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Abstract

Several authors have identified that the only feasible way to increase productivity in software construction is to
reuse existing software. To achieve this, component-based software development is one of the more promising
approaches. However, traditional research in component-oriented programming often assumes that components are
reused “as-is”. Practitioners have found that “as-is” reuse seldomly occurs and that reusable components generally
need to be adapted to match the system requirements. Existing component object models provide only limited sup-
port for component adaptation, i.e. white-box techniques such as copy-paste and inheritance and black-box
approaches such as aggregation and wrapping. These techniques suffer from problems related to reusability, effi-
ciency, implementation overhead or #&df problem. To address these problems, this paper propogesmposi-

tion, a novel black-box adaptation technique that allows one to impose predefined, but configurable types of
functionality on a reusable component. Three categories of typical adaptation types are discussed, related to the
component interface, component composition and component monitoring. Superimposition and the types of com-
ponent adaptation are exemplified by several examples.

1 Introduction

Component-oriented programming is receiving increasing amounts of interest in the software engineering community.
The aim is to create a collection of reusable components that can be used for component-based application develo
ment. Application development then becomes the selection, adaptation and composition of components rather tha
implementing the application from scratch. The concept of component-oriented programming almost seems analo-
gous to object-oriented programming. The notion of a component refers to an module that contains both code and dat
and presents an interface that can be invoked by other components.

The naive view of component reuse is that the component can just be plugged into an application and reused as i
However, many researchers, e.g. [Holzle 93, Samentinger 97, Yellin & Strom 94], have identified that “as-is” reuse is
very unlikely to occur and that in the majority of the cases, a reused component has to be adapted in some way t
match the application’s requirements. Adapting a component can be achieved in several ways, but traditional tech
nigues can be categorised inthite-box e.g.inheritanceandcopy-pasteandblack-box e.g.wrapping,adaptation.

The white-box adaptation techniques generally require understanding of the internals of the reused component
whereas the black-box adaptation techniques ideally only require knowledge about the component’s interface.

In this paper, we argue that the aforementioned techniques are insufficient to deal with all required types of adaptatior
without experiencing, potentially considerable, problems. Examples of these problems are the lack of reusability of
components, since they cannot be adapted, and the adaptation specification itself. In addition, the software enginee
may spend considerable effort on understanding the component before being able to adapt it. Also, non-transparer
adaptation techniques may lead togh#problem [Lieberman 86] and, finally, the adapting a component may require
considerable amounts of code with extremely simple behaviour, e.g. forwarding a message.

To address these problems, we introduce the notisapErimpositiona technique that enables the software engineer

to impose predefined, but configurable, types of functionality on a component’s functionality. Examples of superim-
posing behaviour are interface adaptation as il\ttapterdesign pattern [Gamma et al. 94], client specific interfaces

and implicit invocation. Superimposition allows the software engineer to adapt a component using a number of prede-
fined adaptation behaviours that can be configured for the specific component. Since one may identify new types of
adaptation behaviour, the software engineer can define new adaptation types. Finally, the software engineer may con
pose multiple adaptation behaviour types for a single component.



The notion of superimposition has been implemented in the layered object mgdsl)( an extensible component

object language modalayoM consists, next to conventional object model elememegsted objecténstance varia-

bles) andnethodsof states categoriesandlayers The layers encapsulate the basic object and all messages sent to or
from the object are intercepted by the layers. Through the use of theselaymvsprovides several types of super-
imposing behaviour that can be used to adapt components. The advantage of layers over traditional wrappers is thi
layers are transparent and provide reuse and customisability of adaptation behaviour.

The contribution of this paper, we believe, is that the requirements that a component adaptation technique should fulfi
are identified and the problems associated with traditional component adaptation techniques are presented. In add
tion, a new, complementing technique, i.e. superimposition, is proposed. Finally, a collection of useful types of adapt-
ing behaviour that we identified is proposed that improves the reusability of components and can directly be supportec
in the language model through superimposition.

The remainder of this paper is organised as follows. Next, the running example used in this paper, i.e. dialysis sys
tems, is introduced. In section 2, conventional component adaptation techniques are described in more detail and eva
uated for the requirements. Section 3 discusses the notion of superimposing adaptation behaviour on component
from a conceptual perspective and a number of typical types of adaptation are described. Section 4 presents the la
ered object model and presents two example layer types. Three examples of superimposing adaptation behaviour, i.
interface adaptation, delegation of requests and observer notification, are discussed in section 5. These examples &
taken from the dialysis system example discussed below. In section 6, our results are compared to related work an
the paper is concluded in section 7.

1.1 Example: Dialysis System

The example that is used throughout the paper is taken from one of our industrial projects, i.e. dialysis systems. Fror
a software architecture perspective, a dialysis system consists of a hierarchical collection of devices, each with its owi
controlling strategy and alarm handler. The software consists of a graphical user interface module, a control systen
module and a protective system module. The GUI module provides an interface to the medical and technical staff a
the hospital where the dialysis system is used, whereas the control system contains the logic for the actual dialysi
process, including communication with the hardware sensors and actuators. The protective system is responsible fc
the patient’s safety and continuously monitors the actions by the control system. Whenever a potentially dangerou:s
situation occurs, the protective system intercepts and stops the dialysis process.

The control system can be divided into two major parts, i.e. the hemo-dialysis fluid part and the blood part. The two
systems meet in a membrane, where water and waste products travel from the blood into the dialysis fluid. Despite it
perceived simplicity, a dialysis system is a very complex embedded system with a multitude of sensors, for e.g. tem-
perature, flow, heparin, concentration, etc., and actuators, e.g. pumps, heaters, valves, etc. An abstraction of the col
trol system part is presented graphically in figure 1.
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Figure 1. Overview of the dialysis system

The industrial project aimed at providing an architecture design for the dialysis system, incorporating its specific

requirements with respect to changeability and demonstrability. Since dialysis systems need to be certified by inde-
pendent certification institutes, the system should be designed such that it is easy to demonstrate the system’s corre
or at least safe, behaviour. The architecture design provided the top-level structure for the components that make u
the system behaviour. In the project, several of the components could be reused from earlier system versions. How
ever, most reused components needed to be adapted in some way. In this paper, we present the various types of ad
tation that we identified in this project as well as other projects and examples of component adaptation are presented



2 Component Adaptation Techniques

Component-based software engineering intends to construct applications by putting together reusable component:
This perspective on software construction, although becoming more widespread during recent years, was alread
mentioned during the late sixties [Samentinger 97]. Components, however, never became one of the leading softwar
development paradigms, despite the early optimism. This, we believe, is due to a rather naive view on software con
struction based on components as exists within the software engineering community. The naive view imagines tha
one selects a set of components that deliver parts of the application requirements and then put these componen
together by connecting inputs to outputs. However, research in software reuse has shown that ‘as-is’ reuse occut
extremely little and that components generally need to be changed in some way to match the application architectur
or the other components. The process of changing the component for use in a particular application is often referred t
ascomponent adaptation

Over time, research in software engineering and programming languages has developed a number of techniques f
adapting components. These component adaptation techniques can be categorised into white-box and black-box ada
tation techniques. White-box techniques require the software engineer to adapt a reused component either by changir
its internal specification or by overriding and excluding parts of the internal specification. Black-box techniques reuse
the component as it is, but adapt at the interface of the component. Black-box adaptation only requires the softwar
engineer to understand the interface of the component, not the internals.

Obviously, the above division is rather extreme and in practice, e.g. inheritance often requires the understanding o
only part of the internal functionality whereas wrapping may require more understanding of the component than just
its interface specification. In the remainder of this section, we first present the requirements that a component adapta
tion technique should fulfil. Subsequently, the conventional techniques are presented and evaluated with respect to th
requirements.

2.1 Requirements for Component Adaptation Techniques

Before discussing conventional component adaptation techniques, the requirements that a component adaptation tec
nique has to fulfil in general is specified. These requirements provide a framework that can be used to evaluate con
ventional component adaptation techniques, but also to provide an insight in the required functionality of novel
adaptation types.

¢ Transparent: The adaptation of the component should baassparentas possible. Transparent, in this context,
indicates that both the user of the adapted component and the component itself are unaware of the adaptation |
between them. In addition, aspects of the component that do not need to be adapted should be accessible witho
explicit effort of the adaptation. Wrapping a component, for instance, requires the wrapper to forward all requests
to the component, including those that need not be adapted.

* Black-box: The software engineer always has to develop some mental model of the functionality of a component
before the component can be reused. This model should, however, be kept as small and simple as possible. Th
requires that the adaptation technique needs no knowledge of the internal structure of the component, but is limitec
to the interface of the component.

¢ Composable The adaptation technique should be easily composable with the component for which it is applied,
i.e. no redefinition of the component should be required. Secondly, the adapted component should be as compos:
ble with other components as it was without the adaptation. Finally, the adaptation should be composable with
other adaptations. In the situation where default adaptation types are available, it may be that the component neec
to be adapted using multiple types of adaptation. This requires the various adaptations to be composable.

* Configurable: Adaptation generally consists of a generic and a specific part. For example, the adaptation type
changing operation namdsas a generic part, i.e. replacing the selector in the message with another name and a
specific part, i.e. which selectors should be replaced with what names. For the adaptation technique to be useft
and reusable, the technique has to provide sufficient configurability of the specific part.

* Reusable A problem of traditional adaptation techniques is that both the generic and the specific part are not reus-
able. Since the two aspects are so heavily intertwined, the generic part cannot be separated from the specific pa
and, consequently, the software engineer is forced to reimplement the adaptation over and over again. A new tect
nigue should provide reusability of the adaptation type and particular instances of the adaptation type, i.e. both the
generic and the specific part.



2.2 Adaptation Techniques

When using a conventional object-oriented language, the software engineer has three component adaptation tecl
niques that can be used to modify a reused componerhpye-pasteinheritanceandwrapping In the next sections,
each technique is described and subsequently evaluated with respect to the identified requirements.

2.2.1 Copy-Paste

When an existing component provides some similarity with a component needed by the software engineer, the mos
effective approach may be to just copy the code of that part of the component that is suitable to be reused in the comn
ponent under development. After copying the code, the software engineer will often make changes to it to make it fit
the context of the new component and additional functionality will be defined or copied from other sources.
[Samentinger 97] refers to this techniqueade scavenging

Although the copy-paste technique provides some reuse, it obviously has many disadvantages, among others the fa
that multiple copies of the reused code are existing and that the software engineer has to intimately understand th
reused code. However, from our discussions with professional software engineers and students, we were surprised
see how often this technique is applied, especially when time pressure or other factors may force for a “quick-and-
dirty” approach.

With respect to the aforementioned requirements, the evaluation of the copy-paste technique can be summarised :
follows:

¢ Transparent: Since the reused code and new code are merged into a new component, there are no problems asst
ciated with transparency. Both the reused component as the client of the adapted component notice no differenc
between the reused code and the code for adaptation.

* Black-box: Since there is no encapsulation boundary between the component code and the adaptation code, th
black-box requirement is not fulfilled at all.

¢ Composable Due to the merging of code, composability of adaptation functionality with the reused component is
very low. In cases where one would want to compose several types of adaptation behaviour, the software enginee
has to merge all code manually.

¢ Configurable: Adapting a component through copy-paste does not represent the adaptation behaviour as a first-
class entity, thus no configurability is available.

* Reusable Since the adaptation behaviour has no first-class representation and is intertwined with the code of the
reused component, no reuse of either the component or the adaptation behaviour is possible, except through tt
same copy-paste behaviour.

2.2.2 Inheritance

A second technique for white-box adaptation and reuse is provided by inheritance. Inheritance as provided by, e.g
Smalltalk-80 and C++, makes the state and behaviour of the reused component available to the reusing componen
Depending on the language model, all internal aspects or only part of the aspects become available to the reusing cor
ponent. For instance, in Smalltalk-80 [Goldberg & Robson 89] all methods and instance variables defined in the
superclass become available to the subclass, where in C++, it depends on ugeictth@ndprotectedkeywords

what methods and instance variables become available to the subclass. Inheritance provides the important advanta
that the code remains to exist in one location. However, one of the main disadvantages of inheritance is that the soff
ware engineer generally must have detailed understanding of the internal functionality of a superclass when overrid-
ing superclass methods and when defining new behaviour using behaviour defined in the superclass.

With respect to the requirements, the evaluation of inheritance can be summarised as follows:

* Transparent: Since the subclass implicitly forwards messages to the superclass, inheritance in transparent. The
reused component, i.e. the superclass, as well as client objects using instances of the introduced sub-class notice
difference.



* Black-box: Whether inheritance is black-box, depends primarily on its implementation in the language model. In
Smalltalk-80, all instance variables and methods become available to the subclass, leaving no boundary betwee
the reused component and the adaptation code. Other language models, e.g. C++ and Java, allow for privat
instance variables and methods, thus being able to separate the component from the adaptation behaviour.

¢ Composable Although the adaptation behaviour is specified in a subclass and thus separated from the compo-
nent, it is still difficult to compose the adaptation behaviour with another component or to associate multiple adap-
tation behaviours with a class. Even though some languages would allow for simple changing of the name of the
superclass for an adaptation type, the problem is still that the generic and specific parts of the adaptation are
merged and are difficult to separate.

¢ Configurable: As mentioned, although the adaptation behaviour is represented as a first-class entity, i.e. a sub-
class, inheritance provides no means to configure the specific part of the adaptation behaviour.

* Reusable Despite the fact that inheritance facilitates the representation of the adaptation type as a class, it may
prove difficult to reuse it since the name of the adapted component is hard-wired in the class and because it cannc
be configured.

2.2.3 Wrapping

Wrapping declares one or more components as part of an encapsulating component, i.e. the wrapper, but this comp
nent only has functionality for forwarding, with minor changes, requests from clients to the wrapped components.
There is no clear boundary between wrapping and aggregation, but wrapping is used to adapt the behaviour of th
enclosed component whereas aggregation is used to compose new functionality out of existing components providing
relevant functionality. An important disadvantage of wrapping is that it may result in considerable implementation
overhead since the complete interface of the wrapped component needs to be handled by the wrapper, including tho:
interface elements that need not be adapted. Also, others, e.g. [Holzle 93], have identified that wrapping may lead t
excessive amounts of adaptation code and serious performance reductions.

The evaluation of wrapping with respect to the requirements is the following:

* Transparent: Since the wrapper completely encapsulates the adapted component, clients of the component can
not send messages to the component directly but always need to pass the wrapper. This requires the wrapper
handle all messages that could possibly be sent to the component, including those messages that do not need to
adapted.

¢ Black-box: Since the component is accessed by the wrapper as any client, i.e. through the interface, the wrapping
technique is black-box. The wrapper has no way to access or depend upon the internals of the adapted componer

¢ Composable Wrapping is, different from the other conventional techniques, composable. A wrapper and its
wrapped component form again a component that can be wrapped by another wrapper. This process can b
repeated recursively. However, since the wrappers are not transparent, each wrapper needs to implement the cor
plete interface of its wrapped component in order to be used in all cases where the unadapted component could k
used.

¢ Configurable: Although the adaptation behaviour is represented as a first-class entity, i.e. a wrapper, generally no
means to configure the specific part of the adaptation behaviour are available. For instance, when the wrappe
needs to change the name of an operation at the adapted component, it is generally not possible to configure tt
wrapper with the new operation name since this has to be hard coded in the wrapper.

* Reusable The wrapper can be reused in those cases where exactly the same adaptation behaviour is requirec
However, since wrappers cannot be configured, every difference from the original case makes as-is reuse imposs
ble and requires either the wrapper to be edited or the combination of wrapper and component to be adapted by
new wrapper.



2.3 Evaluating Conventional Techniques

In table 1, an overview of the conventional adaptation techniques is presented that indicates how well each techniqu
fulfils the specified requirements. From the table, one can see that some problems are dealt with well wrapping but no
so well by the white-box techniques, i.e. copy-paste and inheritance, and visa versa

Requirement Copy-Paste Inheritance Wrapping
transparent + + -
black-box - - +
composable - - +

configurable - - -

reusable - - +/-
Table 1. Conventional adaptation techniques versus the identified problems and requirements

The copy-paste technique, as well as inheritance, is transparent since the reused and adaptation behaviour are mer
in a single entity. However, on the other requirements, the white-box adaptation techniques do not score so well.
Wrapping is not transparent, since it encapsulates the adapted component. Wrapping is black-box by definition anc
wrapping is composable since a wrapped component can again be wrapped by another wrapper adapting differer
aspects of the original component. Configurability and reusability are not well supported by traditional techniques
since no distinction between generic behaviour and component-specific behaviour is made. Due to this, it is not possi
ble to separate the generic aspects and apply them for a different component.

Concluding, none of the conventional component adaptation techniques fulfils the requirements that are required for
effective component-based software engineering. Therefore, one may deduce alternative approaches are required.
this paper we propose superimposition as a technigque to component adaptation.

3 Component Adaptation through Superimposition

As was identified in the previous section, traditional component adaptation techniques do not fulfil all the require-
ments one would put on them. Certain types of functionality need to be integrated with the component’s behaviour
that are orthogonal to its structural parts and may affect e.g. multiple methods. The software engineesuyasds to
imposecertain behaviour on a component in such a way that the complete functionality of the component is affected.
The notion of superimposition in computing systems has been identified before, but not in object-oriented or compo-
nent-based systems. For example, [Bouge & Francez 88] define and use superimposition in the context of CSP. The
define the superimpositidR of P overQ as the additional superimposed conRalver the basic algorith@. Analo-

gously, we define object superimpositi®of B overO as the additional overriding behavidiover the behaviour of
componen®. Different from inheritance, a single unit of superimposed behaviour can change several aspects of the
basic object’s behaviour.

Superimpositioras a concept is a very suitable technique for adapting components in a component-based system. Th
principle underlying superimposition is that a component and the functionality adapting the component are two sepa-
rate entities on the one hand and need to be very tightly integrated on the other hand. Often, both the component ar
the adaptation behaviour are reusable as independent entities, whereas the combination, i.e. the adapted componen
too specific for the current application to be reusable in future applications. Constructing an application using reusable
components primarily is the activity of selecting and configuring a set of interacting components, where part of the
component configuration is the adaptation of the component to fit the requirements of the current application.

Based on the above observation, we have identified that component-based software engineering, in addition to a set
reusable components, requires a set of reusable component adaptation types. These adaptation types should be con
urable and composable with each other to allow for complex component adaptations. In section 3.2, several types o
component adaptation are identified and presented.

Since component adaptation types are composed with the component and other adaptation types, this compositic
needs to be transparent in its nature. In other words, the component and clients of the component should be unaware
the presence of adaptation entities. In addition, adaptation entities should be unaware of the presence of other adapt



tion entities that are active for the same component. In figure 2, superimposition is graphically represented. A basic
component is shown that is adapted using two adaptation types. The adapted component is encapsulated by the ad:
tations, but clients of the component nor the component itself note any of these differences.

adaptation adaptation
pe type

adapted
m Smhone ”I
CNBTEN component Rl OIS

Figure 2. Component adaptation through superimposition

3.1 Defining Superimposition

To define the informally introduced notion of superimposition in more detail, in this section a more precise object
model specification is developed. The formalisation is intended for illustrative and explanatory purposes rather than
for verification purposes.

A objecto is defined as = (I,M, S, P whelleindicates the interface of the objeletthe set of method§the state

space formed by the instance variables Brttie mapping from the interface to the methods. The interface of the
object is the set of message selectors that the object can respond to. For a basic -ol§jadiiM |selectof n)}
whereselectof m) is a function that returns the selector using which methcah be invoked. The mappifyis

defined asP:l -~ M Oreject , i.e. each interface element is either mapped to a method in the method set or rejected.
Also, we define the behaviol® of an object a8 = {mOM|b,,0 S~ S . The behaviooy, of a methodm is

defined as the state change of the object caused by an executioRinélly, the notion of a message is defined as

e = (n, 1, 1), wheren is the sender of the messagis, the receiver anldis the selector. We do not incorporate the mes-
sage arguments in the model for reasons of simplicity, neither do we incorporate state changes at other objects due
messages sent by a method executed at

An object can have a set of superimposing entiesssociated with itG = {g,, ..., 9}, P20 . A superimposing

entity g can be composed with an objecfThe compositiomo'= g0 o leads to a new object that is an adaptation
of o since aspects of it may be changed,g.8.0= O0',M‘,S*,P‘0] . However, the result is an object that, for a client of
the object, is indistinguishable from a basic object. A superimposed object o can be defijied.as g0 px1

3.2 Component Adaptation Types

During our work on component adaptation, we have identified three typical categories of component adaptation, i.e.
component interface changes, component composition and component monitoring. In the sections below, each o
these categories is discussed in more detail.

3.2.1 Changes to Component Interface

A typical situation in component-based system construction is when a component in principle could be reused in the
system at hand, but its interface does not match the interface expected by the system. Typical examples are that ope
ations have the wrong names or that the interface contains irrelevant operations. In such situations, the interface of th
component, in order for the component to be reused, needs to be adapted to match the expected interface. Belo
some typical examples of component interface adaptation are presented.

* Changing operation names Perhaps the most typical problem when reusing a component is that the names of
some of the operations provided by the component do not match the expected interface. This problem has bee
identified by many software engineers and evedapterdesign pattern has been defined [Gamma et al. 94].



Although the pattern conceptually exactly does what one can expect, its implementation suffers from several prob-
lems as we identified in [Bosch 97]. In any case, changing the operation names of a component is a type of adapte
tion that has to be provided by a adaptation technique.

This adaptation type is defined as a superimposing entitygf/pé® P*% wifere(i2¢ .., |:d} q=1 and

ad,

ad
|

P -~ M. The composition of an object o with an instance of? has the semantics

U Y00 = 1017 M, s, PO PY. Thus, the interface of the object is extended with an set of additional

interface elements and a mapping function for the new interface elements. The original operation names are no
removed from the interface.

* Restricting parts of the interface A second change to the component interface that a component may require is
the exclusion of a part of the interface. In the reusing context, a part of the interface may not be relevant or ever
counter-productive, e.g. for typing reasons, if it would be accessible by clients of the component. Adaptation of the
component should then restrict access to the relevant operations.

Interface restriction can be formally defined as a superimposing entity typel'® where

1"°° = (i’ ....ig },a= 1. The composition of an object o with an instance gbt° has the semantics

g%y 00 = 14" M, S, P-{ pii- mOi0 [*}). Thus, the set of specified interface elements is removed

from the interface of the object and the mappings for the removed interface elements are excluded from the map
ping functionP.

¢ Client and state-based restriction In systems where a component is used by clients of various types, the compo-
nent may need to act in several roles, see e.g. [Reenskaug et al. 95]. This requires the component to present a t
lored interface to each client type, i.e. each client has only access to that part of the interface that it requires. Thi
we refer to as client-based interface restriction. In addition, parts of the interface of the component may be accessi
ble or restricted based on tsgateof the component. For instance, an empty buffer component is unable to provide
an element to a client requesting a “get” operation. This we refer to as state-based interface restriction. Both type:
of interface restriction are important types of component adaptation.

Client-based interface restriction can be formally defined as a superimposing ent@ﬁ)(typ%) c rethers

to the client for which the interface is to be restricted het {i<', ..., i;'}, q=1 . The composition of an object o

with an instance o@c' has the semantics

El(l—ld, M, S, P-{0iO IC'\p:i -~ m})whene=(nr)dn=c

(1,M,S, P) otherwise
Thus, for messages E , whefe  is the set of all messages, sent by client,dbgset of specified interface
elements is removed from the interface of the object and the mappings for the removed interface elements are

excluded from the mapping functidh For messages sent by other objects, the semantics of the object remain
unchanged.

State-based interface restriction is defined analogous to client-based interface restriction. Only the conditions
based on which interface elements are made inaccessible is now based on the object state, rather than on the clie

gC|(c, lcl) Oo =

sending the message. Thus, a a superimposing entit;gst‘{(ge“) svisedefined as:S- Boolean , i.e. a

function mapping the object state to a boolean value afcE {iit, izt}, g=1 is the set of interface elements

that is excluded when the state is true. The composition of an object o with an instafice of has the semantics

o = %(I—ISt, M, S, P-{0Oi0O ISt\p:i - m}) when s= true
(1,M, S, P) otherwise

gSt(SY ISt) O

3.2.2 Component Composition

One of the early phases in system construction often is of a top-level, system design in which the components of th
system and their interactions are defined. Once it is known what components are needed in the system, the availab
collections of reusable components are searched to identify potentially reusable components. In such situations, it ma
occur that the functionality that a component should provide in the system design cannot be fulfilled by a single com-



ponent. However, a combination of two or more components is able provide the required functionality. In such cases,
the components have to composed such that the resulting structure seems a single component from the system’s pe
spective. Below, three types of component adaptation relevant for component composition are discussed.

Delegation of requestsThe easiest way for a component to providing required services not available within the
component itself is to delegate a request for such a service to another component that is able to provide the
requested service. To achieve this, the component needs to be extended with behaviour that delegates certa
requests to other components.

Message delegation can be achieved using a superimposing ent@{}efy@delde') ofvhere indicates the object
to which messages should be delegated 4fd defines the set of interface elements for which messages should

delegated to the object. The semantics of the compositig%e'of and an object o is:

O
o0 1% 0o = §01% M, s, PO HpO P[pii ~ m D 014
0O 0O (@) (@) m

Component composition In cases where two components need to be more structurally integrated, the two com-
ponents can be aggregated in a encapsulating component. In [Gamma et alFadadepattern is defined for

this purpose. However, the encapsulating component needs to delegate requests to the contained components st
that the requirements of the system are fulfilled. The traditional approach would be to define a large collection of
small methods at the encapsulating component that forwards the messages to the correct encapsulated compone
This approach, obviously, leads to considerable implementation overhead for the software engineer. In addition,
the reusability of the solution is very limited. The underlying cause for these problems is that aggregation is not
transparent.

When superimposition is available as a composition technique, the solution is to define a type of superimposing
entity that allows one to compose two or more objects without the aforementioned disadvantages. The definec

entity isg"®™"(P®®) whereP®™ defines an explicit mapping function that can be defined by the software engi-

neer when instantiatinggf®"® . The compositioy@¥"®  with two or more objects has the following semantics

comp, Hexpl —
g PTP) O (0, -1 0g) = (g, 0. Ol Mg 0. OM,, S, 0.0, P)

) O
expl a

N 0 il
whereP = [P, O..0P, —~(0pOP, O..0P,,pi-m0p 0P pi - mmpoP
' 0 ' ‘ - O

N
Informally, the above specification states that the superimposing entity will forward all messages transparently to
the nested component that defines a corresponding method. However, in case of name conflicts or otherwise, th
software engineer can define an explicit mapping for interface elements. The explicit mapping function overrides
the implicit definition.

Acquaintance selection and bindingNo component is an island, i.e. virtually all components require other com-
ponents, acquaintances, to provide them with services in order to be able to deliver the functionality needed by the
system. However, since the designers of reusable components are unable to make all but minimal assumption
about the context in which the component will operate, the binding of the acquaintances required by the compo-
nent is often performed in an ad-hoc manner, e.g. when the component is instantiated. As we identified in [Bosch
96¢], the traditional acquaintance binding omits several important aspects. Component adaptation should allow for
flexible, expressive specification of the way acquaintances are selected and bound.

The above description of acquaintance handling requires that, for every object, the set of accessible objects i
available. In concrete computer systems, this service is often provided by a broker architecture. However, for the
formal specification of the required semantics of acquaintance handling we assume tlsatjacset is available

and directly accessible to the superimposing entity. A superimposing gifis; cnd is defined for acquaint-
ance handling in which is the acquaintance identifier acid defines the condition that has to be fulfilled by a
potential acquaintance object in order to be selectable. For reasons of simplicity, we have left the outward mapping
functionQ out of the object specification presented eaedefines how a message = (n, r, 1) send by object



o, i.e.0 = n, is bound to objects in the contexbofThe composition 0§*°* and an objechave the following

semanticg)®*Ya, cnd Do = (I,M,S,P, Q) where

0 oo (nil -o,)
_ M - o, where{ o0 Objects cnd 9= ifr=a
Q=0 ' oy, ...} 0 (0, - 0,)
g
O g:r —» o, where{ o Objectg name = nam¢ )} ifr za

Informally, the adaptation type will bind a message senaltbya receivea to the first object in the set of objects
that fulfil the specified condition. If no object fulfils the condition, the message is boundrtib dbgect. If the
receiver of the message is @pthe normal, name-based binding will take place.

3.2.3 Component Monitoring

The previously discussed categories of component adaptation are concerned with changing the behaviour of th
reused component, e.g. its interface. This category is, as the name implies, primarily concerned with the monitoring of
the component so that other components are naotified or invoked when certain events at the monitored componer
occur. Below, we discuss three examples of monitoring that can be superimposed on reusable components, i.e
implicit invocation, observer notification and state monitoring. The latter types are specialisations of the first one.

Implicit invocation : This type actually is the general adaptation type for component monitoring. The concept of
implicit invocation is concerned with notifying relevant components, either directly by message sending or indi-
rectly through event generation, whenever certain conditions or actions take place at the monitored component.

The superimposing type corresponding to the above descripg’i&o,i;g Iy I”) where indicates the object that
is to be implicitly invoked, and' the set of interface elements that should cause an implicit invocggjonto . The
semantics of the composition of andan obpeist

¢" (O Iy 1Y Do = (I,M,S, PO{OI0 1" pii - mO pi - (m, q,0,)})

Informally, the mapping function is extended with a mapping from the interface eleméhts ino,,, (kq . Thus,

messages calling elementsith  lead to two invocations, i.e. the original method invocation and the implicit noti-
fication invocation.

Observer natification: In [Gamma et al. 94], one of the presented design patterns @bserverpattern. This

pattern explains how the relation between some object and a set of objects depending on the state of that obje
should be implemented. This pattern was originally introduced in the Smalltalk-80 systevdeds/iew-control-

ler (MVC). Although the pattern is extremely useful, it presumes that the software engineer knows, when defining
an object, that it will be observed by other objects. In component-based system construction, the reused compo
nents sometimes need to be observed, but generally the component is not prepared for this. Therefore, the observ
pattern functionality needs to be superimposed on the component so it can be used as an observed component. T
adaptation behaviour is both responsible for the administration and the notification of dependent objects.

The formal specification only defines the notification behaviour; the administrative behaviour is left as an exercise
for the reader. The observer adaptation type is a specialisation of the implicit notification type. The adaptation type

°bSp,1°°% whereD defines the set of dependents objects Xiid the set of interface elements that should

isg
cause an notification to the dependents. The semantics of the composrjﬁBﬁ of and anigbject

obs

¢°°%D,1°°9 00 = (I,M,S,PO{0i01"|pii ~ mO pi » (MO {O(d0 D|(dOchangey})})

Informally, the mapping function is extended with a mapping from the interface elemehts i to all dependent
objects. Compliant to the observer pattern definition, the changed method is invoked at the dependent objects.

State monitoring: In some cases, dependent components do not want to be notified for every state change in the
observed component, but only when the component state exceeds certain boundaries. The conventional observ
pattern behaviour is not prepared for this, but using superimposition it is well feasible to implement this behaviour.
This allows the software engineer reusing the component to specify in what state regions the dependent compo
nents need to be specified.
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The monitoring adaptation type is definedgd8"(o,, 1, S"°" where s the monitoring objest'&hd the

monitored state. The compositiong@f°"  and an oljdst
a0, 1., SN 0o = (I,M,S,PO{O0mMO M, h:S ~ S""p:i = (m, o, 0)})

Informally, invocations to all methods that cause state changes in that part of the object state that the monitoring
object is interested in will lead to invocation of the monitoring object, in addition to the normal method execution.

3.3 Composing Adaptation Types

Nine types of component adaptation have been introduced, organised in three categories. However, all types were pr
sented as individual component adapters and the relation to other adapters was not discussed. This is because 1
result of each composition of a superimposing adaptation type and an object again is an object, although with altere
semantics, i.eg0 o = o' . Thus, when a component is adapted by several adapters, each adapter will assume to &
adapting an object and has no knowledge of or reference to the other adapters. For example, assume an object co
posed with three adapterg;0g,0g,00 . This structure can recursively be reduced to any object, i.e.

g;09,00,00=9g30g,00; =g300, =0g3.

As an example, we present an object ({a b}, {m, m,} {x y}.{p:a- m,p:b- m}) and two adaptation types,

i.e. g0 {c d}) andg®({e f},{p:e -~ m,p:f ~ mg}) . The composition of these entities results in to an object

with the following semantics:

d_ del del del
®’0g 00 = ({a...f},{m, m}, {x v}, {p:a~ mp:b- m,pic~ 0 & pd- 0" b pe- m,pf-myg)

However, when composing an object and one or more adaptation types, conflicts between the different entities may
occur. For instance, in the previous example, a restricting adapter could have been used that would hide some of tt
interface elements provided by the delegating adapter. Since each adapter superimposes on the encapsulated obj
andall adapters in between the adapter and the object, the effect of encapsulated adapters can be reduced or remov

3.4 Evaluating Superimposition

Having criticized the conventional adaptation techniques for not fulfilling the requirements, it is of course only fair to
also evaluate the superimposition technique with respect to these requirements.

* Transparent: The adaptation types that can be superimposed on components are fully transparent. The identity of
the component is preserved and only those aspects of the component behaviour that need to be adapted are actue
affected by the adaptation type.

¢ Black-box: Superimposing adaptation types are fully black-box in that they do not depend on the actual imple-
mentation of the component nor is the implementation of the adaptation type visible to the component, its clients
or other adaptation types.

e Composable As was discussed in the previous section, the adaptation types can freely be composed with each
other due to the fact that adapted components cannot be distinguished from other components.

¢ Configurable: Adaptation types consist of a generic and a specific part. The specific part can be defined for each
instantiation of the adaptation types, making it configurable.

* Reusable The generic part of adaptation types is reused for all instantiations and, as such, provides the superim-
position technique the highest possible level of reusability.

4 Layered Object Model

The layered object modealdyom) is our research language model that has successfully been applied to several prob-
lems associated with the traditional object-oriented paradigm. The layers that are part of the model provide an imple-
mentation of superimposition through the use of message interception. Honegeer,is only one implementation
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approach to superimposition and alternative approaches to implementing superimposition can be developed. Thi
remainder of this section is organised as follows. In the next section, the basic features of the layered object model ar
described. In section 4.2, some example layer types are presented. Section 4.3 is concerned with defining new types
component adaptation.

4.1 LayOM

The layered object model is an extended object model, i.e. it defines in addition to the traditional object model compo-
nents, additional components such as layers, states and categories. In figure 3, anLeyamplgect is presented.

The layers encapsulate the object, so that messages send to or by the object have to pass the layers. Each layer, w
it intercepts a message, converts the message into a passive message object and evaluates the contents to determine
appropriate course of action. Layers can be used for various types of functionality. Layer classes have, among other:
been defined for the representation of relations between classes and between objects [Bosch 96a], design patter
[Bosch 97] and acquaintance selection and binding [Bosch 96c].

interface
interface
interface

= interface \

acquaintances

objects
\ layered object J

Figure 3. The layered object model

U 10ke|
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methods

A LayOM object contains, as any object model, instance variables and methods. The semantics of these components
very similar to the conventional object model. The only difference is that instance variables, as these are normal
objects, can have encapsulating layers adding functionality to the instance variable.

A state inLayoMm is an abstraction of the internal state of the objeatajjom, the internal state of an object is referred

to as the concrete state. Based on the object’s concrete state, the software engineer can define an externally visik
abstraction of the concrete state, referred to as the abstract state of an object. The abstract object state is generally si
pler in both the number of dimensions, as well as in the domains of the state dimensions.

An acquaintance category is an expression that defines a set of objects that are treated similarly by the object. This s
of objects treated as equivalent by the object we denote as acquaintances. A category describes the discriminatir
characteristics of a subset of the external objects that should be treated equally by the class. The behavioural lay
types use acquaintance categories to determine whether the sender of a message is a member of the category. If
sender is a member, the message is subject to the semantics of the specification of the behavioural layer type instanc

A layer, as mentioned, encapsulates the object and intercepts messages. It can perform all kinds of behaviour, either
response to a message or pro-actively. Layers are primarily used to represent relations between objects, for the repr
sentation of design patterns and for acquaintance handlingydm, relations have been classified into structural
relations, behavioural relations and application-domain relations. Structural relation types define the structure of a
class and provide reuse. This relation type can be used to extend the functionality of a class. The second type of rel:
tions are the behavioural relations that are used to relate an object to its clients. The functionality of the class is use
by client objects and the class can define a behavioural relation with each client (or client category). Behavioural rela-
tions restrict the behaviour of the class. For instance, some methods might be restricted to certain clients or in specifi
situations. The third type of relations are application domain relations. Many domains have, next to reusable applica-
tion domain classes, also application domain relation types that can be reused. For instaonamisthe relation

type is a very important type of relation in the domain of process control. In the following section, structural relation
layer types and acquaintance handling will be discussed in more detalil.

Next to being an extended object model, the layered object model also is an extensible object model, i.e. the objec
model can be extended by the software engineer with new compangots. can, for example, be extended with
new layer types, but also with new structural components, such as events. The notion of extensibility, which is a core
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feature of the object-oriented paradigm, has been applied to the object model itself. Object model extensibility may
seem useful in theory, but in order to apply it in practice it requires extensibility of the translator or compiler associ-
ated with the language. In the case @M, classes and applications are translated into C++. The generated classes
can be combined with existing, hand-written C++ code to form an executable. The implementatiaayafiihend

its support for language extensibility are discussed in section 4.3.

4.2 Representing relations and acquaintance handling

Superimposition of component adaptation behaviour is provided by the layers in the layered object model. The availa-
ble layer types provide reusable and configurable types of component adaptation. However, in order for the example:
in section 5 to make sense, two example layer types are presented below. The next section discusses the representat
of inter-object relations, in particular partial inheritance, whereas acquaintance selection and binding is discussed ir
section 4.2.2.

4.2.1 Structural relations

Structural relation types define the structure of an application. A class uses the structural relations to extend its behav
iour and the class can be seen as the client, i.e. the class that obtains functionality provided by other classes. General
three types of structural relations are used in object-oriented systems development: inheritance, delegation and par
of. These types of relation all provide some form of reuse. The inherited, delegated or part object provides behaviou
that is reused by, respectively, the inheriting, delegating or whole object. Therefore, next to referring to these relation
types as structural, we can also define them as reuse relations.

Orthogonal to the discussed relation types one can recognise two additional dimensions of describing the extende
behaviour of an object, i.e. conditionality, and partiality. Conditionality indicates that the reusing object limits the
reuse to only occur when it is in certain states. Partially indicates that the reusing object reuses only part of the reuse
object.

Due to space constraints, it is not possible to describe the syntax and semantics of all structural relation types. Instea
one layer of typénherits  is described in detail. For an extensive description of the semantics of the other structural
relation types we refer to [Bosch 96a].

An example clasTemperatureSensor  contains a partial inheritance layer with the following configuration:
pin: Inherits(Sensor, *, (calibrate));

The semantics of the inheritance layer are that a part of the interface of the inherited class is reused or excluded. Tf
name of this layer ipin and its type ignherits . The layer type accepts three arguments. The first argument is the
name of the class that is inherited fraBepsor in this case. The second argument is a ‘*’ or a list of interface ele-
ments and indicates the interface elements that are to be inherited. The *" in this example indicates that all interface
elements are inherited. The third argument defines the excluded interface elements and can either contain a “*' or a lis
of interface elements. In this example, the list only consists of one elaatbrate . The semantics of layein is

that clasSemperatureSensor  inherits the complete interface of cl&ssor , except forcalibrate

message /
><]

layer
message
handler

Sensor

pin:Inherits

H TemperatureSensor ”

Figure 4. The Inherits  layer.

In figure 4, the implementation of this semantics is illustrated. The inheritance layer is the second layeTeficlass
peratureSensor . There is the most outer layer, shown around lgiyerand an inner layer, shown arourapera-

tureSensor . An inheritance layer creates an instance of the inherited superclass, in this case an instance of clas:
Sensor . The layer contains a message handler, that, for each received message, determines whether the message
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passed on inwards or outwards or that it is redirected to the instance &feokass In the figure, an incoming mes-

sage is shown. The message is reified and handed to the message handler. The message handler will read the sele
field of the message and compare it with the (partially) inherited interface oSetass . If the selector is part of the

set of interface elements, the message is redirected to the instance sédaiss (situation (b) in figure 3). If the
selector does not match with the interface of ckassor , it is not redirected but forwarded to the next layer (situation

(a) in figure 3).

4.2.2 Acquaintance layers

Almost any object, in the course of its operation, communicates with other objects for achieving its own goals. We
refer to the objects that an object needs to communicate with as acquaintances. An acquaintance may provide son
services to the object, it might request services from the object or it may both request and provide services. In object
oriented systems, the amount of work required from the software engineer to connect the various objects should be ¢
little as possible. The object itself should contain the specifications on how to connect to its acquaintances and wha
requirements a potential acquaintance should fulfil. On the other hand, when an object is used in an unanticipated cor
text, the software engineer requires expressive and modular language constructs to connect an object to the oth
objects.

As discussed in [Bosch 96b], one can identify a number of problems associated with the way traditional object-ori-
ented languages deal with acquaintance handling, among others, related to reusability and expressiveness. Within tt
context of the layered object model, a layer of tyapiaintance  has been defined. The syntax of the layer type is as
follows:

<layer-id> : Acquaintance([ <obj-name> | <category> ] is-bound [ permanent | per-call | from <selector> until <selector> ]
for [ one | all | <n>] objects from [ inside | <n> contexts | global ]);

An instance of this layer type is bound based on the name of a called object or based on the name of a category. Tf
actual object that is communicated with may have been bound permanently on object instantiation, bound for every
call or during a transaction starting with<selector>  and ending with the same or anotksglector> . When
selecting the appropriate object to bind the acquaintance to, the search may be inside the objeetitaeifeits of

the object or globally. The notion of contexts is important in our underlying system view where the objects in the sys-
tem are organised hierarchically. The first context of the object consists of those objects that are located in the imme
diate vicinity of the object, i.e. in the same subsystem, etc.

To illustrate the use of the acquaintance layer type, we discuss the dialysis system class as an example. A dialysis sy
tem object has a number of acquaintances, i.e. a patient object, nurse object and a manufacturer object. Since the s
tem is constantly used by different patients and operated by different nurses, no permanent bindings for these
acquaintances can be specified. Instead, these acquaintances are bound when the situation is appropriate. Below, p
of theLayom specification for the mobile phone class is shown.

classDialysisSystem
layers
nurse Acquaintancenurses-bound per-callfor oneobject from 1 contexts);
patient Acquaintancgpatients-bound from connectNeedlentil dialysisFinishedor oneobject from global);
mf : Acquaintancgmanufactureis-bound permanerfor oneobject from global);

categories
patientbegin acg.subClassOf(Persamd acg.kidneyPatient@nd;
nursebeginacg.hasDegree(“*HealthCaref)dialysisUnit. hasEmployee(acghd
manufacturebegin self. manufacturer() = acend

end

The specification only contains the layer and category definitions for the aforementioned acquaintances of the dialysis
system object. The categories describe the discriminating characteristics of the acquaintance objects, whereas the la
ers describe how to bind actual objects to each acquaintance. The objeataqaimsed in the category specifications

is a pseudo variable used to refer to the acquaintance being defined. Note that one could have daéigsst the

System class without th@cquaintance  layers. That allows one to add the layer specifications to individual instances

of the DialysisSystem  class, thus creating unique instances. For a more detailed description of acquaintance han-
dling we refer to [Bosch 96c].
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4.3 Defining New Component Adaptation Types

The layered object model is an extended but alsxtemsibleobject model. Extensibility, in this context, refers to the
ability of the language model to be extended with new components, such as new layer (component adaptation) type:
Since traditional compiler technology is unsuitable to implement extensible languages, an alternative approach had t«
be defined. The implementation of the layered object model is based on the natelagaiting compiler objects
(DCOs) [Bosch 96b]. A DCO is an object that compiles a part of the syntax of the input language. It consists of one or
more lexers, one or more parsers and a parse graph. The nodes in the parse graph have the ability to generate code
themselves. In case of thgom class compiler, it consists of a class DCO, method DCO, state DCO, category DCO
and a DCO for each layer type. Each DCO definition results in a class and a DCO object can instantiate another DCC
and delegate control to it. The delegated DCO will perform its functionality and return control to the delegating DCO
when it is finished. Theayom compiler DCOs generate C++ output chdeyom code is either a class or an applica-

tion. A Layom class is compiled into a C++ class andyam application is compiled into a C++ main program. The
generated C++ class can be incorporated in any C++ function and, subsequently, into an executable program.

An advantage of using the DCO approach is that it supports extensibility of the language very well. When the software
engineer wants to add, for example, a new type of component adaptation, all that is required is a DCO defining the
syntax and code generation information of that particular concept. The new DCO is added to the set of DCOs in the
existing compiler and it can be used immediately. In some cases it is necessary to make some minor modifications i
the DCOs that should instantiate the new DCO, but these cases are rare.

It is, however, not necessary nor intended that every software engineer implements a private set of component adapt
tion types. In most cases, the provided types of component adaptation will be sufficient to impose the required adapta
tions. In slightly more complicated cases, multiple adaptation types can combined. Occasionally, it really is necessary
to define a new component adaptation type and in those cases a company or project can assign a software engineet
implement a DCO that provides the required adaptation behaviour. The developed DCO tools, however, considerably
simplify this task.

5 Adapting Components for the Dialysis System

To illustrate the use of component adaptation types, the dialysis system will be used as an example. As mentioned, tt
first phase in the project was to design a software architecture for the system that would define the main component
and their interactions. Since earlier versions of the dialysis system existed, the intention was to use the component
from earlier dialysis systems where ever possible. As one may expect, no component could be reused ‘as-is’, i.e. eac
reused component needed to be adapted up to some extent. The company was forced to implement some compone
from scratch, even though similar components for older system versions existed. For the actual system, the compan
used a conventional object-oriented language, i.e. C++, to build their dialysis system. One of the activities within the
academic part of the project was to investigate how a more high-level language model could address the problem
related to component adaptation.

In this section, three selected examples from the dialysis system are introduced that are addressed by superimpositio
but caused problems for the implementation. One example is presented for each category. From the category compt
nent interface adaptation, the adapter layer type is presented, that allows the software engineer to change operati
names at a component. From the component composition category, a layer type for delegating requests is presente
Finally, from the component monitoring category, the observer layer type is presented that can be used to adapt
component with observer functionality.

5.1 Changing Operation Names

The temperature sensor in the blood part of the dialysis system was not changed in the new version of the systen
Consequently, the intention of the software engineers was to reuse the software component interfacing with the hard
ware sensor. However, the architecture was designed using an abstract sensor with an interface cogetisting of
Value() andcallibrate() . Since the temperature sensor component was developed earlier, it's interface consisted

1. We are currently working on a Java implementation of the compiler that generates Java output code.
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of readTemperature() andreset) methods. The functionality of the methods was not any problem, only the nam-
ing of the interface.

The above is a typical reason for a component not to be reusable, i.e. incompatible naming of operations in the compc
nent. For this purpose, a design pattédapterhas been defined by, among others [Gamma et al. 94], that converts
the operation names used by clients into selectors that are understood by the component. In object-oriented language
the adapter is implemented as an object that forwards (adapted) calls to the adaptee. The disadvantage of this approe
is that the adapter generally is not reusable, it may suffer from the self problem and may result in considerable imple-
mentation overhead [Bosch 97].

One can recognise that a design pattern generally affects many aspects of the object behaviour, requiring the desic
pattern behaviour to b&uperimposean the object. Within the layered object model, several design patterns can be
represented as layer types. A layer of typapter is defined that provides the functionality associated with the design
pattern. Thendapter layer can be used for class adaptation by defining a new adapter class consisting only of two lay-
ers. Adaptation at the object level can be achieved by encapsulating the object with an additional layer upon instantia
tion:

/I object declaration

adaptedTempSensor : BloodTemperatureSevitbdayers

adapt : AdaptesCceptgetValueasreadTemperaturacceptcallibrateasreset);
end;

getValue layer

message

handler

adaptedTempSensor

Adapter

Figure 5. Changing operation names

In figure 5, the adaptation performed by tuapter layer type is presented graphically. Messages witlyetvalue

or callibrate selector are intercepted and changedddremperature  andreset , respectively. Layer typedapter

can also be used in the inverted situation where a single client needs to access several server objects, but the clie
expects an interface different from the interface offered by the server objects. We refer to [Bosch 97] for a more
extensive discussion on language support for design patterns.

5.2 Delegating Requests

The dialysis architecture uses the design rule that an actuator knows the result of its actuation. This requires a heate
for example, to be able to reply to a temperature reading request. In the dialysis system, a software component for cor
trolling the dialysis concentrate pump was reused from an older version of the system. However, this component did
not comply to the design rule. In order not to break the metaphor in the system, it was decided that the pump compo
nent would delegatgetvalue()  requests to the concentrate sensor component which is placed right behind the pump
in the system.

This example is a typical reuse inhibitor, i.e. the architecture expects a ‘larger’ interface from the component than the
functionality provided by available individual components. Often a combination of components is able to provide the
required interface, but since these components would lead to multiple entities to be invoked, this does not solve the
problem. The most appropriate traditional solution is to implement a wrapper that encapsulates multiple components
and forwards requests to the correct component, i.€&abadepattern. However, as we identified in [Bosch 97], the
implementation of the facade pattern leads, among others, to considerable implementation overhead since the wrapp
has to implement all methods that are supported by the wrapped components.

A solution to the problem is provided lglegation Delegation provides object-level message forwarding whereas
inheritance provides class-level message forwarding. However, traditional delegation-based object models, e.g. [Lie-
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berman 86] and [Dony et al. 92], often require the delegating object to specify at definition time the objects that it del-
egated to, i.eexplicit delegationThis is infeasible for component adaptation since the intention is to reuse an existing
component by adapting it to delegate requests to another component.

The solution available as partiefyom is to extend an instance of the reused component vilithegate layer. This

layer delegates all messages that match the interface of the object that is delegated to. The object processes the reqt
and returns the result to tielegate layer that subsequently replies to the calling object. The message handling
model inLayoM is such thatrue delegation is provided, i.eelf calls are sent to the original receiver of the message

and not to the object processing the request. The syntax for the configuratiobeiédhe layer is the same as that

of thelnherits  layer.

The code shown below illustrates tlgom approach to the described problem. An instate@ump, of clasPDial-
ysisConcentratePump  is extended with an additionatlegate layer. The layer forwards ajktvalue requests to an
objectdc_sensor , located in the context df_pump. As the ¥ indicates, all other types of requests are not delegated.
The example is graphically presented in figure 6.

dc_pump DialysisConcentratePurmyith layers
del :Delegatédc_sensor, {getValue()}, *);
end

get\/a| ue

/_‘Z’—) dc_sensor

layer
message

hanc”er

Delegate e

Figure 6. Delegating requests

5.3 Observer Notification

The unit for collecting the patient’'s accumulated weight loss is depending on the values read by the two flow sensors
Whenever one of these sensors reads a changed value, the unit has to be notified so it can adapt its behaviour. In t
dialysis system, two instances of the same flow sensor component are used. The component is, obviously, not pre
pared for notifying any other components whenever it receives a new value from its corresponding hardware sensor
The observation behaviour has to be superimposed on the component.

The Observerpattern is widely used in object-oriented systems since is significantly decreases the dependency
between an object and its dependent objects. In component-based systems, the pattern is very suitable for monitorir
components for state changes. A problem is, though, that reusable components are generally not prepared for acting
an observable entity. The operations in the component do not provide the notification statements that normally are
implemented in a component when defining it from scratch. Therefore, it may not be possible to use an otherwise
reusable component in systems where the component should be observed by other components.

Similar to the previously discussed examples, the behaviour for component observation needs to superimposed on tf
component object. The solution in the context of the layered object model is to define a lay#séyme |, that is

used to extend a class to be used as a subject with behaviour for notifying dependent objects. Since layers interce
messages sent to and from the object and are able to inspect the abstract state of the object and notice state changes
Observer layer is able to detect changes in the subject and notify the observants. The syntax of the layer is the follow

ing:
<id> : Observer( notify [ before | after ] on <mess-sel>+ [on aspect <aspect>], ... );

The layer intercepts messages and determines whether the selector in the message matches with one of the mess
selectorssmess-sel> , specified in the layer configuration. If it does, the layer will notify the observants either before
or after the message has been processed by the object. When the notification occurs depends on Wwdigtheothe
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after  keyword is used in the layer. Similar to the Smalltalk-80 implementation [Goldberg & Robson 89] of the
observer pattern, the observant can be notified on a particular aspect, allowing the object to limit actual updates tc
only those aspects interesting for the particular observant. The administration of observer objects is also part of the
functionality of the layer type. For this purpostach anddetach methods are implemented in the layer and mes-
sages to the object with these message selectors will be intercepted by the layer and handled locally by the layer itsel

The Observer layer type can be used for extending a class with observer pattern functionality. The example class
FlowSensor has, among others, a method update() that provides the updated value of the hardware sensor. Clas
FlowSensor is not observable, but th@bservelayer added to the instantiation of tHewSensor class allows other

entities to observe the components’s behaviour. The behaviour of the layer is presented graphically in figure 7.

aFlowSensor : FlowSensoith layers
st : Observer(tify after on updateon aspectflow-value”);
end

anObserver

| getFlow

update layer

message

hanc”er

aF|owSensor

Observer E—

Figure 7. Observer notification

TheObserver layer can both be used in class definitions and to extend individual instances with observing behaviour.
Especially the latter is useful since it allows the software engineer to use a class without observer pattern functionality
in a situation where it, among others, should play the role of a subject.

6 Related Work

The reuse of existing software is studied by the software reuse community and has lead to a substantial literature bas
For instance, [IEEE Software 94] features a special issue on systematic software reuse and several reuse conferenc
such as [Samadzadeh & Zand 95] and [Sitaraman 96], and overview papers, e.g. [Mili et al. 95]. Part of this researcl
domain is the research on component-based software engineering. See, for example, the proceedings of the 19¢
workshop on component-oriented programming in [Muhlhauser 97]. However, the notion of adapting reusable com-
ponents to match the requirements of the application at hand is not extensively studied in component-based softwar
engineering. Some object models, e.g. CLOS [Kickzales et al. 91], ploeideeandafter facilities that allow the

software engineer to add pre- and post-behaviour to the execution of an operation in a component. [Purtilo & Atlee
91] introduce Nimble, a language that allows designers to declare how parameters in a procedure call are to be tran:
formed in run-time to match the interface of the called procedure. Nimble, however, only deals with adapting the
parameters of a procedure call, not with adapting the behaviour of a procedure. [Yellin & Strom 97] propose the soft-
ware adaptors that are placed between two components that are functionally compatible, but have incompatible inter
faces (or types). Software adaptors can be automatically generated from interface mappings, a high-level descriptiol
means. Yellin & Strom’s approach to software adaptors is different in several aspects. First, their adaptors act betwee
two components, whereas layers adapt a component for all clients. Secondly, they use a high-level description lan
guage to specify adaptors, whereas our approach makes use of an extensible set of configurable component adaptc
i.e. the layer types. Thirdly, software adaptors are not transparent but clients communicate with the adaptor instead c
with the intended component, whereas adaptation by layers is transparent and does not affect the communicatio
between components. [Holzle 93] discussed the problems of integrating independently developed components ani
concludes the traditional object-oriented languages provide little support. The only feasible black-box approach is
wrapping but this leads to significant amounts of extra code and potentially serious performance problems. As a solu:
tion, type adaptatioris proposed which allows the programmer to change the interface of a reused component after
delivery. Compared to the work presented in this paper, type adaptation only deals with a restricted subset of the dis
cussed adaptation types. Also [Samentinger 97] discusses component adaptation, and locates it between customiz
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tion, i.e. adaptation intended by the software designer, and modification, i.e. making major changes to the component
Adaptation is then categorised as minor modifications, which agrees to the approach taken in this paper.

The notion of superimposition has earlier primarily been used in the context of distributed systems, e.g. [Bouge &
Francez 88] and [Katz 93]. There it is used to indicate the additional, superimposing control over some algorithm. To
the best of our knowledge, our use and interpretation of superimposition for component object models is novel and
solves important problems.

Since superimposition is a novel technique in object-oriented programming, no existing implementations of superim-
position exist besides the layered object model. However, meta-object protocols [Kickzales et al. 91] can be viewed a:
types of superimposing behaviour for object-oriented systems. In general, reflective languages such as CLOS are sui
able to implement superimposition. The composition-filters (CF) object model [Bergmans 94], being a partially
reflective object model, provides some forms of superimposition. The CF model applies input- and output-filters that
intercept incoming and outgoing messages, respectively. The CF model defines filter types like error, wait, dispatch,
meta and real-time and each filter type provides one specific (orthogonal) type of behaviour. However, since the CF
model provides, to the best of our knowledge, no means to extend individual instances with additional filters, the
model can consequently not be used for component adaptation. Even if it would be possible, only a subset of the ider
tified types of component adaptation would be supported.

7 Conclusion

Component-based software engineering is becoming increasingly important as a means to efficiently create applica
tions from reusable components. Most traditional approaches assume that components are reused “as-is” in thes
applications, but in practice “as-is” reuse is very unlikely to occur and most components need to be adapted to matcl
the requirements of the application. Five requirements for component adaptation were identified, i.e. a component
adaptation technique should be transparent, black-box, composable, configurable and reusable. Conventional tect
niques for adapting components are copy-paste, inheritance and wrapping. The first two are white-box whereas th
last is an example of a black-box adaptation technique. All traditional approaches fail to fulfil one or several of the
identified requirements.

As a superior alternative, a new component adaptation techsigperimpositionwas introduced. An object super-
imposition S of B over O is defined as the additional overriding behaviour B over the behaviour of a component object
O. Different from, e.g. inheritance, a single unit of superimposed behaviour can change several aspects of the basi
component’s behaviour. One of our conclusions is that, in addition to a set of reusable components, component-base
software engineering requires a set of reusable component adaptation types. To exemplify this, several types of adaj
tation behaviour were presented and defined, categorised into component interface adaptation, component compos
tion and component monitoring.

Superimposition is implemented as a language construct in the layered objectmaue) through the notion of
layers.LayoM is an extended component object model that, next to instance variables and methods, contains parts suc
as states, categories and layers. The extended expressivengss/igbrovides the software engineer with powerful
component adaptation types through superimposition. To illustrate this, the implementation of three of the identified
component adaptation types was presented.
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