p (or EF) depend

ence of the gap J2 (kF) is 

shown in Fig. 6 for m* = 1 

and 0.8. At low densities 

EF~30 MeV (p:S1 X 1014g 

cm-3
) the 1S0 gap exists. 

Just above the density 

where this gap disappears, 

the 3P 2 gap begins to appear 

(EF2:50 MeV; p2:2 X 1014g 

cm-3
). 

The 3P2 gap at high 

densities (p>1015g cm-3
; EF 

2:150 MeV) critically de

pends on short-range be-
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I26 T. Takatsuka and R. Tamagaki 

havior of the 3P 2 interaction. When 

the strong repulsive core is present, 

the 3P2 gap disappears for p2;1.5 

X I015g cm- 3
, as in the case of G3RS 

30 -I, even for m* = 1. On the 

other hand, if the attractive force 

is present even at short distances 

(for high k values), the sp2 gap grows 

very prominently, as for G3RS so 
-2 and Mongan's potential. The 

behaviors mentioned above survive 

also for smaller values of m *, but 

the region of existence of the 3P2 

super:fl.uidity shrinks to a narrower 

domain. Ikeuchi et al. obtained the 

sp2 gap, A2 (ku) rv0.5 MeV at p = 2.3 

X I014g cm- 3 by use of OPEG po-

tential (OPEG so -I in the triplet 

odd state) and the two-step method 

mentioned in § 1.13
) This A2 (ku) 

larger than our corresponding value 

seems to be attributed to a different 

treatment of short-range correlation 

in solving the gap equation, since 

their 3P2 reaction matrix element 

0 

6 

5 

4 
1_s 

l 0 

3 (\m*-=1 
I I 
I I 

' I I 

p (1 014gcm-3) 

2 3 4 5 6 7 8 10 12 

I I * 2 1 ,,_.,{m =0.8 

I I \ I 
l1 I I 

1 II \: 

11 I I 
I I 
I I 
I I 

0 

Ep 

24 

3 

200 250 

Fig. 6. Density dependence of the energy gap 42 (kp) 

of Sol. 1 for m*=l and various potentials (solid 

lines). Several points of 42 (kp) for m*=0.8 

are indicated (dashed lines). The 180 energy 

gap is also shown by the dotted lines for com-

paris on. 

<ku!G lku) for OPEG so -I is close to <kul V;-.,jkF) for G3RS 30-2, as indicated 

by the cross in Fig. 4. 

4-2 Solution with only mJ=O component 

This solution (Sol. 2) corresponds to the case In which only the pair state 

with mJ=O is selected. The energy gap reaches the maximum value at 8=0 

and the deformation of the Fermi sphere is axially symmetric and prolate. Putt

mg ~ 0 =Ao and ~2=r;2=~1=r;1=0 in Eq. (I6), we have 

.do (k) = - _!_ sdk' k'2<k'l VA lk) sdk' Ao (k') (I+ 3 cos2(J) /8rc . (20) 
rc J s%, + Ao2 (k') (I+ 3 cos2

(}) /I6rc 

The k-dependence of the energy gap .do (k) calculated from G3RS 30 -I for 

EF= IOO MeV and m* =I is shown in Fig. 7, in comparison with that of .d2 (k). 

In Table I, we can see how the values of the energy gap .do (ku) for Eu 

=100 MeV and m*=l and for EF=75 MeV and m*=0.8 depend on potential 

properties. From this, we find the relation .d0 (kF) ::::::::1.44.d2 (kF) irrespective of 

potentials. This relation is understood in the following way: If we neglect the 
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Superfluid State zn Neutron Star Matter. II 127 

Fig. 7. The k-dependence of energy gap J 0 (k) (m1=0) of Sol. 2 calculated from G3RS 30-1 for 

EF=lOOMeV and m*=l. The energy gap J 2 (k) (m1=±2) of Sol. 1 calculated from G3RS 30-1 

for EF=100 MeV and m*=l is also shown for comparison. 

angular dependence of the energy gap in Eqs. (19) and (20), the gap equation 

is written as 

for Sol. 1 

and 

L1 (k)= sdk'f(k' k)- Llo(k') -0 

' .Jg~, + J 0
2 (k') /2 

for Sol. 2, 

where f(k', k) is a function of k and k'. These equations result in the relation 

L10 (k) = v'ZL12 (k) and this is the reason why the above-mentioned results occur. 

The shift from Llo (kF) / L12 (kF) = ..;'2 is caused by the contribution from the angular 

dependence of the energy gap. 

The m*-dependence and p (EF) -dependence of the energy gap L1 0 (k) are qual

itatively similar to those of L12 (k) shown in Figs. 5 and 6, respectively, except 

for the absolute values that J 0 (k) is about ..;'2 times larger than J 2 (k). 

§ 5. Axially asymmetric energy gap 

In this section, we generally treat the coupled equation (16) without the 

condition that the deformation of the Fermi sphere is axially symmetric. In this 

case, the energy gap matrix A:>. (k) contains various mrcomponents and D:>.2 (k) 

has the ¢-dependence as well as the 8-dependence. 

Taking the self-consistency of the gap equation (16) into account, we find 

that the solutions of this equation are confined to the following three cases: 
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128 T. T akatsuka and R: T amagaki 

Sol. 3: the solution where mJ = 0, 2, -2 components are coupled (o\ = '11 = 0). 

Sol. 4: the solution where only mJ = 1, -1 components are coupled Co2= '12 

=oo=O). 

Sol. 5: the solution where all the mJ components (mJ=2, 1, 0, -1, -2) are 

coupled (the most general solution). 

In § 4, we have treated the simple solutions (Sol. 1 and Sol. 2) and found 

their properties. The next step is to compare them with Sol. 3 which results 

from the coupling of Sol. 1 and Sol. 2 by the ¢-dependence in D~ 2 (k), which is 

limited to sin 2¢ and cos 2¢. Putting o1 = '11 = 0 in Eq. (16), we have a some

what simpler gap equation, where the squared energy gap is 

(21) 

Calculations in this section have been performed only for G3RS 30-1 potential 

in order to avoid too long computing time. These gap functions are shown in 

Fig. 8 (a) for EF= 100 MeV and m* = 1. Calculations are done by the iterative 

method. Their values at k = kF are as follows: 

02 (kF) = 1.20 MeV, 

'12 (kF) = 1.08 MeV, 

Oo (kF) = 1.33 MeV . 

For EF=75 MeV and m* 

= 0.8, we have obtained 

02 (kF) = 0.24 MeV, '12 (kF) 

= 0.22 MeV, o0 (kli') = 0.27 

MeV. 

Similarly, as for Sol. 4, 

putting 02 = '12 = o0 = 0 in Eq. 

(16), we obtain the gap 

equation for mJ = ± 1 coupl

ing. The resulting energy 

gap components 01 (k), '11 (k) 

are similar to those of the 

mJ = ± 2 coupling (Sol. 1; 

02 (k) = '12 (k)), although in 

this case the ¢-dependence 

of the energy gap makes 

Fig. 8. Components 82 (k), "'J2 (k) etc. contained in the energy 

gap Dx(k) calculated from G3RS 30-1 for Ep=100MeV 

and m*=l. Fig. S(a) for Sol. 3 (niJ=O, ±2 components 

are coupled) and Fig. S(b) for Sol. 5 (all the mJ compo

nents (mJ=2, 1, 0, -1, -2) are coupled). 
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Superjluid State in Neutron Star Matter. II 129 

o1 (k) slightly different from 'fj1 (k). The values of 01 (k) and r;1 (k) for G3RS 30 

-1 potential at k = kF are as follows: 

01 (kF) = 1.296 MeV, 

for m*=1 and Ep=100MeV. 

'fj1 (kF) = 1.299 MeV 

Our main concern is to solve the most generalized equation (16) with all 

the m 1 components and to find the properties of Sol. 5. Equation (16) can be 

solved by the iterative method, based on the results already obtained. The start

ing values that make iteration converge are found for respective components 

(o2 (k), r;2 (k), o0 (k), 01 (k) and IJ1 (k)) of the energy gap D>..2 (k). The values of 

gap components at k = kp are 

IJ2 (kF) = 1.04 MeV, 01 (kF) = -0.12 MeV, 02 (kF) = 1.21 MeV, 

'fj1 (kF) = 0.34 MeV and Oo (kp) = 1.27 MeV 

for m* = 1 and Ep= 100 MeV, where k-dependences are shown in Fig. 8 (b). 

The above values show that the mixing ratio of the m1 = ± 1 components 

are quite small, and the essential feature of the general solution is the same as 

that of Sol. 3. 

The m * dependence and the EF dependence of these solutions (Sol. 3, Sol. 

4 and Sol. 5) are qualitatively similar to those of the solutions (Sol. 1 and Sol. 

2) that are already mentioned in § 4. 

§ 6. Discussion on calculated .:results 

In this section we discuss several consequences based on somewhat detailed 

properties of the solutions of the 3P2 gap equation obtained in §§ 4 and 5. Here 

we pay attention to the following two points: One is what solution is considered 

to give the ground state of the system, and the other is what shape of defor

mation of the Fermi sphere can be expected for the ground state. Finally com

ments on the 1 D 2 pairing are made. 

6-1 Total energy shift and critical temperature 

The total energy shift is estimated by use of Eq. (11): 

JE ~- NF' s dkD>.,
2 
(kp, k) /8n, 

where Np= 3N/4EF is the level density at kF for the total neutron number N. 

By angular integration, all the cross terms are dropped, and the explicit form 

for each solution is expressed as 

JEmj=±2= -NF'/8n·IJ2(kp) 1
2 

= - NF/8n · (o2
2 
(kF) + 1J22 (kp)), 

JEmJ=O = - NF/16n · Jo2 
(kp) = - NF/16n · 00

2 (kp), 
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130 T. Takatsuka and R. Tamagaki 

Sol. 3 (m3 =0, ±2): L1Emj=0,±2= -Nz~.J8rc· [a22(kF) +r/22(kF) +iao2(kF)], 

Sol. 4 (m1 = ±1): L1Emj=±1= -NF/8rc· [a12 (kF) +1712(kF)], 

Sol. 5 (m1=±2, ±1,0): L1Emj=±2,±l,o=-NF/8rc 

X [a22 
(kF) + '1722 (kF) + a12 (kF) + '1712 (kF) + iao2 

(kF)]. 

(22) 

The numerical results of JE calculated from G3RS 30 -1 potential for EF 

=100 MeV and m*=1 are: 

(A) 

.(B) 

L1Emj=±2 =- (NF/8rc) 3.37 MeV ~3.3669, 

L1Emj=±1 = - (NF/8rc) 3.37 MeV ~3.3770 , 

L1Emj=o = - (NF/8rc) 3.48 MeV ~3.4803 , 

L1Emj=o, ±2 = - (NF/8rc) 3.48 MeV ~3.4804, 

L1Emj=±2,±1,o =- (NF/8rc) 3.48 MeV ~3.4811 . 

(23) 

Roughly speaking, all the solutions are almost degenerate. However, a small 

but significant difference can be seen between class (A) and class (B); class (B) 

has a lower ground state energy. The ground state probably lies in class (B). 

The same tendency is found for EF= 75 MeV and m* = 0.8. In order to find 

whether three solutions in class (B) are precisely degenerate or not, we quote 

two more figures within the accuracy of iterative procedure on the right of (23). 

Sol. 5 gives the lowest energy but this statement is a very delicate one, since 

the splittings are too small. Although the energy comparison is delicate, we have 

a reasoning that Sol. 5 is appropriate to represent the ground state, because this 

solution is the most general self-consistent solution of the gap equation. 

Why do these solutions show such close energy shifts? The reason con

cerning the Sols. 1 and 2 has been mentioned in § 4; Llo (kF)::::: v'2J2 (kF) but the 

factor .y'2 is cancelled by the number of components as in (22). There may be 

another explanation in connection with the critical temperature Tc. If we sup

pose that all the components Ll~mj (k) in D~ (k) disappear simultaneously at Tc, 

the equation to determine Tc becomes 

1 = _ (1_) fro dk' k'2<k' I V~Jk') tanh Cl~k' l/1c/2) 
rc Jo lc:k'l 

for a nonlocal-separable potential, where /1c = tCTc. For the axially symmetric 

cases (Sol. 1 and Sol. 2), we have the approximate relations 

tCTc:::::0.57 X 1 J2 (kF) I r2 

Llo (kF) I .J2ro 

for m1=±2, 

for m 1 =0, 

where ln T 2 = 1.20 and ln To= 1.22.5
> Thus Tc related closely to the energy gap 

is independent of the types of solutions, in the first approximation. Therefore 
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Superfluid State in Neutron Star Matter. II 131 

we can expect almost the same energy shifts among five possible solutions. 

6-2 Deformation of the Fermi sphere 

Anisotropy is characteristic of the 3P 2-energy gap, contrary to the isotropic 
1S0 energy gap. 

As already mentioned in the preceding sections, m1 = ± 2 coupling (Sol. 1) 

and m 1 = 0 coupling (Sol. 2) are axially symmetric and have only the 8-dependence. 

The former is oblate, having nodes at 8 = 0, n. The latter is prolate, but is 

nodeless with the maximum energy gap at 8 = 0, 7! and the minimum one at 8 

=n/2. The angle dependence is shown in Fig. 9. 

Sol. 3 (m1 = 0, ± 2), Sol. 4 (m1 = ± 1) and Sol. 5 (m1 = 0, ± 1, ± 2) are not 

axially symmetric. The angular dependence of these solutions depends not only 

on 8 but also on ¢ and is much complicated. As is shown in Fig. 9, the 8-

dependences of Sol. 3 and Sol. 5 are smoother than those of other solutions 

(Sol. 1, Sol. 2 and Sol. 4). This is because of the fact that as far as the 8-

dependence is concerned, Sol. 3 is the superposition of Sol. 1 with Sol. 2, and 

Sol. 5 is the superposition of Sol. 1 and Sol. 2 with Sol. 4. As for the ¢-de

pendence, Sol. 5 behaves like Sol. 3 because of the small mixture of the m1 = ± 1 

components. Solution 4 has nodes at 8=7!/2, ¢=n/4 and 8=7!/2, ¢=3n/4, but 

Sol. 3 and Sol. 5 are nodeless. 

As is already mentioned in § 6-1, the ground state of the system is consi

dered to be Sol. 5, so that the Fermi sphere of the ground state deforms in axi

ally asymmetric manner but there is no point on the Fermi surface where the 

energy gap vanishes. The deformation of the Fermi sphere of the ground state 

is soft in the 8-direction and rather hard in the ¢-direction. 

The nodeless gap leads to the specific heat of the usual type with the factor 

exp[ -DA(kF)/!CT] below T<Tc, where DA(kF) is some angular average of 

DA (kF, k). Also, if we calculate the moment of inertia of the neutron 3P 2 super

fluid by a straightforward application of the cranking model/4
) the nodeless gap 

leads to a value extremely smaller than the rigid one by """10-19
•
15

) Therefore, a 

low rotational excitation mode of this fluid is expected to be of the vortex type.16
) 

Nevertheless we have to pay attention to the existence of normal neutron fluid 

at the densities, probably p"2:6 X 1014g cm- 3 and p~1"""2 X 1014g em-S, where the 

cranking model gives the rigid-body value to the moment of inertia.6
) 

The remarkable ¢-dependence of the energy gap may be important because 

after angular momentum projection the ¢-dependence in the intrinsic state pro

duces the rotational excitation accompanying a nonzero component of the total 

angular momentum along the z-axis of the body-fixed frame where we have made 

calculations. The above arguments are valid for pure neutron matter. In the 

actual situation in neutron stars, the neutron matter is contained in the crust 

stretched slightly by the centrifugal forces. Because the total energy shifts . of 

five solutions are very similar, the environment of neutron matter with anisotro-
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0.4 

'~, 

0 rc 

7r 

B= ~ 

I 

0.2 

I 
I 

0 rr/2 7r 'I 2Tr 

Fig. 9. Angle dependence of various solutions (D;,.2 (kF, k)) calculated from G3RS 30-1 for EF 

=100 MeV and m*=1: (a) the 0-dependence at ifJ=O, (b) the 0-dependence at ifJ=n/4, (c) the 

ifJ-dependence at O=n/4 and (d) the ¢J-dependence at O=n/2. 

---- · Sol. 1 (m1=±2), --- -- : Sol. 2 (mJ=O), -·-: Sol. 3 (m1=0, ±2), 

---: Sol. 4 (m1=±1), -: Sol. 5 (m1=0, ±1, ±2). 

pic energy gap may give rise to the occurence of a particular shape of the Fermi 

surface not necessarily lowest in pure neutron matter. 

6-3 On the 1D2 pairing 

The 1 D 2 pairing interaction IS apprccia bly attractive in the energy region, 

Ek~a~ :::::::200~600 MeV (EF---- 50~ 150 MeV), althottgh less attractive than that of 

the 3P 2 pair state as shown in Fig. 2. There is a problem whether the coexist

ence of two types of gap is possible or not. We have found that the energy 
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gap due to the 1D 2 pairing does not take place, by use of OPEG 1E-1 poten

tiaP2) in solving the gap equation Eq. (4·6) in I restricted to mt=O only. If 
we extend the argument concerning the critical temperature in § 6-1, we can 

say that the 1D 2 gap does not exist even for general solutions. Therefore, at 

high densities only the 3P 2 superfluidity prevails. 

§ 7. Concluding :remarks 

The existence of the neutron superfluidity of the 3P 2 paumg in the high 

density region of neutron star matter has been confirmed by solving the general 

coupled integral equation for the energy gap with several semiphenomenological po

tentials. In the course of calculation, we have paid attention to short-range forces 

and the effective mass inferred from the single particle potential obtained by ap

plying the nuclear matter theory to neutron star matter.13
) 

The magnitude of the 3P 2 gap is very sensitive to both the effective mass 

and repulsive core in the 3P 2-effective potential: It is of the order of MeV at 

the densities p::::::::2 X 1014rvl.5 X 1015g cm-3 for m*:::::::1, but decreases by about one 

order for m*::::::::0.8, a realistic value for p = 2"-'4 X 1014g cm-3
, and vanishes for 

m*$0.7, a probable value for p?8 X 1014g cm-3
• In any case there exists the 

3P2-superfluid state at least in the density region, p:::::::: (2""'-./5) X 1014g cm-3
• A po

tential without repulsive core in the 3P 2 state allows a somewhat wider region 

for existence of the 3P 2-super state. Even in this case it seems unprobable that 

this region extends beyond p""'-./ 1 X 1015g cm- 3
• 

We have found the most general solution of the 3P 2 gap equation as well as 

all the possible solutions. A kind of self-consistency implied in this gap equa

tion, besides the demand by the energy consideration, forces us to regard the 

most general solution (all the m1 components are mixed) as a state to be adopted 

in the ground state of pure neutron matter. Even though the environment sur

rounding the neutron matter may lead to complicated situation, we can expect 

that the 3P 2 gap is nodeless and has a rather strong axial asymmetry. 

At the end, we want to discuss about the mass of a neutron star, in con

nection with the argument concerning the superfluidity in the interior of the Vela 

pulsar given by Baym, Pethick, Pines and Ruderman:2
) The remarkably long 

relaxation time of the order of years after the discontinuous speed up denotes 

an indication of the superfluidity of major parts of both the neutron and proton 

liquids. The proton density is so low that protons are considered to be in the 
1So-superfluid state. Let us take the region of neutron superfluidity as p$1 X 1014g 

cm-3 for the 1S 0 pairing and p::::::: (2,....,._,.5) X 1014g cm-3 for the 3P 2 pairing. For a 

neutron star with small mass such as Mj M 0 ~0.l6, normal fluid occupies a large 

portion extending from radial distance 2 km to 6 km, on the basis of the recent 

results of neutron star models.13
) On the other hand, for a neutron star with 

large mass such as MjM0 >I, superfluid exists only at a very thin region near 
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134 T. Takatsuka and R. Tamagaki 

the surface. Therefore, the mass of the Vela pulsar seems to be of the order 

of (1/2"-/ 1/3) M 0 • This conjecture, of course, is too simple but will serve as 

an indication to the pulsar mass.17
) 

In this connection, the region p-:::::::. (1"-/2) X 1014g cm-3 should be more care

fully investigated, since both the 1S 0 and 3P 2 gaps vanish or are vanishingly small. 

Therefore, the effect of the 3F2 coupling cannot be neglected in treating this 

regiOn. 
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