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Abstract This paper is devoted to the phenomenon of
superintegrability. This phenomenon is manifested in the
existence of a formula for character averages, expressed
through the same characters at special points and of its var-
ious generalization. In this paper we develop a method of
proving such formulas from first principle from Virasoro con-
straints and W -representation. We apply it to prove the for-
mula for the Jack functions averages – appropriate analogue
of characters for the β-deformed Hermitian Gaussian matrix
model. We also sketch the construction of W -operators from
Calogero–Ruijsenaars Hamiltonians.

1 Introduction

Recently an interesting property of matrix models called
superintegrability was brought to attention, see [1] for a
rather extensive summary and references therein. It appears
that in a wide variety of matrix models the are explicit formu-
lae for averages of an appropriately chosen basis in the space
of gauge invariant operators. In each situation these oper-
ators correspond to some symmetric polynomials. Usually,
these polynomials correspond to characters of some alge-
bra, like in the case of Schur functions or Q-functions or

a e-mail: mishnyakovvv@gmail.com
b e-mail: oreshina.aa@phystech.edu (corresponding author)

some appropriate generalization of characters, like in this
paper. Remarkably, expectation values of these polynomials
not only have an explicit expression, but are also expressed
in terms of the same polynomials again, now evaluated at
specific loci. The name superintegrability refers to a rather
stretched analogy with classical mechanics, where some sys-
tems have extra integrals of motion which allows to reduce
the problem to algebra and present an explicit solution.

The superintegrability property is simplest in such models
as the Hermitian Gaussian and complex matrix models [2],
but it is remarkable in the sense that it allows one to guess
generalizations to other cases. One just needs to guess the
appropriate substitute of polynomials. One such interesting
generalization is the β-deformation [3]. The corresponding
matrix model is also referred to as the β-ensemble. Such β-
deformed integrals are interesting in two ways. First, of all
on their own they represent an eigenvalue model in which the
quantum measure is deformed and a lot of familiar structures
break down. This is to be an important deformation direction
as such models find an application in a variety of problems
such as supersymmetric localization [4,5], categorification of
knot invariants [6–9], AGT correspondence [10]. On the other
hand completely understanding β-deformation is necessary
to move the more general cases of cases like (q, t) and elliptic
(q, t) matrix models [11].

Gaussian Hermitian model

Schur functions SR(p)

W - operator

β-deformed Hermitian model

Jack functions JR(p)

W (β)-operator

(q, t)-matrix model

Macdonald functions MR(p)

W (q,t)-operator

The appropriate symmetric functions for the β-deformed
model are the so-called Jack polynomials [12], for which
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one has [4,13]:

〈JR(H)〉 = β |R| JR(N )

JR(δk,1)

JR(δk,2)

‖JR‖2 , (1)

which can be verified in several ways. However, there is still
some mystery about proving such type of formula. In this
paper we present a method of solving matrix models which
naturally produces polynomial averages. We apply it to the
β-deformed model, thus providing the long-awaited proof of
(1)

Other features of matrix models which are important in
our discussion are ordinary KP/Toda integrability [14], the
Virasoro constraints andW -representation [15,16]. These are
matrix models analogues of conservation laws and equations
of motions. Whether this analogy could be developed further
is an intriguing question. Nevertheless, these three structures
are crucial for our construction.

The former, is the idea that matrix models partitions func-
tions are solutions of integrable systems. This is manifested
in bilinear equations satisfied by matrix model partition func-
tions. From the algebraic point of view it means that partition
functions are certain matrix elements of the GL(∞) group.
From this perspective it is natural to expect the character
expansion of such matrix models to be in terms of GL(∞)

characters – Schur functions [17].
On the other hand there are Virasoro constraints (called

Ward identities in QFT), which are linear differential equa-
tions, annihilating the partition function. They reflect the
invariance of the integral under arbitrary reparametrizations
of the integration variable and substitute the equations of
motion for the path integral. Namely, the full set of Virasoro
constraints completely determines the partition function. One
could wish to be able to solve matrix models – obtain full par-
tition functions, by solving the Virasoro equations. Lately
it was found that this is possible (at least up to choice of
integration contours). The answer is typically given by the
W-representation [18] – an evolution operator that generates
the partition function from the trivial one:

Z = eW · 1 (2)

However, such answer is still unsatisfactory. Despite that
one can write out the explicit W -operator, it is complicated
enough that is not immediately clear how to expand this
expression and obtain some explicit formulas. In this paper
we explain how to promote (2) to an explicit expansion and
hence incorporate superintegrability. The main idea is that
the W -operator acts naturally on characters:

WχR =
∑

R′
cRR′χR′ (3)

where sums are restricted to additions of just a few boxes
to the original Young diagram R and coefficients cRR′ are
factorized contributions of some combinatoric piece and the

content factors (i − j + N ) or their proper deformations,
with (i, j) denoting the coordinates of these boxes. This
property of W -operators is one manifestation of them being
special elements of the W∞ algebra. The example that we
treat here demonstrates that these algebraic properties survive
β-deformation [3]. On the other hand KP-like integrability
seems to break down: there are no determinant formulae or
bilinear identities and the substitute for GL(∞) is unknown.
However, the W -representation is deformed nicely and for-
mulae like (3) are still there with appropriate substitutes of
characters [13].

We will explain how the β-deformed W -operator acts on
Jack polynomials and how this action allows us to calculate
character averages (1) without any integration (see similar
constructions in [19,20]).

We describe this method for the special case of the β-
deformed Gaussian model, however, we keep in mind that
is applicable in a number of other cases. Only minor adap-
tions are required in cases where contour ambiguities are
absent and the relevant function are Schur functions or Jack
polynomials. This includes the Gaussian model, the complex
matrix model, the model with logarithmic potential and it’s
β-deformation. Furthermore, it is also applicable to the Kont-
sevich models, where the characters are Schur Q-functions.

This paper is organized as follows. In the Sect. 2 we illus-
trate the proof of superintegrability on the example of unde-
formed Hermitian Gauss matrix model and Schur polynomi-
als. Next, we prove superintegrability for the β-deformation
in Sect. 3. The connection between Calogero–Sutherland
Hamiltonians and W -operators is discussed in the Sect. 4.
Finally, we briefly discuss our result and further directions
in Sect. 5.

At the moment of finalizing this paper we became aware
that a very similar consideration has just appeared in a won-
derful paper [21].

2 Undeformed case

Let us start with the standard Hermitian Gaussian matrix
model and remind how one obtains explicit expression for
averages in this case. The partition function of the model is:

Z(pk) =
∫

dH exp

(
−1

2
Tr H2 +

∑

k

pk Tr Hk

)
(4)

This model belongs to the class of so-called eigenvalue mod-
els, i.e. one can integrate out its angular part. After transition
to eigenvalues λi of H the generating function becomes
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Z(pk) =
∫

dλ1...dλN �2(λ) exp

[
−1

2

∑

i

λ2
i

]

× exp

[
∑

k

pk
∑

i

λki

]
(5)

where � is the Vandermonde determinant: � = ∏
i< j (λi −

λ j ).
An important property of the partition function is its expan-
sion in terms of characters. Recall the Cauchy identity:

exp

(
∑

k

pk p̄k
k

)
=

∑

R

SR(pk)SR( p̄k). (6)

Applying it to the potential of the matrix model one obtains:

Z =
∑

R

SR(pk)
∫

dH exp

(
−1

2
Tr H2

)
SR(H)

=
∑

R

SR(pk) 〈SR(H)〉 (7)

Hence, knowing all character means we have an explicit per-
turbative solution of the matrix model. Clearly, since Schur
polynomials form a basis in the space of all symmetric func-
tions, we can calculate the expectation value of any other
gauge invariant operator provided we know, how it expands
in Schur operators.
The partition function satisfies a set of differential equations
called Virasoro constraints. These reflect the invariance of
the integral under changes of the integration variables. To
derive the constraints one changes the integration variables
λi → λi + ελn+1

i and expand by powers of ε [14,16]. In the
first order one gets equations:

Ln Z = 0 n ≥ −1 (8)

where Ln are Virasoro operators:

Ln =
(

2N
∂

∂pn
+

∞∑

k=1

kpk
∂

∂pk+n
+

n−1∑

r=1

∂2

∂pr∂pn−r

+N 2δn,0 + p1Nδn,−1 − ∂

∂pn+2

)
(9)

Before explaining how we suggest to solve the Virasoro con-
straints, let us shortly review a few rather traditional ways of
solving the matrix model, namely obtaining explicit Schur
averages. We do it because all of these methods break down
in the β-deformed case, which explains why proving (1) is
not simple. The method explained later in this section sur-
vives the β-deformation.

• First of all, there is, of course, Wick’s theorem [22]. The
key idea is to represent arbitrary correlators in terms of

the symmetric group:

〈
m∏

i=1

Haiαi H
biβi

〉
=

∑

γ∈Sm[γ ]=[2m ]

m∏

i=1

δ
bγ (i)
ai δ

βγ (i)
αi (10)

where the sum goes over permutations γ with a fixed
cycle type [2m], which then allows to represent the cor-
relator of monomials in terms of symmetric group char-
acters:

〈
l�∏

p=1

Tr Hmp

〉
=

∑

R
m
ϕR

([
2m

]) · DR(N ) · ψR(σ )

(11)

Here ψR(σ ) and ϕR(σ ) are differently normalized sym-
metric group characters for representation R and cycle
type σ , while DR(N ) is the dimension of the correspond-
ing GL(N ) representation and is equal to SR(N ). As
described in [22] one can use symmetric group charac-
ter orthogonality to further construct Schur averages and
explicitly obtain formula

〈SR(H)〉 = SR(N )

SR(δk,1)
SR(δk,2) (12)

• On the other hand, one can just do explicit angular inte-
gration over the unitary group [23]. Consider the integral:

Z(Y ) =
∫

dH exp

(
−1

2
Tr H2 + Tr HY

)

=
∫

dH exp

(
−1

2
Tr H2

) ∫
[dU ] exp

(
TrUHU†Y

)

=
∑

|R|�N

SR(δk,1)SR(Y )

SR(N )

∫
dH exp

(
−1

2
Tr H2

)
SR(H)

=
∑

|R|�N

SR(δk,1)SR(Y )

SR(N )
〈SR(H)〉 . (13)

Here the transition between the second and third line is
the character expansion of the Itzyckson-Zuber integral
[24]. Besides one can just take the Gaussian integral and
apply the Cauchy formula:

Z(Y ) =
∫

dH exp

(
−1

2
Tr H2 + Tr HY

)

= e
1
2 Tr Y 2

=
∑

R

SR(Y )SR(δk,2) (14)

Comparing the two expression we immediately obtain
(12).
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• Lastly, we could use integrability properties of the parti-
tion function [25]. Namely, one can represent the partition
function as a determinant of the moment matrix given by

Mn {pk} :=
∫

exp

( ∞∑

k=1

pkxk

k

)
· xnρ(x)dx (15)

In terms of averages of Schur functions this means:

cR := 〈SR〉 = det1≤i, j≤N MN−i+ j+Ri−1{0}
det1≤i, j≤N MN−i+ j−1{0} (16)

According to the general idea, mentioned in the introduc-
tion, we could use the lowest Virasoro constraint L−1,
also called the string equation. In terms of (16) it is writ-
ten as

∑

�
cR+� =

∑

�
(N − i� + j�) cR−�. (17)

Solving for symmetric representations we determine the
moments:

M2r = (2r − 1)!! · M0 M2r−1 = 0 (18)

which correctly reproduces the moments of the Gaus-
sian measure. Finally, inserting the moments back into
(16) and after a few algebraic manipulations, which are
explained in detail in [18], we obtain (12).

The idea of this paper is to solve the system of equations,
written above, explicitly. It turns out, that the system (8) is
equivalent to a single equation [25], which is the sum of
Virasoro constraints:
∑

n≥1

pnLn−2Z = 0 (19)

The last equation can be written as

(l0 − 2W−2)Z = 0 (20)

where the operator W−2 has degree1 2 and l0 = ∑
npn

∂
∂pn

is nothing but the grading operator. This equation is special
case of the equation

(l0 − k Ô(k))� = 0 (21)

where Ô(k) is an operator with degree k, i.e.
[
l0, Ô(k)

]
=

k Ô(k). The solution of the equation is

� = eÔ
(k) · 1 (22)

1 For monomial operator
∏

i p
mi
i

∏
j

∂
α j

∂p
α j
j

degree is defined as
∑

i imi − ∑
j jα j

Therefore, we obtain the partition function of the Hermitian
matrix model:

Z = eW−2 · 1 (23)

Not only does one have an explicit solution, but can naturally
recover the character expansion. For this, notice, that Schur
polynomials are exactly “natural” for W-operator to act on. It
acts on them by adding two boxes to the representation with
some weight:

W−2SR = 1

2

∑

R′=R+�1+�2

( j�1 − i�1 + N )

×( j�2 − i�2 + N )CRR′SR′ (24)

where i1, i2, j1 and j2 are coordinates of the positions of
the boxes added to the initial diagram (in the picture painted
box has coordinates (i, j) = (2, 1)). The quantity i − j is
sometimes called the content of the box in a Young diagram.
Coefficients CRR′ come from the expansion p2SR by Schur
polynomials:

p2SR =
∑

R′=R+�+�
CRR′SR′ (25)

and in this case vanish except if R′ differs from R by a piece
of form [2] or [1, 1], in other word the skew-diagram R′/R is
a horizontal or vertical strip of size 2, and then CRR′ = ±1.
For example:

p2S[2] = S[4] + 0 · S[3,1] + S[2,2] − S[2,1,1]

W−2S[2] = 1

2

[
(2 + N )(3 + N )S[4] + 0 · S[3,1]

+(N − 1)NS[2,2] − (N − 2)(N − 1)S[2,1,1]
]

Thus it is convenient to rewrite (23) in terms of Schur func-
tions:

Z = eW−2 · S∅(pk) (26)

where S∅(pk) = 1 is Schur function of empty Young dia-
gram. Thus knowing the expression (24), by acting iteratively
on Schur functions, one obtains the character expansion of
the partition function. From the (26) one can extract super-
integrability for Schur functions (12). We will describe the
procedure in more detail in the next section for the Jack func-
tions straight away.
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3 β-Deformation

Now we are ready to present the main result of the
paper. Namely, we prove the superintegrability of the β-
deformation of the Gaussian Hermitian matrix model.

This deformation is introduced in the form of integral of
eigenvalues (for a matrix integral representation of this model
see [26,27]). In general one can consider integrals not only
of Hermitian matrices but of orthogonal or simplectic. The
eigenvalue representation for both of these models will dif-
fer from the Hermitian in the power of the Vandermonde
determinant in (5), one for orthogonal and four for symplec-
tic respectively. Hence it is only natural to study eigenvalue
integrals with the power of the determinant being a param-
eter, now taking any value. Hence, we define the following
partition function:

Zβ(pk) =
∫

dλ1...dλN �2β(λ) exp

[
−1

2

∑

i

λ2
i

]

× exp

[
∑

k

βpk
∑

i

λki

]
(27)

One can still expand the partition function in terms of char-
acters. However, it is now well known that in this case the
proper basis functions are so-called Jack polynomials. They
are symmetric polynomials orthogonal with respect to a cer-
tain scalar product, and reduce to Schur functions for β = 1
[12]. We list some examples of the simplest Jack polynomials
for illustration:

J[1] = p1

J[2] = 1

β + 1
(βp2

1 + p2)

J[1,1] = 1

2
(p2

1 − p2)

J[3] = 1

(β + 1)(β + 2)
(β2 p3

1 + 3βp1 p2 + 2p3)

J[2,1] = 1

2β + 1
(βp3

1 + (1 − β)p1 p2 − p3)

J[1,1,1] = 1

6
(p3

1 − 3p1 p2 + 2p3) (28)

The Cauchy identity for has a β-deformation as well, there-
fore for Jack polynomials we have:

∑

R

x |R|

‖JR‖2 JR(p)JR( p̄) = exp

[
∑

k

βxk
pk p̄k
k

]
(29)

where ||JR ||2 is the norm of the Jack polynomial. By proper
functions we mean that averages of Jack polynomials con-
stitute a direct β-deformation of (12). The expectation value
of Jack polynomials in the β-deformed Hermitian Gaussian

model is given by

〈JR(H)〉 = JR(N )

JR(δk,1)

JR(δk,2)

‖JR‖2 β |R| (30)

A key difference is that, as we have mentioned, it seems
harder to prove this formula. Clearly, we cannot efficiently
use Wick’s theorem. Standard KP/Toda integrability breaks
down, i.e. no determinant-like representation in known for
the partition function. However, we can still solve the model
using Virasoro constrains. The Virasoro and W-operators are
obtained the same way as in the undeformed case:

L(β)
n = ((n + 1)(1 − β) + 2Nβ)

∂

∂pn
+ β

∞∑

k=1

kpk
∂

∂pk+n

+β2
n−1∑

r=1

∂2

∂pr∂pn−r
+ ((1 − β) + Nβ)βNδn,0

+p1β
2Nδn,−1 − ∂

∂pn+2
(31)

rewriting
∑

n≥1

pnL
(β)
n−2Zβ(pk) = 0 (32)

as

(l0 − 2W (β)
−2 )Zβ(pk) = 0 (33)

one obtains β-deformed W-operator:

W (β)
−2 =

∞∑

n=1

(
(n + 1)(1 − β)

2
+ Nβ

)
pn+2

∂

∂pn

+β

2

∞∑

k,n=1

(n + k − 2)kpn pk
∂

∂pk+n−2

+1

2

∞∑

k,n=1

nkpk+n+2
∂2

∂pk∂pn

+ ((1 − β) + Nβ)

2
βNp2 + 1

2
β2 p2

1N (34)

It turns out that Jack polynomials are ”natural” functions for
β-deformed W-operator too:

W (β)
−2 JR = 1

2

∑

R′=R+�1+�2

( j�1 + β(N − i�1))

×( j�2 + β(N − i�2))CRR′ JR′ (35)

where CRR′ are coefficients of expansion p2 JR in terms of
Jack polynomials:

p2 JR =
∑

R′=R+�+�
CRR′ JR′ (36)

As in the underformed case, the important property is that
the action of the W -operator differs only by a box content
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factor. For example:

p2 J[2] = J[4] − 2(β − 1)β

(β + 1)(β + 3)
J[3,1]

+ 4(1 + 2β)

(1 + β)2(2 + β)
J[2,2]

−2β(1 + 3β)

(1 + β)3 J[2,1,1] (37)

while

W (β)
−2 J[2] = 1

2
[(2 + Nβ)(3 + Nβ)J[4] − β(N − 1)(Nβ + 2)

× 2(β − 1)β

(β + 1)(β + 3)
J[3,1]+

+ β(N − 1)((N − 1)β + 1)

× 4(1 + 2β)

(1 + β)2(2 + β)
J[2,2] − β(N − 2)β(N − 1)

× 2β(1 + 3β)

(1 + β)3 J[2,1,1]

(38)

Now we would like to describe in detail how an iterative
application of formula (35) leads to an explicit expression
for expectation values of Jack polynomials. After iterated
application of (35) and (36) one can obtain

(W (β)
−2 )n · J∅ = 1

2n
∑

Rn :|Rn |=2n

×
⎛

⎝
∏

(i�, j�)∈Rn

( j� + β(N − i�))

⎞

⎠

×
∑

{R1,...,Rn−1}
D∅,R1,R2,...,Rn JRn (39)

pn2 · J∅ =
∑

Rn :|Rn |=2n

∑

{R1,...,Rn−1}
×D∅,R1,R2,...,Rn JRn (40)

Here D∅,R1,R2,...,Rn = C∅,R1CR1,R2 ...CRn−1,Rn ; Ri : |Ri |+
2 = |Ri+1| are combinatorial coefficients, which correspond
to a certain pattern in which one obtains the Young diagram R
from an empty one. The sum is taken over all such sequences
{R1, . . . , Rn−1} in which every next partition is obtained
from the previous one by adding two boxes according to the
coefficient CR1,R2 . In other words, it is a sum over “paths”
in the set of Young diagrams, where each “path” comes with
a certain weight governed by formula (40).
As an example, representation [3, 1] can be obtained in two
ways (they are illustrated on the image below): 1) on the first
step adding boxes with coordinates (0, 0) and (0, 1), on the
second step - (0, 2) and (1,0); 2) on the first step adding boxes
with coordinates (0,0) and (1,0), on the second step - (0,1)
and (0,2). Paths D∅,[2],[3,1] and D∅,[1,1],[3,1] correspond to
these ways respectively.

∅

Step 1

Step 2

A key observation is that the piece
∏

(i�, j�)∈Rn

( j� + β(N −
i�)) factors out from the sum over ”paths” because it does
not depend on the order in which each box is added, but only
on the content.The expression for this factor is a version of
the hook-content product formula, see [12] formula (10.25):

JR(N )

JR(δk,1)
= β−|R| ∏

(i�, j�)∈R

( j� + β(N − i�)) (41)

A typical example is:

J[3,2](N )

J[3,2](δk,1)

= β(M − 1)βN (Nβ + 1)(Nβ + 2)(1 + β(N − 1))

β5
.

Now, lets return to the evaluation of the combinatorial sum.
We don’t need to know each term. The trick here is to use the
fact that this sum originates in the Pieri-like formula (40).
From the Cauchy identity follows

ep2 =
∑

R

JR(pk)JR(δk,2)

‖JR‖2 2|R|/2

Rewriting it in the same manner as the iterative action of the
W -operator and using relation (40) we obtain:

∑

R

JR(pk)JR(δk,2)

‖JR‖2 2|R|/2 = ep2 · 1

=
∑

R:|R|−even

JR(pk)
∑

{R1,...,Rn−1}
D∅,R1,R2,...,Rn

1

(|R|/2)!
(42)

Thus we obtain

‖JR‖2

2|R|/2(|R|/2)!
∑

{R1,...,Rn−1}
D∅,R1,R2,...,Rn = JR(δk,2) (43)

Let us illustrate how this works:

J[3,1](δk,2)
‖J[3,1]‖2 = 1

2
[D∅,[2],[3,1] + D∅,[1,1],[3,1]]

= 1

2
[C∅,[2]C[2],[3,1] + C∅,[1,1]C[1,1],[3,1]] =

= 1

2

[
− 2β(β − 1)

(β + 1)(β + 3)
− 2β

1 + β

]
= − 2β

β + 3
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Hence, using formula (43) we obtain the partition function:

Zβ = eW
(β)
−2 · J∅(pk) =

∑

R:|R|−even

JR(pk)
1

(|R|/2)!
×

∑

{R1,...,Rn−1}
D∅,R1,R2,...,Rn

∏

(i�, j�)∈Rn

( j� + β(N − i�))

=
∑

R:|R|−even

JR(pk)
JR(N )

JR(δk,1)

JR(δk,2)β
|R|

‖JR‖2 (44)

4 Constructing W -operators from Hamiltonians

Formula (35) is the key to our construction, however we did
not provide an explicit proof. Here we are going to sketch
a general idea of where such operators come from and how
to prove they act on characters in the mentioned way. The
construction is rather similar to the one considered in [28]
and [29]. We postpone a complete analysis, which would also
involve the (q, t)-deformed case to a separate paper.

Suppose instead of W (β)
−2 (35) we got a simpler operator

W (β)
−1 , which acts on Jack polynomials as

W (β)
−1 JR =

∑

R′=R+�
(β(N − i�) + j�)CRR′ JR′ (45)

There CRR′ are the coefficients of expanding p1 JR over Jack
polynomials:

p1 JR =
∑

R′=R+�
CRR′ JR′ (46)

To prove (45) we notice that it can be constructed by commut-
ing the multiplication operator p1 with a diagonal operator:

H (β)
1 JR =

∑

(i�, j�)∈R

(β (N − i�) + j�) JR (47)

Such operators, diagonal in the Jack polynomial basis, are
nothing but Calogero–Ruijsenaars Hamiltonians. We need
their expression in terms of time variables. In [29–31] there
is description of these operators, but for our current goal only
one of them is needed. In our normalisation it reads

H (β)
1 = 1

2

∑

n,m≥1

×
(
nmpn+m

∂2

∂pn∂pm
+ β(n + m)pn pm

∂

∂pn+m

)

+1

2

∑

n≥1

((n + 1)(1 − β) − 2βN )npn
∂

∂pn
(48)

Finally, we can find the expression for W (β)
−1 in terms if time

variables:

W (β)
−1 = [H (β)

1 , p1] =
∑

n

npn+1
∂

∂pn
+ p1(1 − β − βN )

(49)

This procedure can be generalized and applied to proving
relations similar to (45). In particular, to prove (35) one
should construct W2 from H2 and p2 in addition to H1 and
p1.

5 Discussion

The main technical result of this paper is the proof of formula
(1), expressing averages of Jack polynomials in terms of the
same functions evaluated at special points. At a more concep-
tual level we have developed a method of solving Virasoro
equations explicitly in terms of the W -representation, which
is applicable when usual ways of integration do not work.
The algebraic side of the picture involves a representation of
the W -operator in the space of characters. As we see the con-
struction survives the β-deformation. From the discussion in
Sect. 4 it is clear that there should be an immediate general-
ization to the case of (q, t)-deformation with the appropriate
Macdonald Hamiltonians and further to elliptic models and
possibly even further involving Kerov functions [32](or non-
Kerov deformations of Macdonald polynomials [33]). As we
can see out of all possible operators of the form (49) matrix
models select some specific ones. It would be interesting to
distinguish matrix models out of “all models” from this point
of view.

A lot of other intriguing directions of generalization
immediately come to mind. First is the case of non-gaussian
models and in general models with boundary conditions or
non-trivial contour choices. It is distinguished by the fact that
Virasoro constraints are not enough to fully specify the parti-
tion function, hence it seems that something should break in
our method. On the other hand for specific choices of integra-
tion contours or boundary conditions superintegrabilty still
holds and we could expect some kind ofW -representation too
[34,35]. The second interesting direction is the generalized
Kontsevich model. Here the situation is the opposite. The cor-
rect generalization of W -operators is known [36], however
the appropriate characters are not (for attempts, see [37]). It
seems like to obtain an answer in this case a deeper under-
standing of the relation between the algebra of W -operators
and characters is needed.
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