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Potentials for which the corresponding Schrodinger equation is maximally super-
integrable in three-dimensional Euclidean space are studied. The quadratic algebra
which is associated with each of these potentials is constructed and the bound state
wave functions are computed in the separable coordinates. © 1999 American
Institute of Physics. [S0022-2488(99)02602-X]

I. INTRODUCTION

The present paper continues our study of the systems with hidden symmetry or so-called
superintegrable systems in spaces with constant curvature.

The best known systems of this kind in three-dimensional Euclidean space are the harmonic
oscillator and Kepler—Coulomb problems, which have many special properties distinct from other
spherically symmetric potentials. These include the phenomena of separation of variables for the
Hamilton—Jacobi and Schrodinger equations in more than one orthogonal coordinate system and
the existence of integrals of motion in addition to the total angular momentum L. In particular for
the isotropic oscillator there is the Demkov tensor D;;=p;p;+ wzx,-xk,1 and, in the case of the
Kepler—Coulomb problem, the Pauli-Runge—Lenz vector A= 1/2([LXp]—[pXL])—r/|r|. Both
these systems possess five functionally independent integrals of motion.>> The first systematic
search for all potentials for which the Schrodinger equation admits separation of variables in two
or more coordinate systems was begun by Smorodinsky and Winternitz with co-workers in Refs.
4-6 and continued by Evans in Refs. 3 and 7. They found all such systems in two- and three-
dimensional flat space and introduced the notion of superintegrability. In general, a physical
system in N dimensions is called minimally superintegrable if it has 2N —2 integrals of motion,
and maximally superintegrable if it has 2N—1 integral of motions. There are five known maxi-
mally (and some minimally) superintegrable potentials listed in Refs. 3, 8, and 10 and investigated
from different points of view in the last decade.®"'® Note also that superintegrable potentials in
spaces of constant curvature were introduced in Refs. 14—16.

In previous articles'’ ™! we have looked at potentials in two-dimensional Euclidean space and
the two-dimensional sphere and hyperboloid, for which the Schrodinger equation is maximally
superintegrable. In this article we extend this study to the case of three-dimensional Euclidean
space. As previously seen in the case of two dimensions, some of these potentials (see Table I)
admit bound state or finite solutions and it is these to which we draw attention in this article.

The basic equation that we investigate is of course the Schrodinger equation (A=m=1)

HU=— A+ VIR (N
R ) e o =

)\P-FV(x,y,z)‘If:E\I’. (1)

The idea is to find solutions of this equation via a separation of variables ansatz
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TABLE I. The three-dimensional maximally superintegrable potentials.

Potential V(x,y,z) Separating coordinates
Cartesian
1 1 1 .
o’ L B-3 B—-7 KB—3 Spherical
Vi = Py’ +22)+ [ - + =z Cylindrical polar

Cylindrical elliptic
Sphero-conical
Oblate spheroidal
Prolate spheroidal
Ellipsoidal

Cylindrical polar
Cylindrical parabolic
Cylindrical elliptic
Parabolic

) 1 ) Cartesian
2_

Spherical
Parabolic
Prolate spheroidal II

1 ) Spheroidal-conical
4

3
‘1':],1:[1 ¥i(u))

for some suitable orthogonal coordinates u; (see Table II).

In Secs. II-IV we consider three maximally superintegrable potentials (see Table I) and use
the Niven-type (or Bethe?) ansatz for constructing the solution of the Schrodinger equation in
coordinates such as spheroidal, sphero-conical, and ellipsoidal (see Table II). In addition we
discuss the extension to the quadratic algebras that were in evidence in the case of two dimensions
and see what their implications may be.

Section V is devoted to the calculation of interbasis expansion coefficients for the V; potential
between spherical and parabolic bases.

Il. GENERALIZED ISOTROPIC OSCILLATOR

The first potential (see Table I) on our list of three is

2 2 1 2 2
) 1| (ki—32) (ky—3) (k3—3
Vl(x,y,z)=7(x2+y2+z2)+§ = + 2 + et 2)

where the constant k;=3. For k;=1 we have the ordinary isotropic oscillator potential. The
corresponding Schrodinger equation admits solutions via a separation of variables in eight coor-
dinate systems: Cartesian, spherical, sphero-conical, cylindrical polar, cylindrical elliptic, prolate
and oblate spheroidal, and ellipsoidal. We summarize the bound state solutions in each case.

Before considering various coordinate systems we note that a basis for the symmetries of
Schrodinger’s equation with the potential (2) consists of the six operators:
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TABLE II. Systems of coordinate in three-dimensional Euclidean space.

Coordinate system Coordinates
1. Cartesian X,0,2
x,y,z€R
II. Cylindrical polar X=pcose, y=psine, z
p>0, ¢€[0,2m)
HI. Cylindrical elliptic 27(#1_31)(,“2_31) 27(#1_62)(,‘1‘2_92)
2eR ey <p=e<p * (ea=e) 7 Y @-e) °
IV. Cylindrical parabolic x,y=£&n, z= %( E—1)
é&xeR, p=0
V. Spherical x=rcos fcos ¢, y=rsin §sin ¢, z=r cos 6

r>0, 0e[0,7], ¢[0,27)

o (u—e)(u—ey)

VI. Prolate spheroidal = cos? @,
e <u;<e;<u,, pel02m) (e1—e)
2=(M1 —ey)(uy—ey) sin?
Y (ey—e) ¢
Z2=('41_‘31)('42_91)
(ex—ey)
VII. Oblate spheroidal x2:(“1_€1)(u2_31) cos® @,
e <u;<e,<u,, oe[0,2m) (ex—ey)
2:(141_81)(“2_@1) sin?
Y (e;—ey) &
ZZZ(Ml—ez)(uz_ez)
(ey—e2)
VIII. Sphero-conical 2= (p1—e)(pr—er) .
r=0, e,<p;<e,<p,<e; (ey—ex)(e;—es)

> 5 —e)(pr—ey)
 (a—e)le—es)

2 (p1—e3)(pa—es)
T (e3—e)es—ey)

y

IX. Parabolic
& n=0, ¢[0,2m)

. 1
x=£€ncos @, y=£nsin g, 2= 5(E£— 1)

X. Ellipsoidal xz_(ulfal)(uzfal)(b%*“l)
a1<u;<a,<u,<az;<uj (@—a)a~a) °
, —ap)(uy—ay)(us—a)
(ar—a))(a3—ay)
5 (uy—as)(uy—az)(uz—as)

T @waya—ay)

y

>

XI. Paraboloidal 0<%, <a,<m, , (m—a3)(m—az)(m3—as)
<a3;<m; X= >

(as—ay)
2_(’]1 —a) (1~ a) (73— ay)
Y (ay—a3) ’

1
=30+ mt m;—ay—az)
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k2—14
Mi==Dy=——=—, —H=M+M+M,, 3)
1) x2 1\ x> 1
_ 2 2 J 2 i o
Jij—Ltj_<ki_Z)E_(kj_Z)g_E’ bj=12.3, @

where L;;=x;0, —x;d,, D;=— 07)2(.4— wle2 is a diagonal components of the Demkov tensor' and
7 i i

we have the notation x| =x, x,=y, x3=2.
The commutators of the operators (3) and (4) can be closed to form a quadratic algebra as
follows:

(M;,M;]1=0, [M;,J;]1=0, [M;,J;1=0;=0j1» [Jij» Jul=R[ijxy=R,

where Q;; is totally antisymmetric and the totally antisymmetric quantity R[;;.] is denoted by R.
Further commutators are calculated to be

[M;, Qu]=0, [M;,Q;l=H{M; M;}+16J;;, [M;,R]=4{M; J;j}—4M; Jy},
_ 2 2
[Jij> Qij]=HM; J;j} =4M; J i} —=8(kj— )M+ 8(ki — )M,
[Jij» Qul=4M; Jj} —4{M; Ty},

[Jij, R1=4{J; ij}_4{]ij’~]ik}_8(ki2_I)ij+ 8(k,2-_1)fik»

ij» jo

where {A,B}=AB+ BA. The expression for the commutators of the Q and R are
[Qij, Qul=4M;.Q}, [Qij, RI=—4{J;;.Qut =4 Jij - Q-

All the commutators of the operators M;, J,,,, Q,,, and R can be expressed in terms of quadratic
symmetric products of themselves. The algebra, therefore, is closed quadratically. There are rela-
tions between the symmetric products of the generators of this algebra. The exhaustive list of these
is as follows:

07=J . M; M+ S{M,; M} + 160777~ 16(1—k;) M}
—16(1—k})M; — Fw?J;;— 640> (1 —k;)(1-k3),
{0i.0u =57, M M3+ 5T M M} =3{J ;.M M}
+320% (1 =kD{Jj it = 32(1 k)M ;M — 640> (1= k)

{Qij ’R}: %{Jij ’Jij ka}_ %{Jij ik 7Mj}_ %{Jij ’ij ’Mi}_ 6?4{-71'1' ’Mk}_ 6?4{Jik 7Mj}
— M 16(1 =k i, MY+ 16(1 = k{50, M} = 64(1 = k7) (1= k)M,
RZZ - %{J” "]ik ’J/k}+ 63_4{-]1] 7J1k}+ 63_4{‘]1/ "I]k}+ 63_4{‘111( "]Ik}_ 16(1 _k]%)‘]?]
—16(1—k7)J 5= 16(1—k}) T3+ 551 = k;)J
B =) T+ 5L = k) 64(1— kD) (1= k3) (1 - k).

where {A,B,C}=ABC+ CAB+BCA. Note that only five operators from (3) and (4) are func-
tionally independent,” and for all the coordinate systems that provide separable solutions for the
Schrodinger equation the operators characterizing the separation are always combinations of the
M;and J;;.

i ij
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In the limiting case k;= %, we obtain a quadratic algebra, too. In this case
Qij: 2(LijDij+DijLij)7 R={Lj 7{Lij ,ij}}’
and instead of operators {M;,J;;,Q;;,R} we can consider as a basis for the symmetries the
Demkov tensor D;;, and the components of orbital momentum, L;; . In this regard we arrive at the
Lie algebra corresponding to the symmetries of the isotropic oscillator.'

Of all the coordinate systems for which separation is possible, in the case of this potential
there are only five which are not essentially a Euclidean two-space coordinate system supple-
mented by an additional Cartesian coordinate z. Such coordinate systems we do not consider
further here and the corresponding solutions of the Schrodinger equation and invariant algebra are
given in our previous paper'’ (see also Refs. 3 and 8). For the remaining systems we now work out
bound state solutions and their corresponding symmetry characterization.

A. Oblate spheroidal basis

Let us consider what we call oblate spheroidal coordinates (see Table II). If we write these
coordinates in the form

x=x'cose, y=x'sing, z=y’, (5)

and put ¥ =(x")""2®, the Schrodinger equation (1) with potential (2) assumes the form

2 2 2 2.1 21 3_1
TN (LA et | I T
If we now write
P=A(x".y")Y(e),
the ¢ dependence can be extracted by requiring that
2 2_1 2_1
= - . e S|Y(e) == (). ©)
The orthonormal solution of Eq. (6) for ¢ €[0,7/2] has the following form:
Yf,fl”‘”(q:): \/2(2m+k1+k2+1)m!I‘(m+k1+k2+1)
IFm+k+1)I'(m+k,+1)
X (cos @)1 12(sin @)k2 ™ 1/2Pf:‘ *2)(cos2¢), (7)
where PEZ“’B )(z) is a Jacobi polynomial and the separation constant quantizes as
M=2m+k,+ky,+1, m=0,1.2,... (8)

The remaining equation for the function A(x',y") is

P 2 2_1 2_1
373 3
_ﬂx'2+_&y’2+ 2E—w?(x'?+y'?) - I T A(x',y")=0.

This is exactly the equation we have already found (see Ref. 17) in the case of two-dimensional
Euclidean space in elliptic coordinates. In terms of the original Cartesian coordinates the bound
state solutions have the form

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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k 2,..2..2 n x2+y2 ZZ
AR (x,y.2) = (@DE 3T+ (24§ Dymt (kg +ho+ 1)/2 k3 172 N
o (X5752) (x2+y?) Hl e

=1/, )

where the 6; satisfy of the system of n nonlinear equations

n

M+1  ky+1 2

0i_el Bi_€2 Jj#Ei 01_0]_

w=0.

We note that this prescription does correctly give a separable solution by noting the identity

x2+y2+ Z {= (u; = 0)(uy—0)
0—e; 0O—ey B (0—e)(0—ey)”

The energy E is quantized according to

where N=n+m is the principal quantum number.
Consider the Schrodinger equation in the spheroidal separable coordinates (u,u,,¢). After
the substitution W= (1) ¥,(u,) Y (@), the separation equations are

d*y(u) 1 2 N 1 dip(u) 1|2Eu—o*(u—e;)(u—e,)+\ (es—e;)M?
du’® 2\u—e, u—e, du 4 (u—e;)(u—ey) (u—e))*(u—-e,)
(91_62)(/%_% ]
+ 5 ¥(u)=0, an
w—entu—e?) "
where u=u,u, and \ is the oblate spheroidal separation constant. The operator whose eigenvalue
is A is
uy(uy—e)(uy—ey) [ > 1] 2 1 d u(uy—ey)(uy—es)
L= E ] Pt e v
Uy—u, duy 2|uy—ey u;—ey|du Uy —u,
52+1 2 . 1 J +1 5 . M?(e;—e5)
>< JR— — JE— — —
071/[% 2|{uy—e; uy—e,|du,| 4 @™ (€262~ u1itp) (u;—e)(uy—ey)

(k3—5(ey—ey)
(uy—es)(uy—es)

=J3+IntIpt (e, —e)Ms—e H—(ki+k3+k3)+3 (12)

X(M1+M2_€1)+

utu,—ey)

with eigenvalues

n

M+1 ky+1

. 3
>\=—4e22r61—4e129 —2[(e1+e2)+(e1k3+e2M)]w—(k%+k§+k§)+Z, (13)

€
and the second operator which characterizes the separation of variables in these coordinates is

LV =~ ki=k3+1)¥=—M>T. (14)

To close this paragraph let us note that in the limit (e,—e;)—0 and (e, —e;)— % the oblate

spheroidal coordinates are changed into spherical and cylindrical polar coordinates, respectively.®
Correspondingly, the oblate spheroidal bases transform to spherical and cylindrical polar ones.
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B. Prolate spheroidal basis

For prolate coordinates the description is almost exactly the same. All that is essentially
involved is the interchange of ¢ and e,.

C. Ellipsoidal basis

For ellipsoidal coordinates (see Table IT) we proceed as follows. We consider the Schrodinger
equation in Cartesian coordinates,

ot R alef
Tt —=+
ox dy 9z°

(k2 1 (k2_1_ (kz_l_
2E— w*(x? +y ) o : 2)]24 + p P

If we now write
_ 2,.2.,.2
\l,(x’y’z):e w(x“+y“+z )x2k1+1y2k2+lzzk3+'CD(x,y,z),
the equation for ¢ becomes

a2+a2+a2+2k1+1 a+2k2+1 a+2k3+1 5 a+ d J
ax? 8y2 9z° X ax y dy z a)x&x y dy Z&z

To obtain the appropriate finite solutions we can make use of the identity

x? N y? N z? B :_(”‘l_a)(u2_0)(u3_0)
O—e; O—ey 0O—e3 (0—e)(0—ey)(0—e3)
and write
N 2 2 2
X y z
= + +
®(x,y,2) H] = to-ato-a ) (15)
where

Bl Rt ksl

0;i—e 91‘_62 0i—e3 —e=0

N
2;&: 0;— Bj
and the energy level E is given by Eq. (10).

Writing the Schrodinger equation in terms of the ellipsoidal coordinates u; and using the

identities
3 2 3
P(u;)
_ 20 .24 .2\ i
E= . (Y )= —
Z1 H&](M ,) ( v 1:21 Hisﬁj(u'_”')
(ki—D (5§ <k2—L i Auy)
+ = ,
x? y2 i= istj(“i_”j)

where P(u;)=(u;—a,)(u;—a,)(u;—a3) and [a;=(a;—a,)] and
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(ki—1 (k3= (k1=
Alu)=asa +apa +a;za
(u)=azay u—a 124372 u—a, 13423 u—as;

we arrive at the following equation:

2,

i

—(4W VP(u;) —+2Eu P—w?P(u)—A(u) | ¥ =0,

Hﬁj( i

which, after the substitution W= (u;)¢»(u,)3(u3) and the introduction of the ellipsoidal
constants A and A, , is divided into three identical differential equations

(ki=1)

d
’ (u _al)(a3_a1)(a2_al)

d
P(u)— P(u)—+ 2Eu’— 0*P(u)+Nju—N\,—

(k3= %) (k3= %)

- m(al —ay)(az—az) - m(al —as)(ay—as)

=0,

where u=uy,u,,u;. The operators that specify the eigenvalues A; and \, are
Ay=T 1+ o5+ T+ (artas)My+(as+a)Ms+(a;+a;)My— (ki + k3 +k3) +3
and
Ny=azJptayJ3taJyytayasM | +aa Ms+aazM,
—k%(a3+a2—a1)—k%(al+a3—a2)—k§(a1+a2—a3)+%(a1+a2+a3),
respectively. In terms of the zeros 6; the eigenvalues of these operators are

)\1: —Z[kz(al+a3)+k1(a2+a3)+k3(a1+a2)—4(a1+a2+a3)]w—2(k +k2+k3)

N N 1)
t2a 3((, } (16)

N
ky+ 1
X (ky+hkythks+1)—2+4 2 az( 2 ) 3

(6,— ,-E o—ay)

(k;+1)

—a,)
and

No=—5(a,+a,+az)—2w[aaz(k;+1)+asa (ks+ 1) +ayas(k+1)]—a (ky+ks+1)?

_az(k +k3+1)2_a3(k2+k]+1)2

N
2 a3al 2 azaz

D. Spherical and sphero-conical bases

(k2+1) (ky +1) k3+1)

—asz)|

N
2 2611

(17)

For spherical-type coordinates there are two possibilities.
If we choose coordinates in Euclidean space accordingly,

X=rsy, Y=rs,, I=rs3, (18)
where s7+s53+s3=1, and put the wave function in the form
W=R(r)S(pi.p2), (19)

where p;,p, are the spherical or sphero-conical coordinates, after separation of variables, we
arrive at two equations,
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d’R 2 dR ,, JU+D]
7 +— e +|2E—w°r°— " R=0, (20)
(k=19 (K—1 (K-
L12+L23+L13+ J(.]+1)_ P 1) b} SZO, (21)
S1 S2 S3

where J is the spherical separation constant.
(1) In the spherical coordinates (see Table II) the wave function S(p;,p,) has the separable
form

S(9,0)=Z(9Y, " (g),
where Yf:‘ ’kz)(go) is given by formula (7). This leads to the equation for Z:

2 kz—JT

1 d ﬁdZ
sin O dl‘}sm @4—

JJ+1)—

Z=0, M=2m+k +ky+1.

sin? 9 cos® 9

The solution of the above equation is (see Ref. 8)

00— \/2[2(m+l+1)+k1+k2+k3]l!F(l+2m+k1+k2+k3+2)
(0)= C(l+ks+DC(I+2m+2+k,+ky)

X (cos 6)/>*k3(sin 0)MP§M’k3)(cos 26), leN, (22)
and for a spherical separation constant we get
J=214+M+ks+35=21+2m+k +k,+ks+3. (23)

(2) If we choose the sphero-conical coordinates on the sphere (see Table II), the solution of
the equation (21) has the form

3 2 2

k4172 52 53
S(Pl’Pz):H / H
7 0;

—e 0 (24)

9
1_62 0'_83

J

and the spherical separation constant is quantized according to Eq. (23) where n=1[+m. This
achieves a separation of variables solution because of the identity

51 53 55 (pi—0)(pr—6)

+ =
0]'_61 0j_ez 0]‘_83 (0]_61)(61_62)(0]_63)

and the Niven equations

ki+1  k,a+1 ky+1 L 2

+ + =0.
0['_81 05_62 0,»—63 Jj#Fi Gl—ej 0
The functions S(p;,p,) have the separable form
S(p1.p2)=B1(p1)B1(p2), (25)

and the separation equations are [ P(p)=(p—e;)(p—ey)(p—e3)]
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d dB 1 (k1= (k3= 1)
P(P)% P(P)%+4 )\ J(J+1)_( —e )(el 82)(61_63)_ (p e )(62 el)(€2_63)
(k3— 1
_M(63_62)(63_el) B=0, (26)

where B=B,B, according as p=p,,p,, respectively. The sphero-conical wave functions satisfy
the eigenfunction equations

(it 13053 S=[(k +h3+k3) = (2q +2+ky +hy+k3)*— 318 (27)
(eiJpzterJi3tesn)S
:[k%(32+63_el)+k§(€1+63_e2)+k§(el+ez_e3)_%(e] +ey,t+e;)—\]S,
(28)
where

)\:2[k1(62+e3)+k2(6| +63)+k3(€2+e])+63k|k2+62k1k3+61k3k2]+ %(@1"’62"‘63)

n

62632

n

"‘6’1632

n

+626’1§:

ki +1 k2+1 k3+1

€3

(29)

Let us now go to the radial equation (20). This equation is very reminiscent of the radial
equation for the three-dimensional harmonic oscillator except that the orbital quantum number / is
replaced by 21+2m+k,+k,+k;+ 3. The orthonormal solution of the radial equation (20), in
terms of Laguerre polynomials L;(x), is

R _ \/ 20"n, ! Jor)! LJ+1/2 30
=N T T2l 2m kT hy F ket 3) (V@) exp| =57 (wr?).,  (30)

and the energy spectrum is given by formula (10) where the n,=0,1,2,... is the radial quantum
number and the principal quantum number now is N=(n,+n)=(n,+[+m).

lll. GENERALIZED ANISOTROPIC OSCILLATOR
The second potential (see Table I) is

(1)2
VZ(x»y7Z): 7(x2+y2+4Z2)+

2 1 2 1
k1_4' kz_Z
2| Ty

y €3]

The corresponding Schrodinger equation has separable solutions in five coordinate systems: Car-
tesian coordinates, cylindrical polar coordinates, cylindrical elliptic coordinates, cylindrical para-
bolic coordinates, and parabolic coordinates. It is the last of these that gives interesting new
solutions. The first four coordinate systems are of cylindrical type and can be deduced from what
we already know for Euclidean two-dimensional space (see Refs. 8 and 17). Before considering
the bound state solutions in the case of the parabolic coordinate system we consider the quadratic
algebra of second-order symmetry operators which are associated with this potential. A basis for
these operators is

k
M, =P — i+ ‘xz . My=d— o’y — T P=—40%, (32)
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1) y? 1\ x% 1
L:L%z_(k%_Z)x_z_(k%_Z)y_z_i’ (33)
1 k2—14
r
Slz_z(prl3+L13px)+Z w’x?— e B
1 k5=
271
Sz=—§(pyL23+L23py)+z w’y*— el (34)

where =d, .
X,y X,y

The relations that define the quadratic algebra are obtained by exhaustive commutation. The
nonzero commutators of the above basis are

[MI’L]Z[L7M2]=Q’ [L7S1]=[S2’L]=B7 [Mi’Si]zAh [PvSi]z_Ai‘

Further nonzero commutators with Q are

[M;, Q1=[0, My]=4{M | My} +160°L, [S;, Q]=[Q.S,]1=H{M .My},

[L, Q1=4{M | ,L}—4{M,,L}+ 16(1—k})M , — 16(1 —k3) M ;

nonzero commutators with A; are

[Mi’Ai]:]6wZSi’ [L’Al]:[A29L]:4{M13S2}_4{M2551}’ [P’Ai]:_]6w2Siv

[Si, Al={M; . M}—=2{M,; P} +8w*(1—k}), [S;,A;1={M; .M} +40°L;
and nonzero commutators with B are
[My,B]=—4{M,.5\}, [M,,B]l=—4{M,.B}, [P,B]=4{M,.5}—4{M,.S,},
[L, B]=—4{L,S }+4{L,S,} —16(1—k3)S,+ 16(1—k})S,,
[S1, B1={L,M}=2{L,P}—4{S;,S,} =4 (1 —k})M,
[B, S3]1={L, M2} —2{L,P}~4{S,S,} —4(1 k)M .
The remaining nonzero commutators are
[0,A]=—4{M; A}, [Q,B]=—4{LA}-4{LA,}, [A],A]=40"0,
[A1, B]={M .0} =4{S|.As}, [B,A;]={M,,0}—4{S,.A}.
There are also various relations among the generators of our quadratic algebra:
{M.B}={L.A}={S,.0} - 4(1=kDA,,
{M,,B}=—{L,A}—{S,,0} +4(1-k3)A,,
{P.0}=2{S;, A5} -2{S,,A1}, {M.A}—{M;,A|}-40°B=0,

Q*=8L.M, My} +8w*{L,L}—16(1—k})M3—16(1—k3)M;

+5HM | M, — 20’ L— 1280 (1—k7)(1—k3),
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{Q.A} =M .M,,S\} =M, .M,,S,}+ 160> {L,S,}—64(1 —k})S,,
{Q.A2= =M, .M, S} +H{M;.M,.8,}— 160> {L,S,} +64(1—k3)S,
{0.B}=—H{M,,L,S}—3{M,L,S,}+16(1—k{){M,,S,}

+16(1—k){M .S}~ S{M,.S,}— H{M,.S},
A2=HM, .M, P +80*{S,.5}+160>*(1—k?)P—32w’M,,

{A, AV =4M,,M,,P}+160*{S,,S,}+8w*{L,P},
{A.B}=8{M,.S,.5,}—H{M,.5, .8} + M, ,L.PY+3{M, M} —8(1—k}){M, P} Sw’L,
{Az’B}: - %{Mz,Sz,Sl}"' %{Ml ,Sz’Sz}_ %{Mz,LsP}

= 3{M\ Mo} +8(1-k){My P} + So’L,
B*=Y{L,S\,So}+ H{L,L, P} +5{S1,8,} = 16(1 - k1) S5~ 16(1—k3)S}
+ LM} = L Py F(1 = k)M, + F(1 = k) M= 16(1 - k) (1-k3) P.

This completes the nonzero relations for the quadratic algebra and the associated relations among
the generators. For the last coordinate system in our list we develop the bound state solutions.

Parabolic basis

The Schrodinger equation in Cartesian coordinates with this potential has the form

I PV P

A (ki—1 +<k%—i
x> ay? 9z°

+ 2E—w2(x2+y2+4z2)— PO 5 =0.

If we choose the coordinates (x',y’,¢) according formula (6) and the wave function ¥ in the
form

\I’(x’,y’,(p)Z(x')flle(x’,y’)Yffl’kz)(go), m=0.1,...,
where Y ’(:1 ’kz)(<p) is given by (7), then the equation for the function A(x’,y") is
;7 (M?—3)
m‘l— W_ wz(x’2+4y'2)— XT_l—ZE A(x',y')ZO.

This just the problem whose solution has been found (see Ref. 1) in the case of two-dimensional
Euclidean space. If now we write

Ax,y,2)= e—(w/2)(x2+y2)—w12(x2+y2)(k2/2+ 1/4)P(x,y),

where

24,2

x“+y

P(x,y>=H( 7 +2z—03),
j=1 J

then the A; satisfy
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40n+1) &
>+ >
7

206%2=0
=z -6 .

and energy E quantizes according to

(35)
where the principal quantum number N=rn+m. This method of solution is based on the identity
2,2 2 g2\( 24 o2
X+ —0 +6
“ P Gl o (Una)

02

In fact, the separation equations in ¢ and % for solution of the Schrodinger equation

W (E7,0)=X (X5 () Y1 ()
have the form

1 (215 L, e M 5
— t+ ——+ —w ——5 te€

X(p)=0, (36)

where e=1 if p=¢ and —1 if p= %, and B is the parabolic separation constant. By eliminating the
energy E from Egs. (36) we produce the operator, the eigenvalues of which is B:

2 2 22 22 2_1 21
5:# g_ini_n_i 7 +w2§2772(§2—772)—§ 7| d ki 4_k2
E+n*\npon'on & 9E°0E 9 | 9p? sin® @

¥
(37)
In Cartesian coordinates the operator £ can be written as

cos’ ¢

and thus the parabolic basis satisfies two eigenvalue equations

LY =(kI+ki—-M*—1)¥, LY=2(S,+S,)¥=8V,

where operators L, S|, are given by formulas (33) and (34) and the eigenvalue B is

p=-2m-D]I &
j=1

IV. GENERALIZED KEPLER-COULOMB SYSTEM

;1 0;2). (38)

The third potential we consider is
1

o
V ('x’ QZ):_ + ~
Y \/xz+yz+z2 2

The corresponding Schrodinger equation has the form

2 +— (39)
F2a N EY

. . P>
ox? &yz

9z*

+

2a k-1 ki
VX ty“+z X
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This equation admits separable solutions in the four coordinate systems: spherical, spheroconical,
prolate spheroidal, and parabolic.
The second-order symmetries of the corresponding Schrodinger equation are

122 1 122 1
J23=L§3—(k§—z)y—2—5, J13:L%3_(k%_z)x_2_§’
1) x? 1\ y? 1
J12=L%2—(k%—z)y—z— i Z)?‘E’ (40)
L= = S [{pa L} +py Lo 1+ s (k%_‘uz_‘%) (1)
2 Pxsla3 Py, 23 m x2 y2

These symmetry operators do not appear to close under repeated commutation. One obvious
subalgebra that is quadratically closed is that generated by the elements J;,, Ji3, and J,3. The
closure relations can be readily deduced from the algebra given for the first potential with the
proviso that ky=1.

A. Spherical and sphero-conical bases

If we use polar coordinates according to (18) and write the wave function W in the separable
form W=R(r)S(p;,p,), then the separable equations are

d2R+2dR 2E+2a J(J+1)R_0 ”

o ar EE= 42)
(Ki—5 (k=%

L12+L23+L13+ J(.I+1)_ sz _5‘2 S:0 (43)
1 2

(1) In the spherical coordinates, choosing the wave function S(p;,p,) according to
_ (ky ko) —
S(9,0)=2(9)Y, " (¢), m=0,12,..,
where Y ::1 K2 () is given by formula (7), we go to the equation for Z:

2

sin® &

1 d dz
—sind——+

sno a9 Vg YU

The orthonormal solution of the above equation for ¥ €[0,7] is
Ji9)— oM i+ 2M+ 1) r
(3)= Jr V2L (I+2M+1)

where /e N and C ;\,(x) is a Gegenbauer polynomia
by

(sin HM M1 (cos 9), (44)

M-I—l
2

1.2! The spherical separation constant is given

(2) The solution of the Schrodinger equation (43) in sphero-conical coordinates follows from
what we have done before in Sec. II D, part (2). If we write S(p;,p,) as
R

51
+ + :
0]’_81 0]'_62 6j_€3

2 n

k,+172
S(Pl’Pz):Sg/l_Il S/ 1_[1
J= j=
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where €=0,1 then the zeros satisfy the Niven equations

kitl kol et
+ +
01'_6] 01‘_@2 0i_e jE;&L 0 0

The functions S(p;,p,) satisfy the eigenfunction equations
(it 13+ 2) S=[(K]+K3) = (2q + 3+ Ky + ko + €)*— 11, (46)
(er)nterliztesl)S=[(e;—e)(ki—k3) tes(ki+ki—1)=3(e;+ey)—N]S,  (47)
where the sphero-conical separation constant X is

N=—2[k(ey+es)+kyle;+e3)+(e— 3)(exte)Ftesk kyt (erk,+e k) (e 5)]

n

62632 "‘6’1632

k2+1

(el+€2+e3 (48)

Finally, let us consider the radial equation (42). The introduction of (45) into (42) leads to

d’R 2 dR [ 2a (l+2m+k1+k2+1)(l+2m+k1+k2+2)R_O

——t = —+[2E+ ——
dr r dr 2E r?

which is the radial equation for the Coulomb problem, except the orbital quantum number [ is
replaced here by (I+2m~+k,+k,+1). The bound state solution of Eq. (43) is

2(a)*?  T(N+J+1)
Rys(r)= =2 (N—J—1)!

and the energy spectrum given by

2ar\’ e N F 12742 2ar
N T+ | TN a2

2

o
E=—p. N=n+J+1=2m+n+1+k+k+2 n,=012...

B. Parabolic and prolate spheroidal bases

The remaining solutions for which separation of variables is possible can be best observed by
writing the Schrodinger equation in parabolic coordinates. If we do this and choose solutions of

the form
V=S(&n)(En) Y (e), m=012,., (49)
where Yf:l ’kz)(go) is given by formula (7), we find that the Schrodinger equation has the reduced
form
(925+82 +| 2E(&+ )+ | M? 1 1+1 +4a|S=0
(952 ‘97]2 (g 77) 4 §2 772 a o =Vu.

This is clearly recognizable as solvable via separation of variables in parabolic coordinates ¢ and
7. The separable solution for the wave function S(§, 7) is

‘Q(a * ~112
S(&m)=—7—(&n) f111(§)f (7)), nipeN, M=2m+k +ky+1, (50)
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where

_ 2
fM(x): \/me (al2N)x
" n! L(M+1)

and N=n1+n2+M+ 1 =n1+n2+2m+kl+k2+2
It is also interesting to observe that we could contemplate an E-dependent algebra of second-
order symmetries acting on the functions H(§, 7). Indeed, a basis for such symmetries is

x| M2 ax’
N 1F _nl;M+l;T (51)

1\ 1 1\ 1
MZ——)—+2E§2, P,=d2+ M2—4—)7+2E7/2,

)
Pi=d + 12

& 7\ 1
M=(&3,~ nag)z—(Mz— Z) (%4’ %) —5

The corresponding closure relations can be deduced from those given for the first potential.

Apart from the symbols this has the same form as was dealt with in two dimensions. If we
now regard & and 7 as Cartesian coordinates, separation is also possible in polar and elliptical
coordinates. The case of polar coordinates has essentially been done above. The case of elliptic
coordinates can be done by the standard prescription. This is achieved by looking for solutions of
the form

R

V2+y2+ 2247 xP+y2+i—2 |
+ j—

am_el gm_el

S(&, 7)=e VTR (24 (IR (M+172)

j=1

b}

where we have written the solutions in the coordinate representation. (Recall that &

=x>+y2+z22+z and >=x>+y>+z>—z.) With

_ (uy—e)(uy—ey) _ (uy—ex)(uy—e)
5‘\/ (er—e)) ’7"\/ (e—e))

where e;<u;<e,<u,, the choice of Cartesian coordinates that is appropriate in this case is

1 \/ e,—eq\’ e,teq)? este\? [e,—eg)?
e —e 2 R R 2 | |
1 \/ €r—ée 2 62+el 2 62"1‘61 2 €r—eq 2 .
M 2 Ty 277 2 | e
1 €2+€1 62"1‘61 n €r—e 2
e [\ T\ T 2 '
This corresponds to the choice of prolate spheroidal coordinates of type I1.2*%

V. INTERBASIS EXPANSION

According to the principles of quantum mechanics the solutions of the same Schrodinger
equation in the different separable coordinate systems for a given value of energy E are connected
by unitary transformations or interbasis expansions. For example, we examine here the direct
calculation of the interbasis expansion between the spherical and parabolic wave functions for
potential V5. We have
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nytny

‘Pnl,n2,m(§’nv¢): IZ() W;lnnzm(kl’kZ)lI,nrlm(r,ﬂs(D)- (52)

where n,+1=n,+n,. For calculation of the coefficients of interbasis expansion in (52) we may
use the ‘‘asymptotic method,”” 8% which is the following. Writing the parabolic wave function on
the left-hand side of (52) in spherical coordinates (r,9,¢) accordingly,

E=r(l+cosd), n*=r(1—cosd),
eliminating the function Y if' k) (@) on both sides of (52), and using the formula

I'a)

1F1(—n;a;x)~m(—xy‘

for x arbitrary large, we see that the expansion (52) yields an equation which depends only on the
variable J. Then, by using the orthogonality relations for the functions Z;,, (1) in the quantum
number /, we arrive at the following expression for interbasis expansions coefficients:

I'(M+1/72)
2n +ny+1 \/;

\/(2l+2M+1)F(n1+n2+l+2M+2)(n1+n2—l)!l!
T(I+2M+ DT (n+M+ 1)L (n;+M+1)(n;)!(n,)!

Wi, (k1 ko)=(=1)!

X f (1+cos )" M(1—cos §)2 MY 12(9)sin 9 d 9,
0

By using the Rodrigues formula for the Gegenbauer polynomials®!

(—1) Jal(1+2N) d'

V2N AH12 U2\ +HN—12
NI ooT(a i) ) 2 (17%)

Ch(x)=

and comparing (53) with the integral representation for the Clebsch—Gordan coefficients of the Lie
group SU(2) (Ref. 23),

cy \/ (2C+1)(J+1)!(]-2c)!(c+'y)! (_l)a—c'+ﬁ
Coubp= Sat By (J—2a)!(J=2b)l(a—a)!(ata)!(b—B)(b+B)(c—v)! 5 TF1

ey

dx~"

XJ‘I (l_x)a—a(l_l_x)b—ﬂ [(l_x)‘/72a(1+x)‘/*2b]dx
-1

with J=a+ b+ ¢, we obtain

Wi (ko) = (= 1)2C50 0 f

aasaf

. n1+n2+2m+k1+k2+1

a 5 , c=1+2m+k;+ky+1, (54)
nl—n2+2m+k1+k2+1 nz—n1+2m+k1+k2+1
“ 2 - P 2
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Since the parameters in (54) in general are not integers or half-integers, the coefficients of inter-
basis expansion (51) may be considered as analytic continuation, for real values of their argu-
ments, of the SU(2) Clebsch—Gordan coefficients. Note also that the inverse expansion of (52)
follows from the orthonormality of SU(2) Clebsch—Gordan coefficients.

ACKNOWLEDGMENT

The authors thank P. Winternitz for very interesting discussions.

"Yu. N. Demkov, ‘‘Symmetry Group of the Isotropic Oscillator,”” Sov. Phys. JETP 26, 757 (1954); 36, 63—66 (1959).

’E. G. Kalnins, W. Miller, Jr., and P. Winternitz, ‘“The Group O(4), Separation of Variables and the Hydrogen Atom,”’
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 30, 630-664 (1976).

3N. W. Evans, “‘Superintegrability in Classical Mechanics,”” Phys. Rev. A 41, 5666—5676 (1990).

4J. Fris, V. Mandrosov, Ya. A. Smorodinsky, M. Uhlir, and P. Winternitz, ‘‘On Higher Symmetries in Quantum Mechan-
ics,”” Phys. Lett. 16, 354-356 (1965).

3]. Fris, Ya. A. Smorodinskii, M. Uhlir, and P. Winternitz, ““‘Symmetry Groups in Classical and Quantum Mechanics,”
Sov. J. Nucl. Phys. 4, 444-450 (1967).

%A. A. Makarov, J. A. Smorodinsky, Kh. Valiev, and P. Winternitz, ‘“A Systematic Search for Nonrelativistic Systems
with Dynamical Symmetries,”” Nuovo Cimento A 52, 1061-1084 (1967).

"N. W. Evans, ‘‘Super-Integrability of the Winternitz System,”” Phys. Lett. A 147, 483—-486 (1990).

8C. Grosche, G. S. Pogosyan, and A. N. Sissakian, ‘‘Path Integral Discussion for Smorodinsky-Winternitz Potentials: I.
Two- and Three-Dimensional Euclidean Space,”” Fortschr. Phys. 43, 453-521 (1995).

°N. W. Evans, ““Group Theory of the Smorodinsky-Winternitz System,”” J. Math. Phys. 32, 33693375 (1991).

0P, Letourneau and L. Vinet, ‘‘Superintegrable Systems: Polynomial Algebras and Quasi-Exactly Solvable Hamilto-
nians,”” Ann. Phys. 243, 144-168 (1995).

0. F. Gal’bert, Ya. I Granovskii, and A. S. Zhedanov, ‘‘Dynamical Symmetry of Anisotropic Singular Oscillator,”
Phys. Lett. A 153, 177-180 (1991); ‘‘Quadratic Algebra as a ‘Hidden’ Symmetry of the Hartmann Potential,”” J. Phys.
A 24, 3887-3894 (1991).

12M. Victoria Carpio-Bernido, *‘Path integral quantization of certain noncentral systems with dynamical symmetries,”” J.
Math. Phys. 32, 1799-1807 (1991).

3M. Kibler, L. G. Mardoyan, and G. S. Pogosyan, ‘‘On a Generalized Oscillator System: Interbasis Expansions,’” Int. J.
Quantum Chem. 63, 133-147 (1997); “‘On a Generalized Kepler-Coulomb System: Interbasis Expansions,”” ibid. 52,
1301-1316 (1994).

4C. P. Boyer, E. G. Kalnins, and P. Winternitz, ‘‘Completely integrable relativistic Hamiltonian systems and separation of
variables in Hermitean hyperbolic spaces,”” J. Math. Phys. 24, 2022 (1983).

15C. Grosche, G. S. Pogosyan, and A. N. Sissakian, ‘‘Path Integral Discussion for Smorodinsky-Winternitz Potentials: II.
The Two- and Three-Dimensional Sphere,”” Fortschr. Phys. 43, 523-563 (1995); ‘‘Path Integral Discussion for
Smorodinsky-Winternitz Potentials: IIl. The Two-Dimensional Hyperboloid,”” Phys. Part. Nuclei 27, 593—-674 (1996).

M. A. del Olmo, M. A. Rodriguez, and P. Winternitz, ‘‘The conformal group SU(2,2) and integrable systems on a
Lorentzian hyperboloid,”” Fortschr. Phys. 44, 199-233 (1996).

7E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, ‘‘Superintegrability and associated polynomial solutions. Euclidean
space and the sphere in two dimensions,”” J. Math. Phys. 37, 6439-6467 (1996).

8E. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, ‘‘Superintegrability on the two-dimensional hyperboloid,”” J. Math.
Phys. 38, 5416-5433 (1997).

YE. G. Kalnins, W. Miller, Jr., and G. S. Pogosyan, ‘‘Superintegrability on two dimensional complex Euclidean space,”
Research Report No. 53, Series II (1997).

20M. Gaudin, La fonction d’onde de Bethe (Masson, Paris, 1983).

2LA. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions (McGraw—-Hill, New York,
1953), Vol. II.

22L. G. Mardoyan, G. S. Pogosyan, A. N. Sissakian, and V. M. Ter-Antonyan, ‘‘Spheroidal Analysis of Hydrogen Atom,”
J. Phys. A 16, 711-718 (1983).

2D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp





