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SUPERGLUE: A SHARED MEMORY FRAMEWORK USING DATA

VERSIONING FOR DEPENDENCY-AWARE TASK-BASED

PARALLELIZATION∗

MARTIN TILLENIUS†

Abstract. In computational science, it is necessary to make efficient use of multicore archi-
tectures for dealing with complex real-life application problems. However, with increased hardware
complexity, the cost in man hours of writing and rewriting software to adapt to evolving computer
systems is becoming prohibitive. Task-based parallel programming models aim to allow the appli-
cation programmers to focus on the algorithms and applications, while the performance is handled
by a runtime system that schedules the tasks onto nodes, cores, and accelerators. In this paper
we describe a task parallel programming model where dependencies are represented through data
versioning. Our model allows expressing the program control flow without artificial dependencies,
has low complexity for resolving dependencies, and enables scheduling decisions to be made locally.
We implement this as a freely available C++ header-only template library, and show experimental
results indicating that our implementation both scales and performs well in comparison to similar
runtime systems.
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1. Background and related work. Modern processors for laptop, desktop,
and server computers have several computational cores. In order to write efficient
software for such processors, software needs to be parallel. Since writing parallel
software is known to be difficult and error-prone, it is desirable that the parallelization-
specific parts are separated from the rest of the software.

In this paper, we present a runtime system that handles the details of the par-
allelization for the user. The runtime system manages dependencies between compu-
tations and the mapping of computations to hardware resources for the programmer.
Since we specifically target scientific computing applications where performance is
key, the provided abstractions are designed carefully not to sacrifice performance. To
be practically useful and easy to incorporate in existing solutions, the runtime system
is provided as a header-only C++ library and is able to both run on top of OpenMP
or to use POSIX threads (Pthreads) for thread management.

By moving the dependency management and scheduling into a library that ex-
poses a convenient and expressive interface for specifying dependencies, the develop-
ment of parallel software becomes easier, faster, and less error-prone and is likely to
result in more efficient software.

1.1. Dependencies and synchronization. The most common way to write
shared-memory parallel software is to parallelize for-loops using OpenMP [7]. While
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C618 MARTIN TILLENIUS

(a) True dependencies (b) DAG (c) Fork-join

Fig. 1. Examples of how the dependencies in an application can be described. Circles denote
tasks and edges denote dependencies. The dashed line in (a) means that the tasks it connects must
not execute concurrently.

this works well for many applications, it enforces a fork-join structure where the soft-
ware is divided up into parallel sections that end with a barrier where all threads are
synchronized again. These barriers scale poorly as the number of cores increases and
can reduce the performance substantially. To achieve higher performance, synchro-
nization between threads needs to be more fine-grained and reduced to a minimum.
To fulfill this, we select a task-based programming model where tasks may have de-
pendencies between them.

A solution to the shortcomings of the fork-join model is to build a directed acyclic
graph (DAG) of the tasks, with edges between tasks that have a dependency. This
allows more fine-grained dependencies than is possible to express in a fork-join model
and reduces unnecessary synchronization points. But not all kinds of dependencies can
be represented by a DAG. An edge means that one task must complete before the next
is started. In the case of reduction operations, such as accumulating partial results in
a shared variable, the tasks may run in any order but must not run concurrently. To
describe this kind of dependency in a DAG, either the order of the reduction tasks must
be fixed, which limits the scheduler, the graph must be rewritten at runtime, which
is expensive, or these dependencies must be left out and handled by some external
construct. That is, a static DAG alone cannot describe the true dependencies.

Figure 1 shows the true dependencies of an application and examples of how the
dependencies can be expressed in different models. Two of the tasks in this application
can run in any order but not at the same time, which is indicated in subfigure (a) by
a dashed line connecting them. In the DAG description in subfigure (b), an artificial
must-execute-before dependency has been introduced between the tasks instead, and
the order in which they must execute has been fixed. In the fork-join model in
subfigure (c), two artificial barriers have been introduced.

In applications where parallelism is scarce, introducing artificial dependencies and
unnecessary synchronization may be devastating for performance. A goal of this work
is to never overestimate dependencies.

1.2. Scheduling. In our system, we consider all processor cores to be identical.
We want to maximize throughput and do not consider fairness or task deadlines. Since
some applications need to be able to create tasks dynamically at runtime, dependency
management and task scheduling must happen at runtime. This means that there is
very limited information to use for scheduling; the set of tasks to schedule is not
known in advance, and the lengths of the tasks are not known either. Also, tasks are
not preemptive. Once the dependencies are met, the only objective we schedule for
is locality. That is, tasks that access the same data should preferably execute on the
same core, in order to reuse data already present in the caches of that core.

Among the most important properties of the scheduler is that it is fast. In some
applications, it is hard to extract parallelism without making the tasks very small. If
the time spent in the runtime system between tasks is not negligible compared with
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SUPERGLUE C619

the time spent in the tasks, this will limit scalability and can prevent applications
with fine-grained tasks from scaling at all. This means that the overhead and the
time spent on scheduling must be minimized.

The scheduling needs to scale to large numbers of cores. This requires commu-
nication between cores to be avoided, and that no central information is needed for
scheduling. Scheduling decisions should as far as possible be made locally on each
thread.

1.3. Contributions. In this paper, we describe an alternative and flexible way
to represent dependencies, using data versions instead of dependency graphs. Tasks
in this model depend only on data but not on other tasks. Tasks are queued at
the data they need, which avoids central synchronization and leads to locality driven
scheduling.

The runtime system and the way dependencies are represented were developed
in previous work [24, 23]. In this paper, we further develop the programming model,
present new experiments with improved performance, and describe the programming
model in more detail. We also include experiments comparing our solution to similar
runtime systems and show that our solution has less overhead than all the other eval-
uated systems. Our implementation is open source and freely available at GitHub.1

1.4. Related work. The question of how to efficiently take advantage of mul-
ticore architectures has been investigated in the setting of linear algebra, where per-
formance is key. It has been concluded that task-based, dynamically scheduled ap-
proaches are well suited for taking advantage of multicore processors [15, 6].

There are several different task-based programming models. The main difference
between them is how dependencies are managed. Either all tasks can execute im-
mediately after they are spawned, or there is some way to specify dependencies that
must be satisfied before the tasks can execute.

One of the best known task-based programming languages is Cilk [5] (now Intel
Cilk Plus [13]). This is a language extension to C (and to C++ in Cilk++ [18] and
Intel Cilk Plus) which introduces the spawn keyword to generate new tasks, which
are immediately allowed to run, and the sync keyword, which blocks until all tasks
spawned from the current task are finished. This provides the fork-join programming
model and may cause unnecessary synchronization.

The most common programming model for shared memory parallelism is OpenMP.
Tasks were introduced into the OpenMP standard with OpenMP 3.0 [2], following the
same task model as Cilk. Sections annotated with #pragma omp task are spawned
as tasks and are immediately allowed to run while the control flow continues after
the task. To synchronize tasks, there is the #pragma omp taskwait directive, which
blocks until all tasks spawned by the current task are finished. OpenMP also provides
parallel sections and parallel for-loops. Common for these constructs is that they pro-
vide the fork-join model. In OpenMP 4.0 [20], more general dependencies have been
introduced through the depend clause.

The shortcomings of the fork-join model have been pointed out earlier in the
context of efficient linear algebra algorithms for multicore systems [15]. There, it
was shown that the fork-join structure arising from calling parallel subroutines from
a sequential algorithm limits scalability. By instead implementing the algorithm as
an explicitly parallel code that called sequential subroutines, the number of synchro-
nization points was reduced, and the performance was improved. In the same work,

1https://github.com/tillenius/superglue
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C620 MARTIN TILLENIUS

different orders of executing the computations were considered, and it was concluded
that the order of the computations should be decided at runtime for best performance.

To manage high degrees of thread level parallelism, it has been concluded in earlier
work that algorithms must have fine granularity and be asynchronous. Operations
should be split into tasks that work on data sets small enough to fit in the cache, and
these tasks should be scheduled dynamically based on dependencies between them [6].

Intel Threading Building Blocks (Intel TBB) [14] is a C++ library for shared
memory parallelism. It includes a task scheduler which besides the fork-join model
allows dependencies between tasks to be specified explicitly and arbitrary DAGs of
tasks to be built.

A problem with explicitly building a task dependency graph is that it may be
demanding for the programmer. In order to realize all dependencies, the programmer
must know all data that a task reads and writes since this will create dependencies.
When dependency graphs are explicitly built, the programmer must also know what
other tasks access the same data and declare dependencies between these tasks. This
makes building the graphs difficult and error-prone. An improvement of this is to
let the programmer annotate each task with which data it accesses. The problem
of keeping track of which other tasks access the same data is then left to a runtime
system, and the programmer is relieved of this responsibility.

A programming model where task dependencies are deduced from data accesses
is the StarSs model. This programming model was introduced in CellSs [4], a system
that targets the Cell BE processor architecture, and was applied for general multicore
architectures in the SMP Superscalar (SMPSs) system [21]. The StarSs programming
model is now represented by OmpSs [9], which succeeds SMPSs and adds support for
heterogeneous architectures. In the StarSs programming model, the task declaration
clause in OpenMP is extended with in, out, and inout clauses for declaring data
dependencies. Using these clauses, the programmer specifies which data each task
accesses and how the data is accessed (read, write, or both). OmpSs then uses this
information to build a task dependency graph at runtime. The idea to deduce task
dependencies from annotations of data accesses is not unique for the StarSs model
but has been used earlier in, for instance, the Jade programming language [17].

StarPU [1] is a C library for task-based programming, targeting heterogeneous
architectures. It is capable of scheduling tasks over (for instance) both CPUs and
GPUs. It also manages data transfers and supports distributed memory parallelism.
StarPU provides both the possibility to state dependencies between tasks explicitly
and to state them implicitly through data dependencies. StarPU also includes a GCC
plugin, which allows tasks to be annotated using pragma directives.

XKaapi [11] is a C++ library for task-based programming, with dependencies
computed at runtime from memory access annotations. The programming model
is borrowed from its successor Athapascan-1 [10]. XKaapi includes a compiler that
introduces pragma directives which can be used for specifying tasks, as an alternative
to the C++ interface.

The Swan programming language [27] is an extension of Cilk which adds the
possibility to annotate tasks with data access information, in order to introduce task
dependencies. Swan uses an independently developed versioning system similar to the
scheme we introduce here.

The dependency-aware task-based model is well suited for high performance com-
puting. The state of the art in linear algebra on multicore architectures is the
PLASMA package [8], which uses a C library for task-based programming with data
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SUPERGLUE C621

dependencies called Quark [28].

1.5. Paper organization. The next section introduces our programmingmodel,
and section 3 covers the details. We highlight the flexibility of our solution by show-
ing features, usage examples, and showing how to customize the library to the user’s
needs in section 4. To evaluate the performance of our implementation, we have con-
ducted a number of experiments: We show results from microbenchmarks in section 5,
present more realistic applications in section 6, and show comparisons against other
task-based frameworks in section 7 and against highly optimized third-party code in
section 8.

2. Our programming model. Our programming model contains two funda-
mental concepts: handles and tasks. Handles are objects used for synchronization.
They represent some shared resource for which accesses should be managed. The
most common shared resource is data, but handles can be used to represent anything.
A handle may represent network communication or file access and can be used to
serialize or to order the use of such resources.

The programmer creates handles to protect shared data and writes tasks which
operate on this data to perform the logic of the software. The software is then
expressed by creating and submitting these tasks to the runtime system. For each
task, the programmer must specify which handles are required and what type of access
the task performs, such as whether the tasks only read or also modify the protected
data. From the order the tasks are submitted, or rather from the order the handles
are accessed, together with the access type, the runtime system deduces which tasks
can be executed in parallel and maps the tasks to the available cores in the system.

2.1. Handles. One way to think of handles is that they are similar to ordinary
locks in the way that it is up to the programmer to decide what they protect and that
their meaning is unknown to the runtime system. The programmer must correctly
specify all handles a task accesses, or the program will be incorrect. The runtime
system cannot help with this.

In contrast to programming with locks, it is not possible to have deadlocks. In-
stead of blocking and waiting for a handle to become available, tasks are queued at a
handle, while the runtime system executes other tasks instead.

In our model, accesses are registered to handles, not to memory addresses. There
are several reasons for this choice. First, the memory address is not necessarily a
unique identifier. Different tasks can have pointers to the same memory block but
update different parts of the block. An example of this that has been reported earlier
is when several tasks of a matrix decomposition algorithm access the same matrix
block but some only touch the lower triangular part and others only access the upper
triangular part [16]. Another reason is that when working with memory addresses,
the user could expect the runtime system to detect that synchronization is needed
between tasks that access the same data through different pointers. This could also
be supported, but at an additional cost at runtime. With handles, it is clear that the
library cannot find out whether two handles represent overlapping resources. A third
reason is that the handles keep the required book-keeping data, and by requiring the
user to provide the handles directly, we do not have to map the address to a book-
keeping object. The possibility of using memory addresses to represent data and then
mapping addresses to book-keeping objects is still available and can be added as a
layer upon our solution.

The granularity of the handles is connected to the granularity of the tasks and is
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C622 MARTIN TILLENIUS

an important factor for performance. If tasks are too large, or similarly, handles too
coarse, there will be fewer tasks to run in parallel and less parallelism. If tasks are too
small, too much time will instead be spent on task and dependency management. The
granularity of the tasks depends strongly on the granularity of the handles. There
needs to be enough handles for tasks to work on in parallel, but too many handles
occupies more memory and leads to too small tasks.

Tasks should be large enough to make the time spent on task management negligi-
ble. Later we perform experiments with different task sizes, giving a hint of how large
tasks need to be. SuperGlue does not help the programmer make these decisions.

The lifetime of a handle naturally needs to be longer than all tasks that access it.
Handles can be created dynamically as needed and can be deleted either when it is
certain that all tasks that access it have finished, such as after a global barrier, in a
task that does not access the handle but is guaranteed to execute after the last task
that does, or in the destructor of the last task that accesses the handle.

2.2. Tasks. A task is a piece of the program logic together with the data needed
for its execution. In practice, it is an object that inherits a Task class provided by
SuperGlue, with a callback method that is called to execute the task. When a task
is constructed, the data that is required for the task, typically pointers to the data
it works on, are stored in the task object, and accesses are registered to the required
handles. Before a task is submitted to the runtime system, the programmer must
specify which handles the task accesses, together with the type of each access. This
information is stored in the task and is used by the runtime system to deduce whether
the task is ready to execute. Tasks are executed as a whole and cannot be suspended.
They are therefore expected not to block.

2.3. Access types. To allow concurrent access when desired and unique access
when required, the programmer must specify an access type for each handle a task
accesses. The default access types are read, write, and a type for reductions called
add, but it is possible to customize these, as will be described in section 4.

1 #include "superglue.hpp"
2 struct Options : public DefaultOptions <Options > {};
3 struct MatrixBlock {

4 Handle <Options > handle ;
5 double *data;

6 };
7

8 void cholesky (size_t dim, MatrixBlock *A) {
9 SuperGlue <Options > sg;

10 for (int k = 0; k < dim; ++k) {

11 sg.submit(new potrf(A[k*dim+k])); // Cholesky factorization
12 // Panel update

13 for (int m = k+1; m < dim; ++m)
14 sg.submit(new trsm(A[k*dim+k], A[m*dim+k]));
15 // Update trailing matrix

16 for (int m=k+1; m < dim; ++m) {
17 for (int n=k+1; n < m; ++n)

18 sg.submit (new gemm(A[m*dim+k], A[n*dim+k], A[m*dim+n]) );
19 sg.submit(new syrk(A[m*dim+k], A[m*dim+m]));

20 } } }
21

22 int main() {

23 const size_t dim = 10;
24 MatrixBlock *A = new MatrixBlock[dim * dim];

25 // initialize A with data here
26 cholesky (dim, A);
27 return 0;

28 }

Listing 1

Example SuperGlue code for a tiled Cholesky factorization
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The read access type means that the task must wait for all previous write or add

accesses to finish but that several tasks may read the same handle concurrently.

A write access means that the task must wait for all previous accesses to finish
before it can execute. The task is then allowed to both read and write to the data.
There is no access type to describe a write-only access.

The add access type means that a task must wait for all previous read and write

accesses to finish. Two tasks with add accesses to the same handle can execute in
any order but not concurrently. The typical use for this type is to accumulate results
together. The type is not restricted to addition but can be used for any tasks that
perform associative and commutative operations, or other operations where exclusive
access is required, but order is not important. The name add is chosen because it is
a common case and a simple name.

2.4. Example. Listing 1 shows an example of an application that uses
SuperGlue. It performs a tiled Cholesky factorization to decompose a symmetric
positive definite matrix A into a lower triangular matrix L such that A = LLT . The
tiled Cholesky factorization is a classic example of an algorithm with nontrivial de-
pendencies, but the details of the algorithm are not important here. By creating
a SuperGlue object, as on line 9, the SuperGlue runtime system is initialized, and
worker threads are created so that there is one thread per available processor core.
SuperGlue can be configured to meet the application needs, as will be explained in
section 4. This configuration is done by specifying types in an Options struct, which
most other SuperGlue classes take as a template parameter. The Options struct is
defined in line 2, where it in this case only inherits and uses the default options.

The algorithm works on tiles of a large matrix. To manage dependencies between
the different calls to BLAS kernels, a handle is associated with each matrix tile. As
shown in line 3, a handle has been added to the struct that represents a tile of the
matrix. Tasks are submitted to the runtime system using the submit method, as
shown, for instance, in line 11.

1 // Task to perform a general matrix multiply
2 struct gemm : public Task <Options > {

3 double *a, *b, *c;
4 gemm(MatrixBlock &ba, MatrixBlock &bb, MatrixBlock &bc)

5 : a(ba.data), b(bb.data), c(bc.data) // Store parameters needed by the task

6 {

7 // Register accesses
8 register_access(ReadWriteAdd::read , ba.handle );

9 register_access(ReadWriteAdd::read , bb.handle );
10 register_access(ReadWriteAdd::write , bc.handle );
11 }

12 void run() {
13 // Task body (call to BLAS in this case)

14 dgemm(’N’, ’T’, DIM , DIM , DIM, -1.0, a, DIM , b, DIM, 1.0, c, DIM);
15 } };

Listing 2

Example SuperGlue task

An example task definition is shown in Listing 2. This task performs a matrix-matrix
multiplication by calling BLAS. It takes two input matrix tiles ba and bb and adds
their product into the output matrix tile bc. A task in SuperGlue inherits from a
Task class, as in line 2. The constructor (lines 4–11) copies the data needed for the
task into the class (line 5) and declares which handles the task accesses. The tasks
read from ba and bb, so read accesses are registered on line 8 and 9, and a write access
to bc is registered on line 10.
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Fig. 2. Data dependency graph. Circles are tasks, edges are dependencies, and boxes are
handles. The same handle is represented by several boxes, one for each version. The first line in
each box is the name of a handle, and the second line is the handle version. The dashed edges mean
that tasks can access the handle in any order but not concurrently.

When all the dependencies of the task are met, the runtime system will call the
runmethod of the task (line 12), which will invoke BLAS to perform the actual matrix
multiplication.

2.5. Data-centric view. Central to this programming model is the data-centric
view. In this model, tasks can depend only on data, not on other tasks. One way
to illustrate dependencies in this data-centric view is shown in Figure 2. This figure
shows the same dependencies as Figure 1 but also includes the handles.

This view simplifies the implementation. The straightforward way for a runtime
system to insert a new task into a dependency graph using information about which
memory addresses the task accesses is as follows:

1. Look up the memory address in a map to find the book-keeping object.
2. Lock the book-keeping object to avoid data races.
3. Check which preceding tasks to wait for from the book-keeping object.
4. For each preceding task:

Lock the preceding task, and add a dependency edge to it.
5. Update the book-keeping object with the access from the new task.

In our model, we avoid looking up the book-keeping object and instead require that
the user provide the correct handle. By having tasks depend on data instead of on
other tasks, we avoid synchronization between tasks, which are transient in nature.
Data objects that are shared between the tasks are required to be alive until all tasks
are finished, while tasks can be submitted, executed, and deleted at any point. To
submit a new task in our model, the following steps are needed:

1. Lock the handle to avoid data races.
2. Update the handle with the access from the new task.

The actual update is simple. All that needs to be done is to increment one or two
integer variables, depending on the access type.

Not only does the data-centric view simplify implementation, but it also improves
flexibility. In our model, it is possible to register future accesses to a handle. This
way it is possible to submit a task that waits for a task that will be submitted some
time in the future, in a natural and straightforward way.

3. The runtime system. The runtime system has one worker thread per core,
and each worker thread has its own queue of ready tasks. The worker threads execute
tasks from the front of the ready queue. If a task submits new tasks, they are put in
the front of the ready queue of the thread where the task is running. If a worker runs
out of tasks, it tries to steal tasks the from the end of another thread’s ready queue,
picked at random.

In addition to the ready queues at each worker, there is also a task queue at each
handle for tasks that have an unfulfilled dependency on that handle. This leads to a
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read (v0)

write (v2)

read (v0)

add (v3)

add (v3)

add (v3)

write (v6)

Fig. 3. Example illustrating how dependencies are represented by versioning. Nodes are tasks,
the label and color (seen online only) specify the access type, and the required version number is
given in the parentheses. All tasks access the same handle. The dashed lines between the add tasks
denote that they must not run at the same time.

large number of task queues and reduces contention on task queues to a minimum.

3.1. Dependency management. Dependencies are managed by attaching a
version number to each handle and having the tasks require certain versions of the
handles it accesses. The version number works as a counter that keeps track of how
many tasks have accessed the handle and is increased after each access to it. Note
that the version number is increased also after read-only accesses. This is needed to
detect whether all previous reads are finished, before a write can be allowed.

When a task is submitted to the runtime system, it will be assigned a required
version number for each handle, which determines when it will be able to execute. The
required version of a handle is available when its current version is equal to or greater
than the required version. A task is ready to execute when the required versions of
all handles it accesses are available.

If a task requires a version of a handle that is not yet available, the task will
be put in a queue at that handle. When a worker thread has finished a task, it will
increase the versions of the accessed handles and wake up the tasks that waited for
the newly available version.

Figure 3 illustrates how dependencies are represented. In this example, all tasks
access a single handle. The two first tasks only read from the handle and can run
at the same time. They will both require version 0 of the handle. The next task is
a write, and it must wait for the two previous read tasks to finish, so it will require
version 2 of the handle. This write is followed by three add tasks, which can run in
any order but not at the same time. They will all require version 3, which means
they have to wait for all three previously submitted tasks that access this handle to
finish. The last task is a write and must wait for all previously submitted tasks to
finish, and thus it requires version 6 of the data. It is worth pointing out that we do
not keep several copies of the data that a handle represents. This might be desirable
in some cases and is discussed further in section 4.

The dependency checking is easily implemented. To see whether a task is ready to
execute, it is enough to compare the required version with the version of the handle.
Which version a task should require depends on the access type. If the previous access
was of the same access type, and that type allows reordering or concurrent execution,
the same version is required. Otherwise, the required version is one more than the
total number of accesses registered so far.

It is enough to save the access type, the current version, and the total number of
accesses for this book-keeping. For the default configuration, with read, write, and
add as the possible access types, it suffices to store only two versions: the version to
require if the next access is a read, and the version to require if the next access is an
add. Write accesses need to wait for all previous read and add accesses to finish, and
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the required version is the next after the maximum of the two stored versions.

1 int Handle :: register_access(access_type) {

2 if access_type �= las t access type or not reorderable(access_type)
3 next version = access count

4 las t access type = access_type
5 ++access count

6 return next version

7 }

Listing 3

Pseudocode showing how required versions are deduced from registering accesses.

1 bool Task:: check_if_ready() {
2 for (handle , required_version) in accessed handles

3 if handle.version < required_version
4 return false
5 return true

6 }

Listing 4

Pseudocode showing how task dependencies are checked.

1 void Task::finish () {

2 for handle in accessed handles

3 ++handle.version

4 }

Listing 5

Pseudocode showing how handle versions are updated after a task is finished.

To concretize how dependencies are managed through data versioning, Listing 3 shows
how a task is assigned a required handle version. This is the most general solution,
which requires three variables to store the current state. As mentioned above, it
suffices with two variables for the default access types read, write, and add, but this is
not shown here. Listing 4 shows how tasks are checked for being ready to execute. A
task may be checked if it is ready several times, at most once per accessed handle. The
actual implementation saves the index of the first handle not available and continues
after that one. This ensures that each handle is checked only once. Listing 5 shows
how handle versions are updated after a task is finished.

3.2. Scheduling. The order in which tasks are executed is driven by locality. As
mentioned before, a task that cannot run because it requires a version of a handle that
is not yet available is put in a queue at that handle. When a task finishes accessing
a handle, it increases the version number of the handle and moves all tasks waiting
for the new version of the handle to the front of its ready task queue. In a typical
application, most tasks will be queued at the handles they are waiting for. When a
worker finishes a task, it will wake up and execute the tasks that wait to access the
same data, leading to good locality. Tasks will be executed on the thread where the
data they need was most recently used, unless load balancing was needed, and the
task was stolen. Tasks that are ready to execute directly when they are submitted
are distributed among the workers in a round-robin fashion.

A task with an add access requires exclusive access to a handle but competes
with other tasks for executing first. For this, handles have a flag to indicate whether
some task has been granted exclusive access. When a task needs exclusive access but
the lock is held by another thread, the task is enqueued at the handle, just like when
dependencies are not met, and woken up and put in the front of the ready queue when
the other task is finished.

If add accesses are not used, each dependency is checked exactly once. A task is
queued in at most as many queues as the number of handles it accesses, before it is
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moved into a ready queue. Once a task is moved into a ready queue it is guaranteed
to be ready to run, and no more checks are needed. From a ready queue it might be
stolen at most once since a successfully stolen task is executed directly. When add

accesses are used, there is no guaranteed limit on the number of tries required before
a task successfully acquires exclusive access to a handle.

There are no global scheduling decisions or global data structures in this scheme.
Tasks that are ready to execute when they are submitted will be distributed among
the threads, unless they are submitted from within a task directly to the ready queue
of the current thread. Except for that, communication between threads only happens
when load balancing is needed (stealing), when tasks on different threads access the
same data, or when there is a global barrier.

4. Customization and features. SuperGlue is written as a research tool for
experimenting with task-based models. Because of this, several classes can be over-
ridden to change the default behavior, and features can be enabled or disabled to
experiment with different solutions. Configuration is done by defining types in an
Options struct, which is given as a template parameter to all SuperGlue classes.
This means that disabled features are disabled at compile time and cause no memory
or runtime overhead. This section is intended to give an idea of what can be cus-
tomized, and how, by showing a few examples, but the list is not complete and the
details are suppressed.

1 struct Options : public DefaultOptions <Options > {

2 typedef Disable Stealing ;
3 typedef Enable Subtasks ;
4 };

Listing 6

Example Options struct. This example disables task stealing and enables the possibility for a
task to create subtasks and wait for all subtasks to finish before the task is finished.

Listing 6 shows an example Options struct. This struct is used as a template pa-
rameter to all SuperGlue classes, which allows settings to be made at compile time.
The default options class defines the types Enable and Disable, which are used to
indicate that features should be enabled or disabled. In this example, task stealing is
disabled, and the Subtasks feature is activated. The Subtasks feature enables a task
to submit subtasks and wait for all subtasks to finish before the task itself finishes.

4.1. Scheduling. It is possible to override the default behavior to affect the
scheduling in three places:

• which task to select for execution from the local ready queue,
• which task to steal from the ready queue of another thread, and
• which other task queue to try to steal tasks from.

The default behavior is to pick the first task of the local ready queue and to steal the
last task from a foreign queue. This can be customized by overriding the default task
queue with a custom one where the pop front and pop back operations select tasks
using the desired criteria. The task queue class can also define additional data fields
(possibly none) that should be included in the task class. This is used to attach a pri-
ority field to all tasks or, for example, to implement intrusive linked lists. Which task
queue implementation to use is decided by the ReadyListType type in the Options

struct. By redefining this type, a user-supplied task queue can be used instead.

The default strategy for picking a queue to steal from is to pick a queue at random,
and then attempt to steal from the queues in order, starting from that one, until a
task is successfully stolen, or all task queues have been attempted. This behavior can
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be customized by implementing a class that defines a steal method that attempts to
steal tasks from other task queues and redefining the StealOrder type in the Options
struct to use this new implementation instead of the default one.

Related to scheduling is setting thread affinity. The default behavior is to pin
each thread to its own core in the order the cores are enumerated by the operating
system. This can be overridden to implement a different pinning strategy, or to disable
pinning entirely, by writing a new class and to redefine the type ThreadAffinity in
the Options struct.

4.2. Memory management. Memory management is avoided in SuperGlue
whenever possible and is only done in two places: to free tasks that have finished,
and in the container used in handles to keep tasks waiting for future versions. The
container uses a C++ standard library allocator, whose type is defined in the Options
struct. To free memory used for storing tasks, the Options struct contains a FreeTask
type, that has to provide a free()method, which will be called with the finished task
as a parameter. By default, SuperGlue uses the default C++ allocator. This choice
avoids external dependencies, but the default allocator is known to be a potential
scalability bottleneck. By overriding these types, the allocator can be replaced with
a custom allocator that scales better or is better suited in some other way.

4.3. User-defined access types. It is possible for SuperGlue users to use a
different set of access types than the default ones. When defining an access type, the
programmer needs to declare whether it can be reordered with other accesses of the
same type and, if it can, also whether the accesses need to be exclusive or not.

As an example, if some tasks perform an additive operation, while other tasks
perform a multiplicative operation, tasks performing the same access types can be
reordered, while order must be preserved among tasks with different access types.
One might also want to add an access type that allows several tasks to modify data
concurrently. This allows data races or lets the user manage data races manually.

4.4. Renaming. There is no write-only access type in SuperGlue. A write-
only access would signal that a new instance of the data can be created, and a task
could start working on it immediately, without having to wait for previous tasks that
need the old data to finish first. This avoids a write-after-read dependency and is
called renaming for its similarities with register renaming performed in processors.
SuperGlue does not support automatic renaming since it has no control over the
memory buffers that the handles represent. Also, automatic renaming is not always
desired. If there already is enough parallelism, it is better to let write-only tasks wait
and reuse the same buffer. If the runtime system creates new buffers automatically,
there is both a risk of completely running out of memory and a risk of performance
loss due to a larger working set and more cache misses.

1 struct MultiBuffered {
2 Handle <Options > h[NUM_BUFFERS];
3 double *data[NUM_BUFFERS];

4 int index = 0;
5 // ...

6 Handle <Options > &get_handle() { return h[index]; }
7 double *get_buffer() { return data[index]; }
8 void next() { index = (index + 1) % NUM_BUFFERS; }

9 };

Listing 7

Example of using multiple buffering to avoid write-after-read dependencies. This implementa-
tion is not thread safe, but works if all tasks are submitted from a single thread, and can easily be
extended to be thread safe.

D
o
w

n
lo

ad
ed

 1
1
/1

1
/1

5
 t

o
 1

3
0
.2

3
8
.1

7
.7

4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SUPERGLUE C629

One way to avoid write-after-read dependencies is to use multiple buffering explic-
itly. Listing 7 illustrates the idea. Each buffer gets its own handle, and write-only
operations call the next method before registering their write access. Note that this
implementation has the drawback that it always alternate buffers, even if all tasks
that accessed the old buffer have already finished.

4.5. Parallel reduction. There is some support for automatic renaming for add
accesses, in order to allow parallel reductions. When this feature is enabled, a task
that needs exclusive access to a handle that is locked will still be able to execute. The
task must then write its partial results into another buffer instead. When the task
is finished, it attaches this buffer to the handle. The handle can only keep a single
reduction buffer. If a buffer is already attached when a task wants to attach one, it is
detached and merged with the new buffer using a user-defined function. The process
is then repeated to attach the merged buffer to the handle.

This allows tasks that use the add access to run in parallel. The partial results
are merged lazily and are merged in parallel if several threads attach partial results
concurrently. The buffers are not guaranteed to be merged until a task accesses the
handle with a different access type.

The user must provide functions for creating new buffers and initializing them,
merging two buffers, and applying a buffer to the real destination. Since the merge
and the apply operations are two separate functions, it is possible to have different
representations in the temporary buffers and in the real destination buffer. When a
task is declared to support this feature, the user must program the tasks to check
where the output should be written. The tasks must support three possibilities: write
to the real destination, write to an existing temporary buffer, or create and initialize
a new temporary buffer and write to this.

4.6. Thread workspace. For tasks that require temporary work space buffers,
there is an option to enable each thread to preallocate a buffer of a determined size.
Tasks can then request work space memory from this buffer, which is guaranteed to
be local to the thread, and need not be allocated and freed for each task.

4.7. Visualization and instrumentation. A positive effect of the task-based
model is that the beginning and end of each task execution are natural locations for
instrumenting the software. By storing the start and end time of each task, and on
which thread it was executed, a task execution trace as in Figure 4 can be drawn. This
is a trace from executing a program with dependencies such as those illustrated in
Figure 1(a) and Figure 2. From such an execution trace it is possible to see when tasks
are started, for how long they execute, and on which thread they were executed. We
use triangles instead of rectangles to illustrate tasks, as we find that it makes it easier
to separate several small tasks from a large task and easier to detect idle time between
tasks. From an execution trace, it is possible to directly see whether there is enough
parallelism, whether any cores are idle, in which parts of the program most time is
spent, and whether there is any unexpected behavior. We will use these execution
traces to evaluate how well programs are scheduled. In [25], execution traces are used
to detect tasks that exhibit performance degradation due to shared resources such as
memory bandwidth. This information is then used to insert scheduling constraints
that prevents contention-sensitive tasks from being executed concurrently.

Instrumentation is activated by defining a type in the Options struct with mem-
ber functions that will be called before and after each task invocation. In addition to
generating execution traces as in Figure 4, SuperGlue includes example instrumen-
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Fig. 4. An execution trace illustrating how a task-based application is executed. Each triangle
represents a task, and colors distinguish different task types.

tation classes to read performance counters before and after each executed task, and
there is also an option to generate task dependency graphs in Graphviz DOT for-
mat for illustrating the dependencies in an application. The SuperGlue source code
repository contains two examples of how execution traces can be visualized: a C++
application that uses OpenGL and glut, and a Python script that uses matplotlib.

When execution traces are recorded, each thread stores the time before and after
each task is executed, together with a description string, in a vector in thread-local
storage. The information is written to disk first when the application exits. Execution
traces may require a large amount of memory and incur some overhead. To verify
that the instrumentation does not disturb the execution, the application can be run
once with instrumentation enabled and once with it disabled. If the total execution
time is affected, the recorded data cannot be trusted. When tasks are large enough
for the overhead from SuperGlue to be negligible, the additional overhead caused by
enabling instrumentation is usually too small to be measured.

4.8. Interoperability. SuperGlue has a C interface to allow it to be used from
C and other programming languages. An early version of this interface was used to
use SuperGlue together with existing code written in Fortran [22], and it has also
been used in a software for epidemiological simulation written in C [3]. The interface
only exposes the core functionality of SuperGlue and does not support customization,
but it can be used as a template for how to build a custom interface with settings
other than the defaults.

5. Microbenchmarks. This section evaluates the performance of the proposed
programming model by running experiments on our SuperGlue implementation.

Time is measured by reading the time stamp counter using the rdtsc instruction.
This counter has a constant rate and behaves like a wall-clock timer. Each thread is
pinned to its own core or hardware thread in all experiments. When not all cores are
used, we first allocate one thread per module and per core, and only when all modules
or cores are already occupied do we assign workers to share a module or a core.

There are no parameters in the SuperGlue implementation that are tuned for the
specific hardware used in the experiments.

5.1. Scaling with respect to number of cores. To ensure that our solution
scales well to large numbers of cores, we have performed tests on a Xeon Phi 5110P,
with 60 cores and 240 hardware threads. The experiment computed a tiled Cholesky
factorization of a matrix of size 16384×16384, divided into tiles of 256×256 elements.
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Fig. 5. Execution trace of a Cholesky factorization run on the 240 hardware threads of a 60-core
Intel Xeon Phi. The matrix size is 16384 × 16384, divided into 64× 64 tiles of 256 × 256 elements
each.

The execution trace is shown in Figure 5. In the execution trace, it can be seen that
some time is needed to start up and reach full speed, which is not reached until
at about time 1. In the end of the execution trace, there is less parallelism in the
algorithm, which leads to tasks being executed more sparsely. Just after time 2, before
time 6, and at time 7, there are short intervals where the application runs out of tasks
to execute and worker threads are idle. The reason for these imperfections is not
clear, but suboptimal scheduling cannot be ruled out. Introducing task priorities and
prioritizing tasks on the critical path, which in this case are the tasks that work on
the diagonal tiles, did not improve on this behavior.

In this experiment, only 131GFlop/s was reached, while the theoretical peak is
1011GFlop/s.2 The kernels used in this experiment only reached 2.35GFlop/s when
running on a single thread. The parallel version was 55.8× faster, close to the ideal
60×. The purpose of this experiment is to verify that the runtime system scales up
to large numbers of cores. After the start-up effects and before the algorithm runs
out of parallelism, the execution trace shows that tasks are scheduled densely and as
desired and that SuperGlue successfully scales up to at least 240 threads.

5.2. Scaling with respect to task size. To investigate how well our solution
scales for different task granularities, we measure the time it takes to execute a number
of identical and independent tasks that perform no work but only wait for a number
of cycles. The tasks perform no work in order to isolate the behavior of the runtime
system and to have higher precision in the control of the granularity. This means
that we investigate the ideal case when tasks do not affect other running tasks by
competing for shared resources such as cache or memory bandwidth. The time is
measured from when the first task starts until the last task finishes and does not
include time for startup or shutdown.

2The theoretical peak was calculated as 8 double wide vector registers × 2 operations per in-
struction with fused multiply and add × 60 cores × 1052.63MHz.
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Fig. 6. Scaling with respect to task size, where task size is the execution time of a single task
measured in cycles. The graph shows the speedup over the ideal execution time (number of tasks ×

task size / threads). Each line corresponds to a task size. The solid lines show the median, and
dashed lines show the upper and lower quartiles of 15 runs. The experiment is performed on two
different computer architectures: Bulldozer and Sandy Bridge.

Memory management of tasks impacts the performance. To make the experiment
less dependent on the memory allocator, all memory to store tasks is allocated in
advance and returned first after all tasks are executed, so that no memory management
of the tasks is included in the timing. This experiment is repeated in section 7, where
we compare our solution to other projects, with standard memory allocation included
in the timing.

The experiment is conducted on two different computer systems. The first is
called Bulldozer and has four AMD Opteron 6276 processors based on the Bulldozer
architecture. Each processor has eight modules, and each module contains two cores
and a single floating point unit that is shared between the two cores. This results
in 64 cores running at 2.3GHz. The second is called Sandy Bridge and has four
Intel Xeon E5-4650 based on the Sandy Bridge architecture, giving a total of 32 cores
running at 2.7GHz. The tests were run with hyperthreading enabled, which results
in 64 hardware threads.

The number of tasks is selected to 6,400, which is large enough to fill all the threads
and large enough to make the steady state dominant and the irregular behavior at
startup and shutdown less significant. Increasing the number of tasks did not affect
the results in a qualitative way. The experiment is repeated 15 times for each task
granularity to capture dispersion in execution time.

Figure 6 shows how large tasks must be to reach good speedup and what happens
when tasks are too small. The figure shows speedup over the ideal execution time on
one thread, where the ideal execution time is the number of tasks times the number of
cycles per task. Note that it is impossible to reach perfect efficiency since that would
require every single clock cycle to be spent inside a task and leave no cycles for task
management.

On Bulldozer, good scaling is reached when tasks are at least 64,000 cycles, cor-
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Fig. 7. Scaling with respect to number of dependencies. 64, 000 tasks executed on 64 cores,
each waiting for 128, 000 cycles, and accessing a varying number of handles. Error bars show the
first and third quartiles of 15 runs but are barely visible due to low dispersion.

responding to just below 30µs. On Sandy Bridge, tasks should take at least 128,000
cycles, corresponding to just below 50µs on that architecture. The Sandy Bridge
machine has 32 cores, but since the tasks only read the time stamp counter, it is
possible to scale up to almost 64 times speedup using hyperthreads. When actual
work is performed, the maximal speedup is expected to be 32.

Increasing the number of threads when the task size is too small can lead to a
sharp drop in performance. This is due to contention on the locks protecting the
task queues. These locks are simple test-and-test-and-set spinlocks with no back-
off. We have performed experiments with more advanced locks, but the benefits did
not outweigh the increased cost of acquiring or releasing the locks, at least in our
implementations. Adding a back-off helps against the sharp drop in performance,
but it is unclear how to select good parameters that work for all platforms. Since it
would be unfair to tune the locks for the specific machines that we use to perform our
experiments on when we compare against other systems in section 7, we opted to use
the simple and parameter free spinlocks.

5.3. Scaling with respect to number of dependencies. The aim of this
benchmark is to measure how overhead for dependency management scales with num-
ber of dependencies. 64,000 tasks are submitted, which is a large enough number to
make the long-term behavior dominant and startup and shutdown anomalies negligi-
ble. Each task waits for 128,000 cycles, selected to be long enough to avoid contention
according to the results from section 5.2. Each test was repeated 15 times, in order
to capture dispersion in execution times. Memory is allocated in advance and is not
freed until after the experiment. All tasks are submitted before any task is allowed
to execute, and both task submission and execution are included in the timing.

The experiment was run on both the Sandy Bridge and the Bulldozer machine,
and the results are shown in Figure 7. On Bulldozer, the execution time is close to
linear in the number of dependencies, but the slope changes slightly from about 300
cycles per dependency to 250 cycles per dependency. On Sandy Bridge, there is a
larger cost for introducing dependencies, which we have no explanation for. For large
number of dependencies, the overhead approaches 217 cycles per dependency.

We executed the test with up to 10,000 dependencies on Bulldozer, at which point
all 64,000 tasks each must keep a list of its 10,000 dependencies, meaning that 640
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Fig. 8. Comparison of the dependency graphs arising from using write (respectively, add)
accesses for updates that can be reordered.

million items are stored in the memory. This is more than is practically useful. The
mean overhead when each task had 10,000 dependencies was about 214 cycles per
dependency.

From these tests we verify that our solution scales linearly with the number of
dependencies and that it does not collapse when the number of dependencies is large.
The results varied between the two machines but can be summarized as that there
might be an initial cost to use dependencies, which was measured to about 6500 cycles
on Sandy Bridge but was not seen on Bulldozer. When dependencies are used, the
overhead to expect from adding another dependency was measured to between 200
and 300 cycles.

6. Applications. In order to show the usability of SuperGlue for real applica-
tions, this section contains a couple of more realistic applications that we have par-
allelized using SuperGlue. In addition to the applications presented here, SuperGlue
has also been used in an implementation of the fast multipole method for hybrid CPU
and GPU systems [12] and in an application for simulating how infectious diseases
spread [3].

6.1. Direct n-body simulation. The first application is an n-body simulation
code that simulates how n neutral atoms or molecules interact with each other, mod-
eled by the Lennard-Jones potential. The simulation consists of two steps: calculating
all the forces that act upon each particle, and moving the particles according to the
forces acting upon them. The forces are calculated by the direct sum of all pairwise
interactions. This method does not scale to large numbers of particles, but it is the
computational kernel needed also in more efficient methods, such as the fast multipole
method or Barnes–Hut.

The application is interesting because during the force calculations there are two
tasks that update the force acting upon each particle. If these tasks are submitted in
a straightforward order and the tasks are registered to write to the force field of the
particles, the tasks are constrained to perform the updates in the order the tasks were
submitted, which may allow very little parallelism. This is a known problem that has
been studied before [19].

When the force field updates are registered as add accesses, tasks can be reordered
and more parallelism can be extracted. This effect is illustrated in Figure 8. Here,
numbers denote blocks of the force data. Two tasks may not update the same block
at the same time, meaning that any two tasks that have a number in common have a
dependency between them. Figure 8(a) shows the case when accesses are registered as
writes and cannot be reordered, while Figure 8 (b) shows a possible dependency graph
with more parallelism, arising from registering the updates as adds, which allows tasks
to be reordered.

In this application, we used the renaming feature of SuperGlue. We simulated
8,192 particles grouped into 32 blocks of 256 particles each. The problem size and
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the number of blocks are on the limit of what is enough work for 64 threads and
were selected to show how SuperGlue behaves when parallelism is scarce. Most force
calculation tasks (taking over 95% of the execution time) write force contributions to
two blocks of particles at once, which means that only 16 such tasks can run at the
same time. One way around this problem is to create smaller blocks, but this would
also increase the overhead. By using the renaming feature as described in section 4.4,
force calculation tasks can run even if the output buffer is used by another task,
in which case the results are written into a temporary buffer. Any such temporary
buffers are then merged into the original buffer before it is read the next time.

1 struct BufferProxy {

2 Access <Options > &a;
3 double *buffer;
4 BufferProxy(Access<Options > &a, double *org_buffer) : a(a_) {

5 if (!a.is_busy ())
6 buffer = org_buffer; // case 1: use original buffer

7 else if ( !(buffer = a.get_tempbuf()) ) // case 2: reuse temporary buffer
8 buffer = allocate_and_initialize(); // case 3: new temporary buffer

9 }
10 ~BufferProxy() {
11 if (a.is_busy ())

12 a.attach_tempbuf(buffer ); // attach temporary buffer to handle
13 }

14 };
15

16 struct ForceTask : public Task <Options > {

17 ...
18 bool is_renaming_supported() { return true; } // renaming is supported

19 void run() {
20 BufferProxy proxy(get_access(0), force_buffer[i]);

21 // perform computations here , write output to "proxy. buffer"
22 } };

Listing 8

Simplified code example, showing how renaming is implemented in the n-body simulation ap-
plication.

Listing 8 shows a slightly simplified version of how renaming is implemented in the
n-body simulation. The Access class keeps a handle and the required version and can
be retrieved from a task using the get access() method. The user must implement
an is renaming supported() method that returns true to indicate that SuperGlue
can start tasks even when exclusive access could not be granted to all handles. To
find out whether exclusive access was acquired for a handle, the Access class has an
is busy() method that returns true if renaming is required for its handle.

Figure 9 shows an execution trace of the n-body simulation application, executing
16 force calculation and particle movement steps. Over 95% of the time is spent
on force calculation tasks that without renaming would be limited to at most 16
concurrent tasks. Thanks to renaming, we can see that all 64 threads are executing
tasks during the whole execution. There is an exception for thread 1, which executes
no tasks in the beginning of the execution since it is busy creating and submitting
the tasks. During this period, it can be seen (but only just barely) that thread 5
executes its tasks faster since that thread shares the floating point unit with thread 1.
The dependencies between the time steps can be seen by small gaps in the schedule
between most time steps. Running on 64 threads on the Bulldozer system was about
35 times faster than our best serial implementation. Since the system has only 32
floating point units, and the application is dominated by floating point calculations,
a speedup much higher than 32 cannot be expected.
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Fig. 9. Execution trace of an n-body simulation of 8192 particles blocked into blocks of 256
particles, stepped for 16 time steps.

6.2. Shallow water simulation. We have previously used SuperGlue to im-
plement a shallow water simulation code [26]. Just like the n-body simulation, this
is a time dependent problem, where each time step depends on the previous one. It
uses the fourth order Runge–Kutta method for time stepping, where each function
evaluation includes two sparse matrix-vector multiplications, which is where over 90%
of the execution time is spent.

The problem size is 655,362 unknowns, and the matrices have 20,316,222 nonzeros
each. For parallelization, the solution vector is sliced into 131 blocks of 5,000 elements
each, except for the last one, which is slightly larger. The matrices are blocked in
tiles to match the vector blocks. The nonzeros are centered along the diagonal, so
many off-diagonal tiles are empty and discarded, leaving only 391 nonempty tiles.
The number of nonzeros varies significantly between different tiles.

In order to handle large numbers of time steps, it is not feasible to submit all
the tasks at once. Instead, we introduce a GenerateTask task that submits all tasks
needed to take one time step. At the end of each GenerateTask task, it submits
another copy of itself which depends on one of the tasks from the time step. Initially,
five of these GenerateTask tasks are submitted, in order to generate tasks to take the
first five time steps. When each time step is finished, a new GenerateTask task will
have been submitted. This way, tasks will be submitted continuously. This continues
until the end time of the simulation is reached, after which the GenerateTask tasks
will do nothing.

Figure 10 shows the start of an execution trace of the shallow water simulation.
The GenerateTask tasks are seen as longer than the others, and the first five are
executed by thread 9. More GenerateTask tasks are seen throughout the trace on
other threads. Tasks working on different time steps have different colors, and the
trace shows that tasks from different time steps are mixed freely. Since SuperGlue is
driven by locality, it prefers taking the next time step as soon as possible rather than
finishing all tasks from a time step first. When the last task from the first time step is
done in this trace, the first tasks from the 11th time step have already been executed.
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Fig. 10. Part of an execution trace of a shallow water equation solver. Different colors (seen
online only) represent tasks working on different time steps.

Table 1

Compared frameworks.

Cilk Plus3 SMPSs 2.4
Intel TBB 4.2 StarPU 1.1.0
OmpSs4 SuperGlue
OpenMP5 Swan6

QUARK 0.9.0 XKaapi 2.1

Sparse matrix-vector multiplication is a memory bound operation and is difficult
to parallelize efficiently on multicore systems. The parallel version was 5 times faster
than the best serial when run on a server with two 8-core AMD Opteron 6220 pro-
cessors. On this architecture, each pair of cores shares a single floating point unit,
and the ideal speedup is therefore 8. In this run, less than 2% of the execution time
was spent on task management (including executing the task generation tasks) or on
threads being idle. The reason the speedup is not closer to 8 is due to contention
when all threads compete for the memory bandwidth.

7. Comparison with other efforts. In order to verify that our programming
model is competitive, we perform a number of performance experiments comparing
our implementation against other efforts. For this, we use microbenchmarks designed
to stress the runtime systems and to produce results that are as generalizable as
possible. These benchmarks are available at GitHub.7

All the experiments measure the time from when the first tasks start to when
the last task finishes. This includes both the overhead induced by task management
and the quality of the scheduling, but it excludes the time to start up and shut down
the runtime system. As in the experiments in section 5, we let each task wait for
a number of cycles instead of performing actual computations, in order to isolate
the task management from application-specific behavior. The frameworks we have
compared are listed in Table 1. They were all compiled with the –O3 optimization

3Using the Cilk Plus branch from GCC 4.8
4Built using Nanos++ 0.7a (2013-09-05) and Mercurium 1.99.0 (2013-09-10)
5Compiled with GCC 4.7.2 on Bulldozer and GCC 4.8.1 on Desktop
6Built from latest version on GitHub, last commit 2013-08-10
7https://github.com/tillenius/tasklib-comparison
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Fig. 11. Independent tasks: comparison of efficiency between different task frameworks. Error
bars show the upper and lower quartiles.

flag. The –O2 level was evaluated too, but there was no qualitative difference, and
–O3 was selected.

The default settings were used for all frameworks, except for StarPU, which issues
a warning that the user should select a scheduling strategy. All experiments with
StarPU use the work stealing scheduler, which was found out to give the best results
in an initial experiment.

7.1. Independent tasks. This benchmark investigates the behavior when there
are no dependencies between the tasks. The experiment is basically the same as in
section 5.2, except that task allocation is now included for SuperGlue and that we
always run on all available CPUs. Each task only waits for a predefined number of cy-
cles, and the time to submit and execute all tasks is measured. The test was executed
on two different machines, the 64-core Bulldozer server (described in section 5.2) and
a 4-core desktop machine called Desktop, which is equipped with an Intel Core i7
2600K processor running at 3.4GHz.

In this benchmark, we create 12,800 tasks when running on 64 threads, and 2400
tasks when running on 4 threads, which turned out to be enough work for all threads
and avoids anomalies at startup and shutdown. We repeat the experiment for different
number of cycles in each task wait and plot the efficiency, defined to be the ratio of the
ideal execution time (number of tasks × cycles each task waits / number of CPUs) to
the measured execution time. This gives a measure of how large tasks must to be in
order to make task management negligible and the execution efficient. For each wait
time, the experiment was repeated 50 times on Desktop and 5 times on Bulldozer in
order to capture dispersion in execution time.

Figure 11 shows the outcome. SuperGlue is the most efficient framework on both
4 and 64 cores. OpenMP is about as efficient as SuperGlue on 4 cores but ended
up among the least efficient on 64 cores. We see here that StarPU is among the
frameworks which require the largest task sizes in order to reach high efficiency. An
explanation is that StarPU targets heterogeneous platforms, and its main strength
is deciding whether tasks should run on the GPU or CPU. Since we only consider
homogeneous CPUs here, spending extra time on scheduling is not beneficial.

7.2. Tasks with dependencies. In order to compare the performance of the de-
pendency management and scheduling, we use the dependencies from a block Cholesky
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Fig. 12. Tasks with dependencies: comparison of efficiency between different task frameworks.
Error bars show the upper and lower quartiles.

factorization, which is selected because it is a standard benchmark to represent real-
istic dependencies. In this experiment, we make use of data-driven dependencies and
frameworks that do not provide this; i.e., OpenMP, Intel TBB, and Cilk Plus are not
included. Again, the tasks perform no actual work but only wait for a determined
number of cycles.

The experiments are run both on the 4-core Desktop machine, where the matrix
is blocked into 20 × 20 tiles, and on the 64-core Bulldozer server, where it’s blocked
into 50× 50 tiles. This corresponds to 1,540 tasks on 4 cores and 22,100 on 64 cores.
The test was repeated 20 times on Desktop and 10 times on Bulldozer in order to
capture dispersion in execution time.

Figure 12 shows the results. SuperGlue reaches high efficiency for smaller task
sizes than other frameworks. On 4 cores, the results are similar to the results from the
comparison with independent tasks, but all frameworks have slightly lower efficiency.
This is both because of dependency management costs and because the dependencies
limit the parallelism. The ideal efficiency does not take task dependencies into ac-
count, so the best possible efficiency is actually slightly lower. On 64 cores, results are
also similar, except for QUARK and StarPU, which now require much larger tasks
to reach good efficiency. When moving from 8,000 tasks to 16,000 tasks, there is a
jump in the figure for StarPU, and the overhead doubles. In the experiments on the
64-core Bulldozer server in sections 7.1 and 7.2, 12,800 (respectively, 22,100) tasks
were submitted, which is just around this jump, and this is part of the explanation
of why StarPU did not reach higher efficiency in the previous tests.

7.3. Scaling with number of tasks. To verify that our solution scales with
the number of tasks, this benchmark submits different numbers of tasks, each waiting
for 100,000 cycles, and measures how much time is spent on overhead. The overhead
is the extra time it takes to submit and execute all tasks over the ideal time (100,000
cycles per task × number of tasks / 4 cores).

The results are shown in Figure 13. Most frameworks are not affected by the
number of tasks. The runtime for OmpSs varies for low numbers of tasks but reaches
a steady level for larger numbers of tasks. StarPU is the only framework that is
sensitive to large numbers of tasks. When moving from 8,000 tasks to 16,000 tasks,
the overhead is doubled. SuperGlue scales well with the number of tasks and has the
lowest overhead among all compared frameworks.
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Fig. 13. Scaling with respect to the number of tasks when running on 4 cores. Error bars show
the first and third quartiles of five executions.

8. Comparison with ACML. To verify that the task-based approach is com-
petitive against other parallelization strategies, we return to the Cholesky benchmark.
In this section we present a comparison of the implementation outlined in Listing 1
against the multithreaded Cholesky factorization available in AMD CoreMath Library
(ACML) version 6.1.0.31. ACML was selected since the comparison is performed on a
server with two 8-core AMD Bulldozer processors (Opteron 6220) running at 3GHz,
for which ACML is highly optimized. It represents a highly regarded third-party
product that is optimized for performance and free to use any suitable method for
parallelization.

The Cholesky factorization of a matrix of size 8, 000× 8, 000 is computed. In the
multithreaded ACML version, this is a single library function call. The SuperGlue
implementation divides the matrix into 25× 25 tiles of 320× 320 elements each and
uses computational kernels from the nonthreaded version of ACML. How the tile sizes
are decided and how this affects performance are not in the scope of this experiment,
but the rule of thumb is that having larger tiles means better performance in the
kernels, while having more tiles allows more parallelism. When the tiles are large
enough and there is enough parallelism, the performance is not sensitive to the choice
of tile sizes.

To make the comparison fair, the timing includes allocating memory for the tiles,
dividing the input matrix into smaller tiles, and starting the SuperGlue runtime sys-
tem, as well as combining the results back together to overwrite the input matrix,
shutting down the runtime system, and releasing all allocated memory. The source
code for this benchmark is available from GitHub.8

The experiment was run 20 times, and the median and interquartile range is
presented in Table 2. The version parallelized with SuperGlue is found to be 50%
more efficient than the multithreaded version provided by ACML. This shows the
strength of the dependency-driven task-based approach for this problem.

8https://github.com/tillenius/sg-blas-comparison
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Table 2

Comparison between SuperGlue and threaded ACML for multithreaded Cholesky factorization.

Implementation Performance (interquartile range)

ACML (nonthreaded) 13.8 GFlops (13.8–14.0)
ACML (threaded) 80.1 GFlops (78.5–80.3)
SuperGlue+ACML 120.6 GFlops (119.2–124.6)

9. Discussion and future work. The most promising approach to program-
ming for multicore processors is to divide the software into tasks and let a runtime
system schedule these tasks for execution in parallel. In real applications, the tasks
have dependencies, and these dependencies must be handled correctly and efficiently.
Introducing artificial dependencies or unnecessary synchronization can be devastating
for performance. Instead, fine-grained synchronization is needed. When the granu-
larity is small, task scheduling must be fast, or the scheduling overhead will dominate
the execution time and prevent the software from scaling at all.

In this paper we have presented a task-based programming model where the
user specifies dependencies between tasks by creating handles that represent shared
resources and declaring which handles each task accesses. Handles have version num-
bers, and tasks are ready to execute when certain versions of these handles are avail-
able. This model is convenient and flexible for the user and introduces no artificial
synchronizations. We have also presented an implementation of this system called
SuperGlue. In this implementation, task scheduling is distributed, it requires no cen-
tral information, and it is driven by locality. Our implementation is shown to be
efficient, to scale well, and to be practically applicable. We compare our implementa-
tion against other task-based systems, as well as against highly optimized third-party
code, and show that it performs equally well or better.

We are currently working on extending the SuperGlue model to support dis-
tributed memory parallelism via MPI. A working prototype, implemented as a layer
on top of SuperGlue, has already been developed and used to build a distributed
memory version of the shallow water code presented in section 6.2, with promising
results [26].

REFERENCES

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, StarPU: A unified plat-
form for task scheduling on heterogeneous multicore architectures, Concurrency Computat.
Pract. Exper., Euro-Par 2009, 23 (2011), pp. 187–198.
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[4] P. Bellens, J. M. Pérez, R. M. Badia, and J. Labarta, CellSs: A programming model for
the Cell BE architecture, in Proceedings of the 2006 ACM/IEEE Conference on Supercom-
puting (SC ’06), ACM, New York, 2006.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou, Cilk: An efficient multithreaded runtime system, SIGPLAN Not., 30 (1995),
pp. 207–216.

[6] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear algebra
algorithms for multicore architectures, Parallel Comput., 35 (2009), pp. 38–53.

[7] L. Dagum and R. Menon, OpenMP: An industry standard API for shared-memory program-
ming, IEEE Comput. Sci. Eng., 5 (1998), pp. 46–55.

[8] J, Dongarra, J. Kurzak, J. Langou, J. Langou, H. Ltaief, P. Luszczek, A. YarKhan,

W. Alvaro, M. Faverge, A. Haidar, J. Hoffman, E. Agullo, A. Buttari, and

D
o
w

n
lo

ad
ed

 1
1
/1

1
/1

5
 t

o
 1

3
0
.2

3
8
.1

7
.7

4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

http://arxiv.org/abs/1502.02908


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C642 MARTIN TILLENIUS

B. Hadri, PLASMA Users’ Guide, http://icl.cs.utk.edu/plasma/.
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