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Λ-superfluidity in a hyperon core of neutron stars is studied with a realistic approach. It
is found that Λ-superfluid exists in a restricted density region ρ � (ρt–ρd) with ρt � 2ρ0 (ρ0

being the nuclear density) and ρd � (2.6–4.6)ρ0 depending on the pairing interaction and the
hyperon core model. This restriction suggests that neutron stars compatible with hyperon
cooling would be not so massive.

Introduction Study on the superfluidity of hyperons admixed in neutron star cores
is of increasing interest not only with regard to many-body problems in hadronic
matter including exotic components but also to the cooling scenario of neutron stars
inferred from surface temperature observations. It has been suggested that some
neutron stars are cooled much more rapidly than expected from the standard cool-
ing scenario (i.e., modified URCA process; e.g., n + n → p + n + e− + ν̄e, and the
inverse process), and a more efficient cooling mechanism is needed. 2) In this con-
nection, so-called “hyperon cooling”, 3) associated with neutrino emission processes
as of the β-decay type including hyperons (Λ → p + e− + ν̄e, Σ

− → Λ + e− + ν̄e,
etc.), provides one of the rapid cooling mechanisms. The direct action of such rapid
cooling, however, leads to a surface temperature much lower than that observed.
This demands some suppression mechanism, most naturally hyperon superfluidity,
to control the cooling rate. Therefore it becomes of special interest to investigate
whether hyperon superfluidity is possible in the hyperon-mixed phase believed to
exist in neutron star cores.

In this paper, as a typical example of hyperon superfluidity, we focus attention on
Λ-hyperon pairing, since at present the uncertainty in the ΛΛ interaction is relatively
small due to the information from various experimental data (especially, the available
data from double Λ hypernuclei) and theoretical studies. Very recently, Balberg and
Barnea 4) studied this subject by using an effective ΛΛ interaction ṼΛΛ for ΛΛ pairing
interaction. However, their approach using an effective interaction for the pairing
problem is not justified, as shown later. Moreover, the ṼΛΛ they used 5) is based
on the G-matrix calculations for two Λ particles immersed in symmetric nuclear
matter, but such situation is basically different from the actual one of the hyperon-
mixed phase composed of neutrons as a dominant component, protons, Λ-particles
and other hyperons. In addition, the effective mass they used for Λ is not suitable.
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The aim of this paper is to present more realistic results of Λ superfluidity, carefully
considering the following points: (i) We adopt the “bare” ΛΛ potential VΛΛ instead of
the effective ṼΛΛ. (ii) We use the more realistic effective-mass parameter m∗

Λ, which
is derived from the G-matrix calculation for neutron-plus-lambda matter with the
lambda fraction YΛ, taken as a better approximation of the hyperon-mixed phase.
Outline of the approach Several works have undertaken on the hyperon mixing prob-
lem in neutron star matter. Hyperons become admixed at around twice the nuclear
density ρ0 (≡ 0.17 nucleons/fm3 � 2.8 × 1014 g/cm3), and mostly the population
increases with increasing ρ. This aspect is, however, considerably model dependent.

Fig. 1. Λ-fraction YΛ (solid lines) and Λ effec-

tive mass parameter m∗
Λ (dotted lines) as

functions of the total baryon density ρ in

units of the nuclear density ρ0. PD (RMF)

denotes the case of the potential descrip-

tion 6) (relativistic mean field 7)) approach.

In Fig. 1, the fraction YΛ(≡ ρΛ/ρ) of
Λ-particles of interest is shown for typi-
cal two cases, one from the conventional
potential description approach (PD) of
Pandharipande, 6) and the other from
the relativistic mean-field (RMF) ap-
proach of Schaffner and Mishustin. 7)

We see the difference between the two
as a gradual (rapid) rise of YΛ for
the former (the latter) approach and
the largest YΛ of about 10% (25%) for
the former (the latter). Here we con-
sider these two cases for YΛ in order
to see how the difference affects the Λ-
superfluidity, and in particular its exis-
tence density region. The use of YΛ from
RMA is intended only to make clear the
influence of large YΛ and not for the pur-
pose of discussing the pairing problem in
the scheme of the RMF approach.

Although Λ particles appear in the high-density region (ρ >∼ ρt � 2ρ0), while the
density is relatively low because YΛ ((10–25)% at most) is not too large, therefore the
Λ-Λ pairing responsible for the Λ superfluidity should be that of the 1S0 pair state
which is most attractive at low scattering energies. Thus we set up the problem to
calculate the energy gap ∆ by solving the gap equation of the 1S0-type in a manner
quite similar to that for the well-known nucleon 1S0-pairing: 8)

∆(q) = − 1
π

∫ ∞

0
q′2dq′〈q′ | VΛΛ(1S0) | q〉∆(q′)/

√
ε̃(q′)2 + ∆(q′)2, (1)

ε̃(q) ≡ ε(q)− εF � (q2 − q2
F )/2M

∗
Λ, (2)

〈q′ | VΛΛ(1S0) | q〉 ≡
∫ ∞

0
r2drj0(qr)VΛΛ(r; 1S0)j0(q′r). (3)

Here ∆(q) denotes the energy gap function, qF = (3π2ρYΛ)1/3 is the Fermi momen-
tum of Λ, and εF ≡ h̄2q2

F /2MΛ is the Fermi energy, with MΛ the lambda mass. Also,
the effective-mass approximation is adopted for the lambda single-particle energy
ε(q) with the effective-mass M∗

Λ. The 1S0-gap equation (1) with the definitions in
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Eqs. (2) and (3) are solved numerically when the 1S0-pairing interaction VΛΛ(r; 1S0),
the Λ-fraction YΛ and the effective-mass parameter m∗

Λ ≡ M∗
Λ/MΛ are given.

Generally, the energy gap depends sensitively on M∗
Λ, and so it is important

to have a realistic m∗
Λ. In this work, we use m∗

Λ obtained as m∗
Λ = (h̄2qF /MΛ)/

(∂ε(q)/∂q)qF in terms of ε(q) from the G-matrix calculation with the Nijmegen-D
potential for {n + Λ} matter specified by YΛ. This m∗

Λ depends both on YΛ and
ρ. It decreases with ρ when YΛ is fixed and increases with YΛ when ρ is fixed. For
example, m∗

Λ � (0.80 → 0.73) for YΛ = 0.05 and � (0.84 → 0.77) for YΛ = 0.15,
according to ρ = (2 → 6)ρ0. The ρ-dependence of m∗

Λ to take account of the YΛ-ρ
relation from the two models mentioned above is inserted into Fig. 1. It is remarked
that m∗

Λ is by far larger than the usual m∗
N in nucleon matter; e.g., m∗

Λ(PD) �
(0.8 → 0.75) for ρ = (2 → 6)ρ0 in contrast to m∗

n = m∗
p ∼ (0.65 → 0.45) for

symmetric nuclear matter and m∗
n ∼ (0.8 → 0.6) for pure neutron matter, according

to ρ � (1 → 3)ρ0. 9) We note that m∗
Λ used in Ref. 4) is much different from ours;

e.g., m∗
Λ(Balberg-Barnea) � (1.0 → 0.8), whereas m∗

Λ(ours) � (0.8 → 0.85) for the
same parameters YΛ = (0.06 → 0.175) and ρ = 2.5ρ0.

As for VΛΛ(r; 1S0), we consider two cases of the OBEP type. One case (referred

Fig. 2. Comparison of the ΛΛ 1S0 potentials

due to Yamamoto (ND-Soft) and that of

the Ehime group (Ehime: εF = 17 MeV).

The NN 1S0 interaction from the RSC po-

tential is also shown for reference. Notation

is described in the text.

to as “Ehime”) has been proposed by
the Ehime group, 10) based on a frame-
work of nonet mesons and SU(3) in-
variance, and has a soft repulsive core
and a velocity-dependence of short-
range interaction. The other (ND-Soft)
is a Gaussian soft-core version of the
Nijmegen-D hard core potential con-
structed by Yamamoto 11) so as to fit
the t-matrix from the original Nijmegen-
D potential. Both of these potentials
reproduce the data of double Λ hyper-
nuclei. Figure 2 compares these two
potentials. The ND-Soft potential has
a stronger short-range repulsion and a
stronger intermediate-range attraction,
compared with the Ehime potential.
The use of two VΛΛ(r; 1S0) is expected
to cover the present uncertainties of the
ΛΛ pairing interaction. In Fig. 2, the
1S0 two-nucleon interaction for a well-
known Reid-Soft-Core (RSC) potential
is also shown for reference. Obviously,
the occurence of Λ-superfluidity is less
likely compared to the case of nucleon
superfluidity, since the pairing attrac-
tion is weaker in the former. In view
of the effective mass, however, larger ef-
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Fig. 3. Critical temperature Tc of Λ-super-

fluidity versus ρ for several values of YΛ

and ρ-dependent m∗
Λ. The solid (dashed)

lines correspond to the ND-Soft (Ehime)

potential.

Fig. 4. Tc versus ρ taking account both of the

YΛ-ρ and m∗
Λ-ρ relations in Fig. 1. The

solid (dashed) lines correspond to the ND-

Soft (Ehime) potential. PD and RMF spec-

ify the hyperon core model.

fective mass for Λ would act for a larger energy gap. In understanding the results,
we note such counterbalancing features.
Results and discussion The energy gap ∆(≡ ∆(qF )) depends on εF and m∗

Λ, as
well as the pairing interaction adopted. For convenience, we give numerical results
in terms of the critical temperature Tc of Λ-superfluidity, which is related to ∆ (in
MeV) as Tc � 0.66∆ × 1010 K. The Λ-superfluid comes into existence when Tc

exceeds Ti � 108 K, the internal temperature of neutron stars. First we discuss the
aspects of the ρ-dependence of Tc by keeping YΛ constant. The following points are
noted from Fig. 3:
(i) The ρ-dependence of m∗

Λ makes Tc smaller than the simple case of m∗
Λ = 1, as

shown by the arrow in the figure. This comes from the property that in general ∆
is smaller for smaller effective mass and in the present case m∗

Λ decreases with ρ, for
example, as m∗

Λ = (0.804 → 0.725) according to ρ = (2 → 6)ρ0 with YΛ = 0.05.
(ii) When YΛ is as large as (15–20)%, the Λ-superfluidity becomes less likely (Tc

<∼ Ti).
This is because Tc has a peak value at around εF � 15 MeV and decreases with
increasing εF (i.e., increase of ρΛ = YΛρ), due to the growth of the effects due to the
short-range repulsion.
(iii) These aspects depend on the pairing interaction VΛΛ; on the higher density side,
Tc from the ND-Soft potential are smaller than those from Ehime potential, leading
to a narrower density region for Λ-superfluidity. This is due to the fact that the
short-range repulsion is stronger for the former than for the latter.

Actually, the resulting Tc depends on the YΛ-ρ relation (namely, the hyperon
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core model) through the YΛ- dependence of εF and m∗
Λ. The results obtained by

taking account of the ρ-dependence of YΛ are shown in Fig. 4 for the two models:
(iv) The density region for the existence of Λ-superfluid is wider (narrower) for PD
(RMF) models; ρ � (2–3.7)ρ0((2–4.6)ρ0) for PD, and ρ � (2–2.6)ρ0((2–3.0)ρ0) for
RMF, corresponding to the use of ND-Soft (Ehime) potential. This is caused by
a gradual (rapid) increase of YΛ and a maximum YΛ of about 10% (25%) for PD
(RMF).

Fig. 5. Comparison of 1S0 gap ∆ from the

“bare” pairing interaction VΛΛ and that ∆̃

from the effective one ṼΛΛ, for the same

parameters (YΛ, m∗
Λ, ρ = 2.5ρ0) as used

by Balberg-Barnea. 4) Crosses indicate the

results in Ref. 4) for ṼΛΛ. The abscissa

corresponds to the Fermi momentum of Λ

qF = (3π2ρYΛ)
1/3.

Here we comment that the use of
an effective interaction for the pair-
ing problem, as in Ref. 4), is not ade-
quate. This is because the gap equa-
tion itself deals with the short-range cor-
relation (s.r.c.), that is, the function
∆(q′)/

√
ε̃2(q′) + ∆2(q′) together with

the integration over q′ plays the role
of including both the s.r.c. and the
pairing correlation. 8), 12) Therefore if we
use ṼΛΛ in place of VΛΛ, it leads to
a “double counting” for the effects of
s.r.c. In fact, the values of Tc from
ṼΛΛ are remarkably larger than those
from VΛΛ, as shown in Fig. 5, where the
parameter values (YΛ, m∗

Λ, ρ = 2.5ρ0)
are taken the same as those used by
Balberg-Barnea. 4) This point has been
also checked for the case of the 1S0-
gap of protons admixed in neutron star
matter, by comparison between the gap
∆ from the “bare” RSC potential VRSC

and ∆̃ from the G-matrix effective po-
tential ṼRSC. For instance, ∆̃ � 3.8 MeV is larger by about a factor 7 than ∆ � 0.53
MeV in the case with ρ = 3ρ0, Yp = 0.05 and m∗

p = 0.7. A way to remedy the defect
of a too large gap for the effective interaction approach is to restrict the integration
over q′ near the Fermi surface, where the pairing correlation dominates. However,
there arises a serious problem of how to quantitatively set the restriction region.
Therefore, in order to unambiguously obtain an energy gap, we must solve Eq. (1)
exactly. This is possible by suitably taking the starting values for the gap function
in the iterative method, 12) as we did in this work.
Concluding remarks We have made a realistic study of Λ-superfluidity by closely
considering the better selection of the pairing interaction and by taking into account
the ρ- and YΛ-dependences of m∗

Λ. The main conclusions are as follows. Λ particles
in the hyperon core of neutron stars can be in a superfluid state with critical temper-
ature 108–9 K. This originates mainly from a larger effective mass of Λ compensating
for weaker pairing attraction, compared with the nucleon case. Superfluidity is re-
alized as soon as Λ hyperons begin to be mixed at ρ = ρt � 2ρ0 with the sizable
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fraction (YΛ ∼ 1%), but it disappears at a higher density, where YΛ amounts to
∼ 10% (15%), corresponding to PD (RMF). The density region for Λ-superfluidity
to exist is found to be ρ � (ρt–ρd) with the disappearance density ρd � (2.6–4.6)ρo

depending on the pairing interaction and the hyperon core model.
The existence of the restricted density region mentioned above implies that the

effects of Λ-superfluidity on the cooling problem depend interestingly on the mass
M of neutron stars. This is because neutron stars with larger M (hence higher
central density ρc) would have a central region occupied by normal Λ-fluid when ρc

exceeds ρd, lacking the suppresion mechanism for too rapid cooling. For example, if
we consider neutron stars based on the Bethe-Johnson equation of state (BJ-1H)13)

and the superfluid region (2–3.7)ρ0 from the PD plus ND-Soft case, neutron stars
with M >∼ 1.5M� suffer this problem. This suggests that neutron stars rapidly cooled
by hyperon cooling compatible with observation would be less massive stars, with
M <∼ 1.5M�.

In this paper, discussion has concentrated on Λ-superfluidity. To make a full
study of the hyperon cooling scenario, it is necessary to investigate the superfluidities
of other hyperons, such as Σ− and Ξ−, admixed in neutron star cores. This remains
as a future subject.
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