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We construct supergravity solutions that correspond to N Dp-branes coinciding with N̄ Dp-branes. We study

the physical properties of the solutions and analyze the supergravity description of tachyon condensation. We

construct an interpolation between the brane-antibrane solution and the Schwarzschild solution and discuss its

possible application to the study of non-supersymmetric black holes.

DOI: 10.1103/PhysRevD.63.064008 PACS number~s!: 04.65.1e

I. INTRODUCTION

While a brane breaks half of the space-time supersymme-

try, the antibrane breaks precisely the other half of the su-

persymmetry. Thus, a system of a brane and anti-brane

breaks together all the space-time supersymmetry. The sys-

tem is not stable, however, since the brane and anti-brane

attract each other. This can be understood as the appearance

of a tachyon on the world-volume of the branes. It arises

from the open string stretched between the brane and the

anti-brane and it is charged under the world-volume gauge

groups. The decay of the system can be seen by the tachyon

rolling down to the minimum of its potential @1#. The phe-

nomenon of tachyon condensation is fairly well studied by

now in the open string description @2–4#. It would be inter-

esting to ask how the phenomenon appears from the closed

string viewpoint. One of the aims of this paper is to construct

supergravity solutions that correspond to N Dp-branes coin-

ciding with N̄ Dp-branes ~anti D-branes! and analyze the

supergravity description of tachyon condensation.

While type IIA ~type IIB! string theory has Bogomol’nyi-
Prasad-Sommerfield ~BPS! D-branes of even ~odd! dimen-
sions, they also admit non-BPS D-branes of odd ~even! di-
mensions. These branes are not stable. They have been
interpreted as the string theoretical analogues of sphalerons
in field theory @5#. The families of supergravity solutions that
we will discuss contain also backgrounds that correspond to
these branes. Stable non-BPS brane configurations are much
studied too @6–11#. However, we will not discuss supergrav-
ity backgrounds that correspond to these objects.

Another motivation that we have for studying brane-
antibrane solutions is to understand the relation between
these solutions and the Schwarzschild black hole solution
~see, e.g. @12# for an early indication of such a connection in
the context of five-dimensional black holes of type IIB
theory!, which may have possible applications in the study of
non-supersymmetric black holes.

This paper is organized as follows. In Sec. II we describe
the supergravity solution that corresponds to N Dp-branes

coinciding with N̄ Dp-branes and its physical properties. In
Sec. III we analyze the supergravity description of tachyon
condensation. We will also discuss the issue of decoupling
and open-closed string duality. In Sec. IV we describe a gen-
eral family of supergravity solutions that includes non-
Poincaré-invariant world-volumes. In particular it contains
an interpolation between the brane-antibrane solution and the
Schwarzschild solution. We discuss the possible application
to the study of non-supersymmetric black holes. Section V
contains a short discussion of the results.

We note that supergravity descriptions of smeared brane-
antibrane configurations have been presented in @13#. We
will discuss in this paper the localized ones. Unstable branes
on AdS have been analyzed in @14#. Non-BPS D-brane solu-
tions in six-dimensional orbifolds were analyzed in @15#.

II. THE SUPERGRAVITY DESCRIPTION

In this section we will describe type II supergravity solu-

tions that correspond to N Dp-branes coincident with N̄

Dp-branes and their physical properties.

A. The supergravity solution

The strategy for constructing such solutions will be the
following. We know that a brane-antibrane configuration
must have the full world-volume Poincare symmetry
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ISO(p ,1).1 Furthermore, it should have rotational symmetry

SO(92p) in the 92p transverse directions. For NÞN̄ , the
system will also carry an appropriate Ramond-Ramond ~RR!
charge.

We therefore look for the most general solution of type II
A or B supergravity which possess the symmetry

S5ISO~p ,1!3SO~92p !, ~1!

and carries charge under a RR field.2

The most general form of the metric, dilaton and RR-field
consistent with the symmetry ~1! is

ds2
5e2A(r)dxmdxm

1e2B(r)~dr2
1r2dV82p

2 !,

f5f~r !,

C (p11)
5eL(r) dx0`dx1` . . . `dxp. ~2!

We look for solutions of the form ~2!, of type II A/B
supergravity Lagrangian, whose relevant part is given ~in the
Einstein frame! by

S5

1

16pGN
10E d10xAgS R2

1

2
]Mf]Mf2

1

2 n!
ea fFn

2D ~3!

where a5(52n)/2. The relation between the rank n of the
RR field strength Fn and the dimensionality p of the brane
has been explained in footnote 2.

In Eq. ~2! and in the rest of the paper we represent ten-
dimensional coordinates by xM ,M50, . . . ,9 and brane
world-volume coordinates ~including time! by xm,m
50,1, . . . ,p . We will denote the transverse coordinates by
x i,i51, . . . ,92p or, alternatively, by the polar coordinates
r ,u1 , . . . ,u82p (r2[x ix i).

The equations of motion that follow from Eq. ~3! for the
ansatz ~2! are ~see, e.g., @16,17#!

A91~p11 !~A8!2
1~72p ! A8B81

82p

r
A85

72p

16
S2,

B91~p11 !A8B81

p11

r
A81~72p !~B8!2

1

1522p

r
B852

1

2

p11

8
S2,

~p11 !A91~82p !B91~p11 !~A8!2
1

82p

r
B82~p11 !A8B81

1

2
~f8!2

5

1

2

72p

8
S2,

f91S ~p11 !A81~72p !B81

82p

r
Df852

a

2
S2,

~L8 eL1af2(p11)A1(72p)B r82p!850, ~4!

where

S5L8 e (1/2)af1L2(p11)A. ~5!

The mathematical solution to this system of differential
equations has already been presented in @17# ~a large number
of the solutions appeared earlier in @18#!. The solutions de-
pend on three parameters r0 ,c1 ,c2 ~we have relabeled c3 of
@17# as c2, and k as 2k) and are given by

A~r !5

~72p !~32p !c1

64
h~r !2

72p

16
ln@cosh„k h~r !…

2c2 sinh„k h~r !…# ,

B~r !5

1

72p
ln@ f 2~r ! f 1~r !#1

~p23 !~p11 !c1

64
h~r !

1

p11

16
ln@cosh„k h~r !…2c2 sinh„k h~r !…# ,

f~r !5

~72p !~p11 !c1

16
h~r !1

32p

4
ln@cosh„k h~r !…

2c2 sinh„k h~r !…# ,

eL(r)
52h~c2

2
21 !1/2

sinh„k h~r !…

cosh„k h~r !…2c2 sinh„k h~r !…
,

~6!

1By contrast, a non-extremal Dp-brane breaks ISO(p ,1)

→ISO(p), which is expected of a finite temperature world-volume

field theory ~see Sec. IV!. Here I stands for ‘‘inhomogeneous,’’

referring to the translational symmetries.
2Our convention for the RR field and potentials is as follows. For

electric p-branes ~i.e. for p50,1,2), the RR field strength is Fp12

[dC (p11). For magnetic p-branes i.e. for p54,5,6, we interpret

C (p11) as the dual potential, and the RR field-strength will be given

by F82p[e2(32p)f/2*(dC (p11)). For 3-branes (p53) the self-dual

field strength is given by F55(1/A2)(dC (4)
1*dC (4)).
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where

f 6~r ![16S r0

r
D 72p

,

h~r !5lnF f 2~r !

f 1~r !
G ,

k56A2~82p !

72p
2

~p11 !~72p !

16
c1

2,

h561. ~7!

The parameter h describes whether we are measuring the
‘‘brane’’ charge or the ‘‘antibrane’’ charge of the system.

The parameters (r0 ,c1 ,c2) appear as integration con-
stants and as such they could be complex, describing a six-
dimensional space. However, the reality of the supergravity
fields singles out three distinct three-dimensional subspaces
I, II and III, as discussed in Appendix A. For the rest of our
paper, we will concentrate on the physical properties of the
solution I where the above three parameters are all real; we
will comment on II and III in Appendix A. We also note that
besides the three continuous parameters r0 ,c1 and c2, our
solution has two additional discrete parameters: sgn(k),h .

The solution is invariant under three independent Z2

transformations which act on the space of the parameters

@m ,c1 ,c2 ,sgn~k !,h#→@m ,c1 ,2c2 ,2sgn~k !,2h#

@m ,c1 ,c2 ,sgn~k !,h#→@2m ,2c1 ,c2 ,2sgn~k !,h#

@m ,c1 ,c2 ,sgn~k !,h#→@2m ,2c1 ,2c2 ,sgn~k !,2h#

m[r0
72p . ~8!

For convenience we will fix the above Z2’s by choosing
~a! the positive branch of the square root for k, namely

k5A2~82p !

72p
2

~p11 !~72p !

16
c1

2, ~9!

~b!

c1>0. ~10!

The case of the instanton (pÄÀ1)

The solutions mentioned above also include p521. In
this case there is no A(r); the metric, dilaton and the RR
potential are explicitly given by

ds2
5S f 2~r !

f 1~r !
D 1/4

~dr2
1r2dV82p

2 !,

f5lnFcoshS 3

2
h~r ! D2c2 sinhS 3

2
h~r ! D G ,

C (0)
5eL(r)

52h~c2
2
21 !1/2

sinh„ 3
2 h~r !…

cosh„ 3
2 h~r !…2c2 sinh„ 3

2 h~r !…
,

~11!

where

f 6~r !5X12S r0

r
D 8C,

h~r !5lnF f 2~r !

f 1~r !
G . ~12!

An interesting point to note is that in this case the solution
depends only on two parameters r0 ,c2 ~which are functions
of mass and charge!, consistent with Birkhoff’s theorem. The
extra parameter c1 does not appear. According to the inter-
pretation in the next section it implies that there is no
tachyon associated with this solution.

The neutral case ~taken as c2521) is described by

ds2
5S f 2~r !

f 1~r !
D 1/4

~dr2
1r2dV82p

2 !,

exp@f#5S f 2~r !

f 1~r !
D 3/2

. ~13!

Regarded as a IIB solution, this should be interpreted as a

D(21)-D̄(21) pair. On the other hand, the same solution
can alternatively be regarded as a IIA solution; in that case it
has a natural lift to eleven dimensions, given by the formula

ds11
2

5exp@4f/3#dx10
2

1exp@2f/6#ds2. ~14!

It is easy to see that the eleven-dimensional metric becomes
the Euclidean Schwarzschild metric

ds11
2

5S 12

M

r̃ 8D dx10
2

1

dr2

12

M

r̃ 8

1 r̃2dV9
2 ~15!

where M54r0
8 and r̃5r f

1

1/4 . It has been pointed out in @5#
that this metric describes the non-BPS D-instanton of type
IIA.3 Thus, we see that Eq. ~13!, regarded as a IIA solution,
describes the non-BPS D-instanton. This is in keeping with
our later observations about non-BPS D-branes. The interest

3We thank Y. Lozano for a comment on this case.
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ing point here is that in the absence of the extra parameter
c1, the same neutral supergravity solution describes both the

D(21) D̄(21) pair as well as the non-BPS D(21) brane.
This is presumably a consequence of our earlier observation
that there is no tachyon associated with this solution.

B. Physical properties

In @17# the physical interpretation of the above three-
parameter solution ~6!,~7! was not presented. We will see
that it corresponds to brane-antibrane systems along with
condensates.

In a brane-antibrane system, there are two obvious physi-

cal parameters N and N̄ which are the numbers of branes and
antibranes respectively. In the above supergravity solution
too, there are two obvious physical parameters: the RR
charge Q and the Arowitt-Deser-Misner ~ADM! mass

M ADM , which clearly depend on N and N̄ . We will discuss
in Sec. III the brane interpretation of the third parameter.
Before that, however, it will be useful to discuss Q and
M ADM in greater detail.

For convenience, we consider wrapping the spatial world-
volume directions on a torus Tp of volume Vp ~this is always
possible, since the metric and other fields do not depend on
these directions!. The RR charge Q, defined by an appropri-
ate surface integral over the sphere-at-infinity in the trans-
verse directions ~see, e.g. @16#!, is given by

Q52hNpr0
72pkAc2

2
21, ~16!

where

Np[
~82p !~72p !v82pVp

128pGN
10

, ~17!

and vd52p (d11)/2/G„(d11)/2… is the volume of the unit
sphere Sd. We have normalized the charge Q such that the
BPS relation becomes M BPS5Q .

The ADM mass M is defined, in terms of the Einstein-
frame metric, by @19,20#4

g005211

16pGN
102pM

~82p !v82pr72p
1higher order terms ~18!

where GN
102p

5GN
10/Vp .

This gives us

M5Npr0
72pF32p

2
c112c2kG . ~19!

Since the solution is generically non-BPS, M is different
from M BPS[Q . The mass difference is given by

DM[M2M BPS5Npr0
72pF32p

2
c112k~c22Ac2

2
21 !G .

~20!

In order to have a better understanding of the space of
solutions represented by Eqs. ~6!,~7!, we now consider some
special limiting cases.

The BPS case (N̄Ä0)

Since the BPS Dp-brane clearly respects the symmetry
~1!, it should be part of our solution space.

We recall @21# that the Dp-brane solution is given by

ds2
5 f p

~p27!/8dxmdxm
1 f p

(p11)/8~dr2
1r2dV82p

2 !,

ef
5 f p

(32p)/4 ,

C01 . . . p
(p11)

52h
1

2
~ f p

21
21 !,

f p511

m0

r72p
, ~21!

with ADM-mass M Dp and charge Q given by

M Dp5Q5m0Np . ~22!

This solution indeed exists in a ‘‘scaled neighborhood’’ of
the point (r0 ,c1 ,c2)5(0,cm ,`), defined by

r0
72p

5e1/2r̄ 0
72p ,

c15cm2e
8 k̄ 2

~p11 !~72p !cm

,

c25

c̄2

e
, ~23!

where cm5@32(82p)/(p11)(72p)2#1/2 denotes the point
where k50. The second condition is better stated as

k5e1/2k̄ . ~24!

The scaling is defined by the limit e→0 such that r̄0 , c̄2 and

k̄ are fixed.
It is easy to check that the solution ~6! reduces to Eq. ~21!

with

m052c2kr0
72p

52 c̄2k̄ r̄ 0
72p . ~25!

4This definition differs from the one presented, e.g. in @16#, by an

overall factor.
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It is useful to consider the three-parameter space of solu-
tions as parametrized by M ,Q ,c1. Figure 1 depicts
the M ,c1 plane for a given fixed Q. The BPS solution cor-
responds to the scaled neighborhood represented by the
shaded circle. Other parts of the figure will be explained
later.

The Dp-Dp System (NÄN̄)

In this case the RR charge Q}(N2N̄) must vanish. Ac-
cording to Eq. ~16! this corresponds to the subspace

uc2u51. ~26!

We represent this subspace in Fig. 2.
Now Eq. ~26! implies c2561. As remarked in Sec. III

below, the physically relevant choice for p.3 is c251,
while for p,3 it is c2521 ~for p53 the two choices are
physically equivalent!. To simplify the discussion we will
present the formulas in the rest of this section for p.3; it is
straightforward to write down the formulas in the other
cases.

The solution now reads

e2A
5S f 2

f 1

D a

,

e2B
5 f

2

b
2 f

1

b
1 ,

ef
5~ f 2 / f 1!g,

eL
50, ~27!

where

a5~72p !S ~32p !c114k

32
D ,

b65

2

72p
7S ~p11 !~~p23 !c124k !

32
D ,

g5

1

16
„~72p !~p11 !c124~32p !k….

~28!

These represent the most general 2-parameter (r0 ,c1) so-
lution of type II supergravity with no gauge field and
SO~p,1! 3 SO~9-p! symmetry.

Consider for instance the case p56. The solution reads

e2A
5S 12r0 /r

11r0 /r
D (4k23c1)/32

,

e2B
5~12r0 /r !217(3c124k)/32~11r0 /r !227(3c124k)/32,

ef
5S 12r0 /r

11r0 /r
D (7c1112k)/16

~29!

where k5A427c1
2/16.

The Einstein metric has a curvature singularity at r5r0.
The scalar curvature in Eq. ~29!, e.g., goes as

R;
1

~r2r0!21b
2

. ~30!

The physical regime is r>r0. In the case of a single
Dp-brane the curvature singularity is resolved by the appro-
priate inclusion of the brane degrees of freedom. We will
discuss this issue in our case later on.

FIG. 1. The M ,c1 plane for a given fixed QÞ0. The BPS solu-

tion corresponds to the scaled neighborhood represented by the

shaded circle. Path II represents decay to a BPS D-brane of charge

Q.

FIG. 2. The two-parameter space of solutions for Q50, as pa-

rametrized by M ,c1. Path II represents decay of the brane-antibrane

configuration to flat space.
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For the specific value

c150, ~31!

we get

e2A
5S 12

r0

r

11

r0

r

D
1/4

,

e2B
5S 12

r0

r
D 1/4S 11

r0

r
D 15/4

,

ef
5S 12

r0

r

11

r0

r

D
3/2

, ~32!

which is the coincident D6-D6 solution @22,23# in isotropic
coordinates. In Fig. 2, this corresponds to the point (M ,c1)
5(M 0,0).

The above observation implies that for c1Þ0 we get a

generalization of the coincident D6-D6 solution. We will
argue in the next section that the parameter c1 is related to
the ‘‘VEV’’5 of ~the zero momentum mode of the! the open
string tachyon arising from open strings stretched between

the D6 and D6 ~and more generally between Dp and Dp)
branes. The Sen solution corresponds to the particular case
where the tachyon VEV is zero.

Other cases of DMÄ0

Clearly, from Eq. ~20! we can have

M5Q ~33!

if we have

~32p !/2c112k~c22Ac2
2
21 !50. ~34!

This solution ~represented by c15ce in Figs. 1,2! is nonsu-
persymmetric. Indeed, there is a range of the parameters ~see
Figs. 1,2! in which

M,Q . ~35!

These solutions cannot correspond to physical states of string
theory ~for Q50, these correspond to negative ADM mass!.

This implies that we expect additional contribution to the
ADM mass formula, coming perhaps from a better under-
standing of the curvature singularity at r5r0. In the case of
BPS D-branes or the fundamental string the ADM mass for-
mula as found by the asymptotic behavior of the Einstein

metric does represent the energy-momentum of the source
sitting at the curvature singularity. The reason our case is
different may have to do with the fact that we have a naked
singularity at r5r0; a computation of the Euclidean action
similar to that in @24# indeed shows that the action receives
contribution not only from r5` , but also from r5r0.

Validity of the supergravity description

As we have mentioned above @see Eq. ~30!#, the curvature
typically becomes large near r5r0. This implies that the
solution near r5r0 can receive corrections from higher cur-
vature terms in the low energy Lagrangian. However, as has
been demonstrated in @23#, it is possible to use the solution to
the leading-order supergravity equations to draw non-trivial
inferences. Furthermore some features of the solution do not
depend on the precise details of the solution near the singu-
larity. In the comparison with the physics on the brane to
follow, we will mainly focus on these features.

III. TACHYON CONDENSATION

In the following, we will interpret the 3-parameter family
of supergravity solutions as a bound state of N Dp-branes

coincident with N̄ Dp-branes, together with a vacuum expec-
tatio value ~VEV! v of the tachyon condensate. The three
parameters r0 ,c1 ,c2 will be argued to correspond to various

combinations of the three parameters N ,N̄ ,v .

A. ŠT‹ in supergravity

A system of N Dp-branes on top of N̄ Dp-branes has a
tachyon arising from the open string stretched between the

Dp-branes and the Dp-branes. The tachyon T transforms in

the (N ,N̄) @and T* in (N̄ ,N)] representation of the U(N)

3U(N̄) gauge group. Consider first the case N5N̄ ~the neu-

tral case!. The cases that are studied most are N5N̄51. In
this case the tachyon is a complex field (T ,T*) that trans-
forms in the (1,21) % (21,1) representation of the U(1)
3U(1) gauge group of the world-volume theory. The brane
system is unstable due to the tachyon. The tachyon has a
potential V(T) which is a function of uTu2. The Dp-

Dp-branes configuration is expected to decay into the closed
string ~type II! vacuum. Such a decay into the vacuum is
conjectured to happen through the process of tachyon con-
densation in which the zero-momentum mode of the tachyon
gets a specific VEV. In particular, it is conjectured that at the
minimum of the tachyon potential, denoted by uTu5T0, the
total energy of the system actually vanishes:

E5V~T0!12M Dp50, ~36!

where M Dp is the mass of a Dp-brane. Equation ~36! has
been established numerically to a very high accuracy via
open string field theory @3#. When N.1 it was argued in @8#
that at the minimum of the potential all the eigenvalues of T0

are equal. In the following we will denote (1/N)Tr(TT*) by
uTu2.

5We actually consider generically off-shell values of the tachyon.

The issue of why we may have supergravity solutions correspond-

ing to an off-shell tachyon is discussed in Sec III A.
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Let us ask ourselves how the above phenomenon appears
from the viewpoint of closed string theory. We concentrate
on the neutral case first (Q50) and on the charged case
later. There are two ways of looking at the problem:

~a! Real-time. The physical decay process in terms of the
brane ~open string! variables in which the tachyon rolls down
to its minimum is time-dependent. The supergravity back-
ground of such a time-dependent brane configuration is na-
ively expected to be time-dependent.6

~b! Path-in-configuration-space. One can alternatively
view the decay as a one-parameter path in the open string
configuration space, which for our purposes here is the space
of values of uTu. Except at the two extremities of the path
(uTu50,T0), the other values of uTu are not at an extremum
of V(T) and is therefore off-shell. Let us ask how such a
path would appear in the closed string description. Let us
imagine doing an experiment in which gravitons and other
massless closed string probes are scattered off the brane-
antibrane system for various values of uTu as uTu is varied
from 0 to T0. We will assume here that such an experiment
makes sense with off-shell values of the tachyon.7 In prin-
ciple one can imagine coupling closed string degrees of free-
dom to the off-shell tachyon through, e.g., the modified DBI
action appropriate to brane-antibrane systems. The super-
gravity solution away from the brane will have the same
symmetry as the brane-antibrane system, namely Eq. ~1!.
However, the metric and other fields must reflect the extra
parameter uTu. We will try to argue that the one-parameter
deformation represented by c1 in our solution corresponds to
this uTu.

We begin by asking whether we see in the supergravity
description an analogue of the tachyon potential. The obvi-
ous supergravity counterpart of the total energy E @Eq. ~36!!#
of the brane-antibrane system is the ADM mass ~19!. For the
suggested identification to be correct we should have

M5V~T !12NM Dp
(1) , ~37!

where by M (1) we mean the ADM mass for a single Dp

brane. The supergravity solution in question here is the
2-parameter family ~27! of solutions parametrized by
(r0 ,c1). Since the left hand side of Eq. ~37! is the ADM
mass ~19!, viz.

M5Npr0
72pF32p

2
c11S 2~82p !

72p
2

~p11 !~72p !

16
c1

2D 1/2G ,

~38!

let us ask whether the the qualitative behavior of M as a
function of c1 in Eq. ~38! agrees with the right hand side of
Eq. ~37! for some appropriate identification between c1 and
T.

Comment on branches. As explained in Appendix A, the
dependence of the ADM mass on c1 depends on the specific
branch of the solution. In the following we will find that it is
for the branch I11 for p.3 ~and I22 for p,3)8 which
lends to a tachyon interpretation. Later on we will briefly
comment on the possible interpretation of the other branches.

Once we choose the appropriate branch of the supergrav-
ity solution, the qualitative behavior of M as a function of c1

~at a fixed r0) is given by Fig. 3.
Consider first the case p56. When c150 we have the

coincident D6-D6̄ solution @22,23#. The ADM mass ~38! for
p56,c150 is M54Npr0. We will argue in Sec. III B that
this mass coincides with

M52NM Dp
(1) . ~39!

This implies that V(T)50 at c150; since the tachyon po-
tential vanishes only at T50 @26#, we conclude that

T50 at c150. ~40!

As we will see, the last equation is valid for all p. This will
imply that the subspace of our three-parameter solution de-

fined by c150 represents Dp-Dp branes with zero value of
the tachyon uTu, that is, brane-antibrane configurations which
sit at the maximum of the tachyon potential.

6We remark, though, that the exterior geometry of a pulsating

spherically symmetric star is given by the static Schwarzschild so-

lution, thanks to Birkhoff’s theorem. It is not inconceivable, there-

fore, to have a time-dependent brane configuration with a static

supergravity background for r.r0. In such a case the time-

dependence could presumably be discerned at the level of higher

mass modes of the closed string ~see @25# for a similar analysis

where the supergravity background of a BPS state does not see the

‘‘polarization’’ of the state, although the higher closed string modes

see it.!
7Coupling on-shell bulk degrees of freedom to off-shell brane

degrees of freedom is also familiar from AdS conformal field theory

~CFT!.

8For p53 and Q50 I11 and I22 are physically indistinguish-

able.

FIG. 3. ADM mass ~for a fixed r0.0) as a function of ~a! c1

and ~b! uTu.
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Let us now consider small deformations away from c1

50. Since V(T) is known to be a function only of uTu2, we
expect the ADM mass, and hence c1, to be a function of uTu2

too. For small deformations, we can write

c15auTu2
1buTu4

1••• . ~41!

Clearly a.0. It is easy to see that the behavior of the ADM
mass M as a function of uTu @Fig. 3~b!# qualitatively matches
the behavior of V(uTu) near T50.

Tachyon condensation

In Fig. 3~b! we have not plotted the ADM mass in the
whole range of uTu because Eq. ~41! is valid only near T

50. The question then is whether our solution can describe
the full double-well potential V(T). In other words, can we
describe the process of tachyon condensation all the way to
the vacuum?

In Fig. 2, vacuum is represented by any point in the line
M50. Any path connecting the point (M 0 ,c150) to this
line ~e.g. path I or path II! therefore in principle represents a
family of supergravity solutions corresponding to a flow of
uTu from uTu50 to uTu5T0.

To know what the actual path is, we need to have a more
precise knowledge of mapping @more detailed than Eq. ~41!#
between the open string variables (N ,uTu) to the supergravity
variables (r0 ,c1). Assuming that such maps exist and are
smooth and invertible, the generic form will be

r05 f̃ 1~N ,uTu2!, c15 f̃ 2~N ,uTu2!

~42!

N5 g̃1~r0 ,c1!, uTu5 g̃2~r0 ,c1!.

These can alternatively be stated as a map (N ,uTu)
→(M ,c1):

M5 f 1~N ,uTu2!, c15 f 2~N ,uTu2!

~43!

N5g1~M ,c1!, uTu5g2~M ,c1!.

Of course Eqs. ~42!,~43! should be consistent with Eq. ~41!
near T50 ~we need to consider the coefficients a ,b , . . . to
be functions of r0 or N).

The path I in Fig. 2 corresponds, in terms of Eq. ~42!, to

r05 f̃ 1(N) and c15 f̃ 2(uTu2). This path corresponds to the
plot Fig. 3~a! of M as a function of c1 at fixed r0. It has the
unphysical feature that it does not stop at M50 and goes
down to the domain of M,0.

Path II in Fig. 2 requires the functions f̃ 1,2 ~or the func-
tions f 1,2) to be necessarily a function of two variables. In
other words, the flow of uTu from 0 to T0 should mean here
that both r0 and c1 should change appropriately to take the
solution to the point (M ,c1)5(0,cm). The nice feature of
this path is that it automatically ends at the flat space solu-
tion, since c1 cannot go beyond cm @actually there is another
branch of solution ~branch II, Appendix A! for c1.cm , but
it can be shown that the ADM mass increases for c1.cm].

In the absence of a decoupling limit ~as we will discuss in
Sec. III A! it may not be possible to determine the exact
functions mentioned in Eq. ~42! or Eq. ~43! and therefore to
know any more about the nature of V(T) than what we have
already presented here. In any case, if an analysis of brane
degrees of freedom is expected to remove the M,0 region,
presumably the formulas for the mass will change.

In summary, we see that a path exists ~path II in Fig. 2! in
our space of solutions which describes the flow of uTu from 0
to T0 and the behavior of the ADM mass M along this path
matches the qualitative features of V(T).

The other branches

In the above we have discussed only the branch I11 ~see
Appendix A for notation! for p>3 and I22 for p,3. It is
easy to see that the behavior of the branches I21 ,I12 are
outright unphysical. This leaves I22 for p>3 and I11 for
p,3. In this branch ~except for p53) for small deforma-
tions of c1 away from zero, M initially rises beyond the
combined rest mass of the brane-antibrane system and then
falls again. This seems puzzling since Eq. ~37! does not al-
low such an increase in the energy of the system. We should
recall however that when the vev of the tachyon field is zero
the world-volume gauge group is not broken. That means
that we are allowed to have other condensates such as a
gluon condensate. This can increase the energy of the sys-
tem. An estimate of such an increase can be obtained from
the modified Dirac-Born-Infeld ~DBI! action @27#

S52TpE dp11se2fV~T !

3Adet@G i j12pa8~F i j1] iT] jT !# . ~44!

The interpretation of the c1 deformation ~for pÞ3) in these
branches could therefore be in terms of a gluon condensate.
However, it remains a mystery in that case why ~a! there is
no such phenomenon for p53 ~since the branches I11 and
I22 appear to be identical!, and ~b! why the ADM mass
starts to decrease after a while.

Non-BPS D-branes

Since we are only discussing the tachyon condensate in
terms of a real quantity uTu we are left with the possibility
that our supergravity solution may represent a real tachyon
as well. Recall that a real tachyon characterizes the non-BPS
Dp branes, i.e. p odd for IIA and p even for IIB, which are

obtained from the Dp-Dp-brane system by a (21)FL projec-
tion. So the natural question arises: which brane system does
the supergravity solution describe. It is plausible that in the
neutral case the solution describes both. In both cases the
background has no RR charge, and one expects the full
SO(p ,1)3SO(92p) symmetry. The solution ~27! is the
most general one that satisfies these conditions. The question
is whether the ADM mass of a non-BPS brane ~with or with-
out tachyon! occurs in these solutions. We recall that the
tension of non-BPS Dp branes ~for N51) is related to the

tension of the Dp-Dp-brane system by M non-BPS
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5(1/A2)M Dp2Dp, reflecting a bound system. For N.1 too,

the tension of the non-BPS Dp brane system M non-BPS
(N) should

be less than that of the combined rest mass 2NM Dp
(1) of the

brane-antibrane system. Since the values of ADM mass dis-
cussed in the context of Eq. ~37! range all the way from

2NM Dp
(1) to 0, we see that in a suitable range of parameters

the solution ~27! does have ADM masses that can be fitted to

M5M non-BPS
(N)

1Ṽ(T) where Ṽ(T) is the potential for the real

tachyon in this case. This implies that one can use the super-
gravity solution presented here in appropriate ranges of pa-
rameters to describe non-BPS branes as well; the distinction
between which system ~brane-antibrane or non-BPS brane!
one has at hand is likely to depend on the near-core geometry
which could depend on higher-curvature corrections.

The charged case: QÅ0

In this case we expect the relation

M5~N1N̄ !M Dp
(1)

1V~T !, ~45!

where M Dp
(1) denotes the ADM mass for a single Dp brane.

The analysis of the binding energy in the next section once
again suggests that c150 corresponds to the point where the
tachyon potential vanishes, which we expect to be for van-
ishing tachyon field. The discussion of tachyon condensation
is similar to the neutral case. Again path II in Fig. 1 is more
physical than path I because the former ends at the BPS point
and does not go to the region M,Q . The qualitative behav-
ior of M along this path again matches the qualitative fea-
tures of a tachyon potential which has a local maximum at
uTu50 and a minimum at uTu5T0 where we denote
(1/N)Tr(TT*) by uTu2 ~we assume that all the eigenvalues of

TT* are the same, namely T0
2, at the minimum!. We expect

that at the minimum V(T)5@ uN2N̄u2(N1N̄)#M Dp
(1) .

B. Dp-brane probes and binding energy

In the last section we mentioned that V(T)50 corre-
sponds to c150. We derive this in the present section.

We will consider the general 3-parameter solution param-
etrized by (r0 ,c1 ,c2). Let us define the binding energy of

the Dp-Dp-branes solution to be

EB5~N1N̄ !M Dp
(1)

2M , ~46!

where M is given by Eq. ~19! and M Dp
(1) represents the rest

mass of a single Dp-brane ~or Dp-brane!, given by Eq. ~22!

with the scale parameter m05m0
(1) , which depends on gstr

and p, the dimensionality of the brane.
In view of Eq. ~37!,

EB52V~T !. ~47!

A straightforward comparison between (N1N̄)M Dp and
M of Eq. ~19! is hampered by the fact that we do not know a

priori the relation between the two parameters r0 and m0 that
characterize the respective solutions ~6! and ~21!. We will
find this relation by the following strategy.

We consider the static force between a Dp-Dp-branes

system and a Dp-brane probe ~respectively a Dp-brane
probe! at a distance r. This can be computed in two ways:

~a! From supergravity,

Sprobe52

1

gsls
p11E dp11s~e2fAĜ6Cp11! ~48!

where GMN5ef/2gMN represents the string frame metric cor-

responding to the solution ~6! and Ĝ is its pull-back to the

world-volume. For a Dp ~respectively Dp) probe, we use the
upper ~respectively lower! sign.

Subtracting the flat space DBI part, and keeping only the
leading term in the 1/r expansion we get

Sprobe52k
Vp

gsls
p11 S r0

r
D 72p

~c27Ac2
2
21 !. ~49!

~b! By a string theory computation,

^DpDp uexp~2bH !uDp& ~50!

where the states are regarded as boundary states constructed
out of closed-string oscillators. ~We consider here the case of
the Dp-probe first.! At weak coupling and for ^T&50, the
boundary state on the left is given by

^DpDp u5^Dpu ^ ^Dp u. ~51!

We will assume that Eq. ~51! can be used for computation of
the leading term in the 1/r expansion for large distances r,
when ^T&50 ~see @28,29# for earlier work on connection
between boundary states and classical solutions!. Since the
static force between two Dp-branes vanishes, the computa-
tion ~b! then reduces, at ^T&50, to

^Dpuexp~2bH !uDp& . ~52!

This latter can be computed at large distances from super-
gravity, by the DBI action of a Dp-brane probe in the back-

ground of a Dp-brane:

Sprobe8 [2

1

gsls
p11E dp11s@e2fAĜ1C (p11)# , ~53!

where the metric, dilaton and the RR potential are now ob-

tained from Eq. ~21!, with m05N̄m0
(1) . We get, again after

subtracting the flat space DBI part, and keeping only the
leading term in the 1/r expansion,

Sprobe8 5

Vp

gsls
p11 S 2

N̄m0
(1)

r72p D . ~54!

This result holds for the Dp-probe. For the Dp-probe we

need to replace N̄→N in the above expression.
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Matching Eqs. ~49! and ~54! leads to

Nm0
(1)

5kr0
72p~c21Ac2

2
21 !,

N̄m0
(1)

5kr0
72p~c22Ac2

2
21 !. ~55!

From this we deduce that

Q5Npm0
(1)~N2N̄ ! ~56!

and

m0
(1)~N1N̄ !52kr0

72pc2 . ~57!

Using Eqs. ~19!, ~22! and ~55! we can find the zero of the

binding energy ~46! of the Dp-Dp bound state. We get

EB505Npr0
72pF32p

2
c1G . ~58!

Clearly EB vanishes at c150.9 In view of the identification
~47!, this implies that

c150⇒V~T !50, ~59!

as promised in the last section. Note that
~a! If we put c150 in Eq. ~19! we indeed get M5M Dp

1M Dp, consistent with the vanishing of the binding energy.

~b! Equations ~56! and ~57! give us essentially N2N̄ and

N1N̄ in terms of the supergravity parameters in the sub-
space c150.

~c! The expression for the total mass ~57! matches exactly

with the BPS mass ~25! ~recall that at the BPS point N̄50).

C. Open-closed string duality

In the spirit of the AdS-CFT correspondence ~for a review
see @30#!, it is natural to ask whether we can apply a decou-
pling limit @31# of the brane modes from the bulk modes to

the supergravity description of the Dp-Dp-branes system.
Typically for Dp-branes this is a low energy limit with the
resulting background being the near-horizon metric. In the
present case, the closest analogue of the near horizon metric
is some suitably scaled neighborhood of r5r0. However, it
is easy to see that for the neutral solution ~27! there is no
such region which by itself is a solution of the supergravity
field equations. Also, we cannot find an appropriate rescaling
that keeps a metric finite in ls units as ls→0. This means that
the interactions between the open and closed strings remain
relevant.

Another manifestation of this issue is the form of the po-

tential V(r) for a graviton scattered on the Dp-Dp-branes.
The potential is depicted in Fig. 4. Near r5r0 it goes like
21/(r2r0)2 while at infinity it approaches 2v2 where v is

the frequency of the scattered graviton. The potential poses
no barrier for the gravitons sent from infinity to reach the r

5r0 and their absorption cross section does not vanish.10

The absence of a decoupling of the closed strings from the
open strings prevents us from making a precise correspon-

dence between the field theory on the Dp-Dp-branes world-
volume and the supergravity background. This suggests that
there is also a limitation on the quantitative understanding of
the tachyon condensation process by using only the open
string description. More precisely, for quantitative properties
whose analysis requires a string coupling which does not
satisfy gs!1, the interaction with the closed string modes
should not be neglected.

The singularity of the supergravity solution at r5r0 is
time-like. Having such a singularity of the classical geometry
which we can reach at a finite proper time, there is the natu-
ral question whether it is resolved quantum mechanically.
One criterion @33# is the existence of a self-adjoint Laplacian.
This can still be the case even if the metric is geodesically
incomplete. The requirement is the existence of a non-
normalizable solution of the wave equation. This criterion is
satisfied by our geometry. To see that we consider the
Laplace equation in the form

]2f

]t2
52Af . ~60!

The equation Af5lf takes the form

rb]r~r]rf !5lf , ~61!

where b52p21512(72p)((32p)c1/81k/2) and r5r

2r0. Defining z5Alr (12b)/2 we get

f91

f8

z
1

4

~12b !2
f50. ~62!

9The case p53 is subtle and we extrapolated the result to this

value of p from the other values. An alternative way would presum-

ably be to use some other probe. 10For a similar but detailed analysis see @32#.

FIG. 4. The scattering potential V(r) for gravitons on Dp-

Dp-branes.
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This has Bessel function solutions behaving like 1 and ln r.
The norm of the latter *drrr22 diverges.

IV. THE FOUR-PARAMETER SOLUTION

In this section we will briefly describe the most general
p-brane solution of type II string theory in which we relax
the requirement of Poincaré invariance in the
(p11)-dimensional world-volume. In other words, we ask
ourselves about the most general solution which respects the
symmetry

S85SO~p !3SO~92p !. ~63!

Clearly the previous 3-parameter solution already respects
this symmetry and hence should be part of this most general
family of solutions. The modified ansatz for the Einstein
metric is

ds2
5exp„2A~r !…„2 f ~r !dt2

1dxmdxm…

1exp„2B~r !…~dr2
1r2dV82p

2 !, ~64!

where we split the world-volume index m as 0,m51, . . . ,p .
The ansatz for the dilaton and the gauge potential remain the
same as in Eq. ~2!.

The equations of motion for this ansatz have been written
down in Appendix B. Once again the mathematical solution
of the differential equations has been worked out in @17# ~see
@18# for earlier work on many of these solutions!. We write
the explicit solution in Appendix B for completeness and
discuss here some salient physical features ~see Fig. 5!.

The general solution has 4 independent parameters
(r0 ,c1 ,c2 ,c3). The Poincaré-invariant 3-parameter subspace
discussed in the previous sections corresponds to c350. In
Fig. 5 this is schematically represented by the arm AC of the
triangle ABC. c3Þ0 breaks world-volume Poincare invari-
ance.

The two-parameter subspace (c1 ,c3)5@(32p)/2(72p),

22# corresponds to the black p-brane solutions of @21#. This

has already been identified in @17#. In Fig. 5, this is repre-

sented by the arm AB of the triangle. Recall that the black

p-branes are parametrized by their charge and mass ~equiva-

lently r1 ,r2 , the outer and inner horizons!. Note that the

BPS D-brane can be reached as a limit along the arm BA,

like it can be reached along CA, although the c3 values char-

acterizing these two arms are different. It is likely that there

are continuous families of solutions between BA and CA

~corresponding to different c3 values! which can reach the

BPS solution under a limiting procedure.

The three-parameter subspace defined by uc2u51 de-

scribes the most general spherically symmetric solution with

no gauge fields. This is represented by the arm BC of the

triangle. It is well-known that the neutral limit of the black

p-brane ~point B! corresponds to the Schwarzschild black

hole in 102p dimensions (3Tp, assuming a wrapped

p-brane!. On the other hand, as discussed at great length in

this paper, the neutral limit of the arm AC corresponds to the

coincident brane-antibrane solutions. The arm BC therefore

provides interpolating solutions which connect the brane-

antibrane solution to the Schwarzschild solution.

It is clear that there is a rather rich phase structure in Fig.

5. Parts of this diagram have obvious decoupling limits and

dual field theory descriptions. It would be interesting to chart

out these parts completely @34#.
Interpolations similar to the arm BC are of paramount

importance to the study of the D1-D5 system and the five-

dimensional black hole @35#. It has been found that CFT

descriptions seem to work in some contexts for non-rotating

Bañados-Teitelboim-Zenelli ~BTZ! black holes which are the

analogues of Schwarzschild black holes in AdS 3. An inter-

polation of such a solution to a brane-antibrane solution of

the D1-D5 system would shed light on both brane-antibrane

dynamics and nonsupersymmetric black holes.

It has been pointed out by @36# that the equations of mo-

tion of the above system are identical to those of a Toda

molecule. It is tempting to construct a ‘‘mini-superspace’’

kind of model for this space based on Toda dynamics.

V. DISCUSSION

In this paper we constructed localized supergravity solu-

tions corresponding to bound states of N Dp-branes coincid-

ing with N̄ Dp-branes for p50,1, . . . ,6 @and non-BPS
D-branes of odd ~even! dimensions of type IIA ~type IIB!
string theory#.11 We constructed these by looking for the
most general solution of type II A-B supergravity ~in the
presence of a single RR gauge field! which respect world-
volume Poincare invariance and rotational invariance in the
transverse directions. Contrary to the naive expectation that
the solution should have only two parameters corresponding

11The case p521 has been mentioned separately in Sec. II.

FIG. 5. The most general spherically symmetric solution of type

II theories.
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to the charge and the mass, we found that the most general
solution has one extra parameter. We found that in the physi-
cally relevant branch there are two special values of the extra
parameter at which the ADM mass respectively coincides
with ~a! the combined rest mass of the branes and antibranes,

and ~b! the mass of the BPS configuration of N2N̄ branes.12

In the case N5N̄ ~zero RR charge! the point ~b! represents

flat space. The case N5N̄ is extensively studied from the
point of view of open strings living on the brane-antibrane
system, and we recognized the solutions ~a! and ~b! as the
supergravity background corresponding to the maximum and
the minimum of the tachyon potential. This lead us to inter-
pret the extra parameter in our solution as the supergravity
manifestation of an expectation value of the tachyon. We
matched the qualitative behavior of the ADM mass as a func-
tion of this extra parameter with the behavior of the tachyon
potential V(T). The identification of the extra parameter as
the tachyon may appear somewhat surprising from the point
of view of open string field theory where any of the massive
string states also could be excited. While it cannot be ruled
out that our interpretation is not unique, it is interesting to
note that many of the open string field theory computations
can be explicitly understood solely in terms of the tachyon
mode ~see, e.g., the recent work @37#!.

We noticed the absence of a decoupling of the bulk closed
strings from the brane-antibrane open strings. This means
that the interactions between the open and closed strings re-
main relevant and suggets that there is also a limitation on
the quantitative understanding of the tachyon condensation
process by using only the open string description.

We briefly discussed a more general ~four-parameter!
space of solutions in which we assume only rotational invari-
ance in the spatial directions on the world-volume. This
space includes brane-antibrane pairs, BPS D-branes, the
black p-branes of @21# and Schwarzschild black holes. The
detailed understanding of this four-parameter space in terms
of brane variables is an outstanding problem.
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APPENDIX A: REAL SECTIONS OF THE SUPERGRAVITY

SOLUTION

As remarked in the text, the three parameters (r0 ,c1 ,c2)
characterizing the supergravity solution ~6!,~7! appear as in-
tegration constants in the solution of differential equations
and as such could be complex. However, this would generi-
cally make the metric, dilaton and gauge field also complex.
We find that there are three distinct 3-dimensional domains
of (r0 ,c1 ,c2), described below as branches I, II and III,
where the supergravity fields remain real.

Branch I:

c1P~0,cm!, cm5A 82p

8~p11 !~72p !

c2P~2` ,1!ø~1,` !

m[r0
72p

PR

h561. ~A1!

We will assume in this section that we have already fixed the
Z2 symmetries ~8! of the solution by implementing Eqs.
~9!,~10!. For branch I, the remaining choices of signs are best
discussed by thinking of four sub-branches, depending on

whether the signs of (c2 ,m[r0
72p) are 11 ,12 ,21 and

22 respectively. We denote these as I11 ,I12 ,I21 ,I22

respectively ~each of these will also contain h56). The
formulas for the ADM mass and charge for branch I is given
by Eqs. ~19!,~16!. Explicitly

M5Npr0
72pF32p

2
c112c2A2~82p !

72p
2

~p11 !~72p !

16
c1

2G
Q52hNpr0

72pA2~82p !

72p
2

~p11 !~72p !

16
c1

2Ac2
2
21.

~A2!

The behavior of these functions depends on the signs of c2

and m . We find that it is the branch I11 for p53,4,5,6
which lends to a tachyon interpretation ~Sec. III!. For p

50,1,2,3 it is I22 .
Branch II:

c1P~cm ,` !⇒k52i k̃ , k̃

5A2

2~82p !

72p
1

~p11 !~72p !

16
c1

2

c25i c̃2 , c̃2PR

m[r0
72p

PR

h561. ~A3!

The mass and charge for this branch read

M5Npr0
72pF32p

2
c1

12c2A2

2~82p !

72p
1

~p11 !~72p !

16
c1

2G
Q52hNpr0

72pA2~82p !

72p
2

~p11 !~72p !

16
c1

2A~ c̃2!2
11.

~A4!12For N.N̄; for N,N̄ these will be N̄2N antibranes.
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Branch III:

c15i c̃1 , c̃1PR1

c25i c̃2 , c̃2PR

m[r0
72p

52im̃ , m̃PR

h561. ~A5!

The mass and charge for this branch read

M5Npr0
72pF32p

2
c1

12c2A2~82p !

72p
1

~p11 !~72p !

16
~ c̃1!2G

Q52hNpr0
72pA2~82p !

72p
1

~p11 !~72p !

16
~ c̃1!2

3A~ c̃2!2
11. ~A6!

APPENDIX B: DETAILS OF THE 4-PARAMETER SOLUTION

The equations of motion that follow from Eq. ~3! for the ansatz ~64! are

A91~p11 !~A8!2
1~72p ! A8B81

82p

r
A81

1

2
~ ln f !8 A85

72p

16
S2,

A91~p11 !~A8!2
1~72p ! A8B81

82p

r
A81

1

2
~ ln f !91

1

2
~ lnf !8S ~d11 !A81

1

2
~ ln f !81~72p !B81

82p

r
D5

72p

16
S2,

B91~p11 !A8B81

p11

r
A81~72p !~B8!2

1

1

2
~ ln f !8S B81

1

r
D1

1522p

r
B852

1

2

p11

8
S2,

dA91~82p !B91~p11 !~A8!2
1

82p

r
B82~p11 !A8B81

1

2
~ ln f !91

1

4
„~ ln f !8…2

1

1

2
~f8!2

5

1

2

72p

8
S2,

f91S ~p11 !A81~72p !B81

82p

r
1

1

2
~ ln f !8Df852

a

2
S2,

S L8

f 1/2
eL1af2(p11)A1(72p)B r82pD 8

50, ~B1!

where

S5

L8

f 1/2
e (1/2)af1L2dA. ~B2!

The solutions @17# depend on four parameters r0 ,c1 ,c2 ,c3 ~we have interchanged the labels c2 ,c3 for convenience,
compared to @17#!, and are given by

f ~r !5e2c3h(r),

A~r !5

~72p !

32
S 32p

2
c11S 11

~32p !2

8~72p !
D c3D h~r !2

72p

16
ln@cosh„k h~r !…2c2 sinh„k h~r !…# ,

B~r !5

1

72p
ln@ f 2~r ! f 1~r !#1

~p23 !

64
S ~p11 !c12

32p

4
c3D h~r !1

p11

16
ln@cosh„k h~r !…2c2 sinh„k h~r !…# ,

f~r !5

~72p !

16
S ~p11 !c12

32p

4
c3D h~r !1

32p

4
ln@cosh„k h~r !…2c2 sinh„k h~r !…# ,

eL(r)
52h~c2

2
21 !1/2

sinh„k h~r !…

cosh„k h~r !…2c2 sinh„k h~r !…
, ~B3!
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where

f 6~r ![16S r0

r
D 72p

,

h~r !5lnF f 2~r !

f 1~r !
G ,

k2
5

2~82p !

72p
2c1

2
1

1

4
S 32p

2
c11

72p

8
c3D 2

2

7

16
c3

2,

h561. ~B4!

The parameter h describes whether we are measuring the ‘‘brane’’ charge or the ‘‘antibrane’’ charge of the system.
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