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Superinterpolation in highly oscillatory quadrature

Daan Huybrechs and Sheehan Olver

June 21, 2010

Abstract

Asymptotic expansions for oscillatory integrals typically depend on
the values and derivatives of the integrand at a small number of critical
points. We show that using values of the integrand at certain complex
points close to the critical points can actually yield a higher asymptotic
order approximation to the integral. This superinterpolation property
has interesting ramifications for numerical methods based on exploiting
asymptotic behaviour. The asymptotic convergence rates of Filon-type
methods can be doubled at no additional cost. Numerical steepest
descent methods already exhibit this high asymptotic order, but their
analyticity requirements can be significantly relaxed. The method can
be applied to general oscillators with stationary points as well, through
a simple change of variables.

1 Introduction

We are interested in the numerical evaluation of highly oscillatory integrals
of the form

I[f ] :=

∫ b

a
f(x)eiωg(x)dx. (1.1)

Oscillatory integrals appear in several scientific disciplines and this model
form has been widely studied in asymptotic analysis for large ω [20, 2, 25].
Classical methods of numerical integration are costly, since they depend on
sampling the integrand at a large number of points which must scale with ω.
For sufficiently smooth functions f and g however, the integral I[f ] typically
has an asymptotic expansion in inverse powers of the frequency parameter
ω. Truncating this expansion after a few terms yields an approximation
that improves with increasing ω, at a fixed computational cost regardless
of ω. However, these expansions typically diverge when more terms are
added and hence the numerical error is uncontrollable. Recent numerical
methods take advantage of the asymptotic behaviour of the integral, without
explicitly constructing the diverging expansion, and they can combine a fixed
computational cost and high asymptotic order with numerical convergence.
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In this paper we consider Filon-type quadrature [17, 16] and steepest descent
methods [15, 7]. We refer the interested reader to [14] for a review of these
and other methods.

The mentioned methods have high asymptotic order, by which we mean
that the error of the method behaves as ω−α for ω ≫ 1. The steepest
descent based method of [15] has the highest asymptotic order among all
known methods. For the same number of evaluations of the integrand or its
derivatives, the asymptotic order is almost twice that of the other methods.
This doubling effect is related to the properties of Gaussian quadrature.
The topic of this paper is the observation that the asymptotic order of
the other methods can also be doubled by using the ‘right’ information of
the integrand. These methods typically depend on using derivatives of the
integrand at certain critical points. We will show that the asymptotic order
improves simply by replacing evaluations of derivatives at critical points with
evaluations at Gaussian quadrature points that are located in the complex
plane and that can be obtained from a steepest descent analysis.

We make this explicit using a simple example. Consider the linear os-
cillator g(x) = x. In this case, the integral (1.1) depends asymptotically
on the behaviour of the integrand near the endpoints a and b. Filon-type
methods are constructed by interpolating the function f by a polynomial p
and then defining the approximation as the exact evaluation of the result,

QF [f ] = I[p]. (1.2)

High asymptotic order results from interpolating a number of derivatives of
f at a and b [17]. Interpolating f and derivatives up to order n− 1 at both
endpoints yields an error that behaves in our example case as

QF [f ]− I[p] = O(ω−(n+1)), ω → ∞.

The classical method of steepest descent is based on deforming the path
of integration onto paths of steepest descent. These are paths in the complex
plane originating at the critical points, along which g(x) has constant real
part and growing imaginary part. The integrand is then non-oscillatory and
exponentially decaying. In the case g(x) = x, assuming f is sufficiently
analytic and has at most exponential growth in the complex plane and ω is
sufficiently large, we can utilize Cauchy’s theorem to obtain

∫ b

a
f(x)eiωxdx = i

∫ ∞

0
f(a+ ip)e−ωpdp− i

∫ ∞

0
f(b+ ip)e−ωpdp

=
i

ω

∫ ∞

0
f
(

a+ i
q

ω

)

e−qdq − i

ω

∫ ∞

0
f
(

b+ i
p

ω

)

e−qdq.

Following the approach of [15] we proceed by numerically evaluating the two
resulting integrals with classical Gauss-Laguerre quadrature, i.e., using e−q
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as a weight function. It turns out that the typical high polynomial order of
Gaussian quadrature translates into high asymptotic order of this approxi-
mation. Using n points for both integrals, the error behaves as O(ω−2n−1).
This order is twice as high as the Filon-type method outlined above, while
using the same number of function evaluations. Note that in the steepest
descent method, we end up evaluating f at the points

{

a+ i
xnj
ω

}n

j=1
∪
{

b+ i
xnj
ω

}n

j=1
, (1.3)

where xnj are the n roots of the Laguerre polynomial of degree n.
The first observation we make is that the numerical steepest descent

method can be reinterpreted as a Filon-type method with complex interpo-
lation points. This can be easily seen as follows. From the properties of
Gaussian quadrature, it is clear that the steepest descent approach is exact
for polynomials up to degree 2n − 1. Next, consider the polynomial p that
interpolates f precisely at the points (1.3) and define the Filon-type method
like before as the exact integral I[p] of this polynomial. The interpolating
polynomial has degree 2n − 1 and therefore the method is also exact for
polynomials up to degree 2n− 1. It follows that the Filon-type method and
the numerical steepest descent method in this example are exactly the same.
Thus, the Filon-type method with complex interpolation points also enjoys
the high asymptotic order 2n+ 1.

The second, and perhaps more surprising, observation we make is that
this asymptotic order is maintained when adding interpolation points else-
where. This has important consequences for both methods:

1. The asymptotic order of Filon-type methods can be doubled by re-
placing evaluations of derivatives at critical points by evaluations at
certain points in the complex plane.

2. The numerical method of steepest descent can be made to converge,
even in the presence of singularities of f and g in the complex plane,
by adding points on [a, b]. It is sufficient that f and g are analytic in
a small neighbourhood of [a, b], instead of an infinitely large sector of
the complex plane.

In this paper we intend to show that the superinterpolation property
holds for general oscillatory integrals. We describe known superinterpolation
points in §2. We prove the high asymptotic order of resulting complex Filon-
type methods in §3, starting with the model case g(x) = xr. Next, we
examine the combination of superinterpolation points with m Chebyshev
points on [a, b] to obtain a numerically convergent scheme in §4. In §5 we
analyse the behaviour of the error for the case g(x) = x in the two limits
m → ∞ and ω → ∞. This includes the important result that the behaviour
of the error as m → ∞ decays as ω grows, and vice-versa; the behaviour as
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ω → ∞ decays as m grows. We describe an approach for general oscillators
g(x) in §6, by constructing a map of the oscillator to xr. Finally, we conclude
the paper with some numerical experiments in §7.

2 Asymptotic superinterpolation points

Superinterpolation points correspond to the nodes of Gaussian quadrature
rules in the complex plane, i.e., they are the roots of orthogonal polynomials
with respect to a complex weight function.

Consider the functional

LΓ,r[f ] :=

∫

Γ
f(z)eiz

r
dz, (2.1)

For certain choices of the integer r and the integration contour Γ, an or-
thogonal polynomial sequence pn (OPS) exists where the polynomials are
orthogonal with respect to this functional:

LΓ,r[pkpl] = δkl. (2.2)

In the following, we take Γ to be a path of steepest descent or a com-
bination of steepest descent paths at the origin. There are r such paths,
corresponding to the r roots of unity. They are straight lines through the
origin at angles

αj := 2πi
j

r
+

πi

2r
, j = 1, . . . , r. (2.3)

The corresponding paths can be parameterized by

hj(t) = αjt, 0 ≤ t < ∞. (2.4)

The weight eix
r
becomes e−tr along each of these paths.

We denote the roots of pn(x) by xn,j , j = 1, . . . , n. The importance of
these roots is summarized in the following lemma.

Lemma 2.1. [7, Lemma’s 1,2] Consider a positive number r and a quadra-
ture rule with nodes xs = (x1, . . . , xs) and weights ws = (w1, . . . , ws) such
that

∫

Γ
zmeiz

r
dx =

s
∑

k=1

wkx
n
k , m = 0, . . . , d− 1,

where Γ is a steepest descent path at the origin, or a concatenation of
two steepest descent paths at the origin. If f is analytic at z = 0 and if
∫

Γ f(z)e
iωzrdz exists for ω ≥ ω0, then

∫

Γ
f(z)eiωz

r
dz −QG

r [f,xs,ws] = O(ω− d+1
r ), (2.5)
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for

QG
r [f,xs,ws] = ω−1/r

s
∑

k=1

wkf(xkω
−1/r). (2.6)

It is beneficial to use numerical quadrature to evaluate steepest descent
integrals. The use of Gaussian quadrature maximizes the polynomial order
d of the quadrature rule and, by the lemma above, also the asymptotic order
of the numerical approximation of steepest descent integrals.

We list the most interesting known combinations of Γ and r.

1. The steepest descent path for r = 1 leads to the case described in the
introduction. The weight becomes e−t along h0(t) with t ∈ [0,∞). The
orthogonal polynomials are rotations of the Laguerre polynomials and
their roots correspond precisely to Gauss-Laguerre quadrature nodes,
rotated onto the positive imaginary axis. These points are suitable to
treat a regular endpoint of an oscillatory integral.

2. The case where r = 2 and Γ is the concatenation of h0(t) and h1(t), i.e.,
Γ is an infinite straight line through the origin at an angle of π/4, leads
to rotated Hermite polynomials. The weight eix

2
becomes the classical

Hermite weight function e−t2 along this line with t ∈ (−∞,∞). The
roots are suitable to treat a stationary point of order 1 in the interior
of the integration interval.

3. Case 1 can be generalized to larger integer values of r. The path h0(t) is
a halfline at an angle of π/(2r) and yields a so-called Freud-type weight
function e−tr with t ∈ [0,∞). The existence of the associated OPS is
guaranteed by standard theory of orthogonal polynomials, because the
weight is strictly positive along the contour. This case is suitable for
stationary points of order r − 1 that coincide with a left endpoint. A
right endpoint is similar but uses the path h⌊r/2⌋.

4. Case 2 can be generalized to larger even values of r, say r = 2q. In
this case, we can combine h0(t) and hq(t) into a single straight line
through the origin at an angle of π/(4q). This leads to a generalization
of Gauss-Hermite quadrature. The weight e−t2q with t ∈ (−∞,∞) is
again real and positive along Γ. This case is suitable for stationary
points of odd order in the interior of the integration interval.

5. If r = 2q+1 is odd, then the combination of the two halflines h0(t) and
hq(t) does not lead to a single straight line through the origin. In this
case the functional can not be rewritten in the form of a single integral
with a strictly positive weight function. It can be shown that the
functional LΓ,r is indefinite [7]. However, the orthogonal polynomials
do exist and their roots are suitable for degenerate stationary points
of even order in the interior of the integration interval.
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Figure 1: Illustration of the roots of the polynomials orthogonal with respect
to the functional LΓ,r. The contour Γ is shown in striped lines, the value of
r is indicated in the subcaption and n = 10 points are shown in each figure.

The location of the points is shown in Figure 1. All points are located
on a path of steepest descent, except in case 5 because in this case LΓ,r is
not related to a positive definite functional on Γ. Instead, the points are
located on a curve in a sector of the complex plane bounded by h0(t) and
hq(t). For the case r = 3, the curve and the asymptotic distribution of
the points (for large degree of the polynomials) was determined explicitly
in [8]. The existence of these polynomials for all n has not been proved and
an equivalent to the Golub-Welsch algorithm [13] has not been developed.
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This is a minor issue for the method we will develop, as we only require a
small number of nodes to obtain the desired asymptotic order. The existence
of the first few polynomials is easily verified by direct computation and the
corresponding roots need be computed only once.

The use of Gauss-Laguerre quadrature along steepest descent paths for
oscillatory integrals has been described several times in literature before,
see [24, 5, 3]. An asymptotic analysis of this approach for oscillatory integrals
of the form (1.1) is given in [15]. The quadrature points for the other cases
are described in more detail in [7].

3 Complex Filon-type methods

The points described in §2 were previously used only to evaluate steepest de-
scent integrals. Here, we describe and analyse a complex Filon-type method
based on polynomial interpolation in these complex points and a number of
additional points on the real line. We start with a formal description of the
numerical steepest descent method.

3.1 Numerical steepest descent method

For simplicity of the presentation, we restrict our attention to an integral of
the form

I[f ] :=

∫ 1

−1
f(x)eiωx

r
dx. (3.1)

The oscillator xr has steepest descent paths in the directions given by (2.3).
Two directions of interest are α0 and α⌊r/2⌋, because the integral along the
real line can be deformed onto steepest descent paths in these directions.
Indeed, assuming f is entire and has not more than exponential growth, we
can use Cauchy’s theorem to obtain, for all ω ≥ ω0 > 0,

I[f ] =

(

∫

Γ−1

+

∫

Γ0

+

∫

Γ1

)

f(z)eiωz
r
dz.

where the paths tend to infinity in the following way:

• Γ−1 goes from −1 to eiα⌊r/2⌋∞;

• Γ0 goes from eiα⌊r/2⌋∞ to eiα0∞;

• Γ1 goes from eiα0∞ to 1.

These paths are clearly connected and the integrand decays exponentially
towards infinity in these directions. Recall that Γ0 may be taken to be a
straight line through the origin for even values of r.
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A local substitution puts each line integral into the form (2.5) suitable
for applying Gaussian quadrature,

u−1(y) = e2πi⌊r/2⌋/r r
√

(−1)r + y,

u0(y) = y,

u1(y) =
r
√

1 + y.

The integrals at the endpoints lead to the case of Laguerre-type polynomials
(case 1 in §2). We denote the nodes and weights by xL

s and wL
s . The integral

along Γ0 leads to the case of Hermite-type polynomials (cases 2,4,5 in §2)
and we denote the nodes and weights by xH

r,s and wH
r,s. Using t points for

the endpoint integrals and s points for the stationary point contribution,
the numerical steepest descent approximation is given by

QSD
s,t [f ] =eiω(−1)rQG

1 [u
′
−1f ◦ u−1,x

L
t ,w

L
t ]+ (3.2)

QG
r [u

′
0f ◦ u0,xH

r,s,w
H
r,s] + eiωQG

1 [u
′
1f ◦ u1,xL

t ,w
L
t ].

It follows immediately from Lemma 2.1 that

I[f ]−QSD
s,t [f ] = O(ω−(2t+1)) +O(ω− 2s+1

r ).

The errors can be matched by selecting

t =

⌈

2s+ 1− r

2r

⌉

. (3.3)

With this choice, we have

I[f ]−QSD
s,t [f ] = O(ω− 2s+1

r ).

The relative error scales as O(ω− 2s
r ).

3.2 Complex Filon-type methods

In the steepest descent method (3.2) the function f is evaluated at the
following set of points, with t related to s as in (3.3),

xSI
s = u−1(x

L
t ω

−1) ∪ u0(x
H
r,sω

−1/r) ∪ u1(x
L
t ω

−1). (3.4)

These are the superinterpolation points for this integral.

Lemma 3.1. Let (xs,ws) be a quadrature rule of order d as in Lemma 2.1.
Fix ǫ > 0 and let Γ̃ = Γ∩B(ǫ), where B(ǫ) is an open ball of size ǫ. Suppose
a function p is analytic, bounded and with bounded derivatives as ω → ∞ in
B(ǫ), and p vanishes at the nodes xsω

−1/r. Then
∫

Γ̃
p(z)eiωz

r
dz = O(ω− d+1

r ).
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Proof. Since p is analytic in B(ǫ) it has a Taylor series at z = 0. We write
p as the sum of the first d terms of its Taylor series and a remainder term,

p(z) = pd(z) + pr(z).

Note that p
(j)
r (0) = 0, j = 0, . . . , d − 1, and therefore pr(xs,jω

−1/r) =
O(ω−d/r). Since p(xs,jω

−1/r) = 0, we also have pd(xs,jω
−1/r) = O(ω−d/r).

We have, using O(ω−∞) to denote superalgebraic decay,

∫

Γ̃
pd(z)e

iωzrdz =

∫

Γ
pd(z)e

iωzrdz +O(ω−∞)

= QG
r [pd,xs,ws] +O(ω−∞)

= O(ω− d+1
r ) +O(ω−∞) = O(ω− d+1

r ).

Next, applying integration by parts d + 1 times and using p
(j)
r (0) = 0,

j = 0, . . . , d− 1, and boundedness of pr and its derivatives, we also have

∫

Γ̃
pr(z)e

iωzrdz = O(ω− d+1
r ).

This proves the result.

Theorem 3.2. Suppose a function p, bounded and with bounded derivatives
for ω → ∞, interpolates f at the superinterpolation points xSI

s . If f and p
are analytic in an open simply connected domain Ω containing [−1, 1], then

I[f ]− I[p] = O(ω− 2s+1
r ). (3.5)

Proof. Assume that ω is large enough so that xSI
s ⊂ Ω. Fix ǫ > 0 and define

Γx,ǫ := Γx ∩B(x, ǫ), where B(x, ǫ) is an open ball of radius ǫ centered at x.
Assume that ǫ is sufficiently small, so that we may write

I[f−p] =

(

∫

Γ−1,ǫ

+

∫

Γ−1→0

+

∫

Γ0,ǫ

+

∫

Γ0→1

+

∫

Γ1,ǫ

)

(f(z)− p(z)) eiωz
r
dz.

where Γ−1→0 and Γ0→1 are straight lines in Ω connecting the endpoints of
Γ±1,ǫ and Γ0,ǫ. The second and fourth integrals are exponentially small,
hence do not contribute to the asymptotics. The theorem then follows from
applying Lemma 3.1 to the remaining integrals.

For any given set of points xF , not depending on ω, we can construct
the polynomial interpolating f in the points

xF ∪ xSI
s .
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As ω → ∞, the complex interpolation points converge to ±1 and zero, hence
the polynomial converges to a Hermite interpolation polynomial independent
of ω. It follows that we can apply Theorem 3.2. We approximate I[f ] by

QC [f ] = I[p]

and may conclude that

I[f ]−QC [f ] = O(ω− 2s+1
r ).

4 Chebyshev interpolation

The error estimate (3.5) is very encouraging, but only asymptotic. Histori-
cally, the analysis of Filon quadrature has focused mostly on the interpola-
tion error. Indeed, a crude but non-asymptotic error bound can be obtained
using simply that |eiωg(x)| = 1,

|I[f ]− I[p]| ≤ |b− a| max
x∈[a,b]

|f(x)− p(x)|. (4.1)

It will be clear from the numerical experiments that the estimates (3.5) and
(4.1) do not completely describe the subtleties of the convergence charac-
teristics of our scheme. For the simplest oscillator g(x) = x, we provide a
partial answer in §5 by analysing the asymptotics as the number of inter-
polation points increase and as ω increases, separately. For a more detailed
analysis of Filon-type quadrature, including estimates in different regimes
(though none of which demonstrate the high asymptotic order we achieve
in this approach), we refer the reader to [19].

Still, it is evident from (4.1) and (3.5) that complex Filon quadrature
enables a convergent scheme with high asymptotic order by controlling the
interpolation error. For this reason we combine the superinterpolation points
in the complex plane with the Chebyshev nodes on [−1, 1],

xT
m =

{

cos
(2m− 1)π

2m
, cos

(2m− 3)π

2m
, . . . , cos

π

2m

}

.

We assume for simplicity as before that [a, b] = [−1, 1] and g(x) = xr.
We are thus left with the problem of computing I[p]. The simplest

approach is arguably to express the interpolant as

p(x) =
∑

ckx
k,

so that

I[p] =
∑

ckI[x
k],
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and the latter terms I[xk] can be explicitly computed for oscillators of the
form g(x) = xr in terms of the (incomplete) Gamma function and hyperge-
ometric functions. Unfortunately, this is not numerically stable as m or s
go to infinity, due to significant cancellation [11]. The approach is feasible
only with high-precision calculations.

To obtain a numerically stable algorithm, we want to express p(x) as its
Chebyshev expansion,

p(x) =
∑

ckTk(x).

Then we can use the following fast algorithm.

Algorithm 4.1 (Complex Filon-type method).
Given f , integer m and n additional points x = (x1, . . . , xn)

T .

Step 1: Define Tm as (T0, . . . , Tm).

Step 2: Interpolate f by a polynomial p1 = Tm−1p1 at m Chebyshev points,
using the fast cosine transform.

Step 3: Interpolate q = (f−p1)/Tm at the points x by a polynomial p2 using
the barycentric interpolation formula:

p2(x) =

∑n
k=1

wk
x−xk

q(xk)
∑n

k=1
wk

x−xk

for wk =
1

∏n
j=1,j 6=k(xk − xj)

. [1]

Step 4: Expand p2 into its Chebyshev series p2 = Tn−1p2, again using the
fast cosine transform.

Step 5: Using the identity

2TrTq = Tr+q + T|r−q|, [12]

write

p3 = Tmp2 =
1

2

∑

p2,k
[

Tm+k + T|m−k|
]

= Tn+m−1p3.

Step 6: Padding p1 at the end with zeros, the polynomial which interpolates
at m Chebyshev points and the points x is then

p4 = p1 + p3 = Tn+m−1 [p1 + p3] = Tn+m−1p4.

Thus we define

QC [f ] = I[p4] = µn+m−1p4 for µp = (µ1, . . . , µp),

where

µk =

∫ 1

−1
Tk(x)e

iωxr
dx.

11



This leaves the problem of evaluating the modified moments

µk = I[Tk]. (4.2)

This problem has received some study in the case r = 1, i.e., in the absence of
stationary points. A recurrence relation can be found using the properties
of Chebyshev polynomials (see [9] and references therein). However, this
becomes unstable for k > ω. Moments for larger k can be computed in a
stable manner by solving a tridiagonal system of equations [9]. The case of
moments in the presence of stationary points is largely unexplored.

Alternatively, since the function f is replaced by a polynomial, we may
simply use the original numerical steepest descent method. There are no
issues in the complex plane, since polynomials are entire functions. This
approach is simple and succesful for small to moderate degrees of the inter-
polant, but in this case too instabilities may arise for larger degrees. The
instability is due to the rapid growth of polynomials of large degree in the
complex plane, which initially swamps the exponential decay of the oscilla-
tor.

In order to generate the numerical examples in this paper, we have used
an accurate general-purpose numerical integration package Cubpack [4]. The
stable computation of the modified moments (4.2) is a topic of further in-
vestigation.

5 Error analysis

We restrict ourselves to the case g(x) = x, using m Chebyshev points and s
points near both endpoints. A general expression for the error of a quadra-
ture rule was derived in [10], see also [6, §4.6]. This expression in our setting
becomes:

Rm,s =
1

2πi

∫

Γ

f(z)

Pm,s(z)

∫ 1

−1

Pm,s(x)

z − x
eiωxdxdz. (5.1)

Here, Pm,s is a polynomial that vanishes at all the quadrature points,

Pm,s(x) = Ls(−iω − iωx)Tm(x)Ls(iω − iωx), (5.2)

with Tm and Ls the Chebyshev and Laguerre polynomials, and Γ is a contour
that contains [−1, 1] in its interior.

The error expression depends on the variables m, s and ω. We intend to
apply the scheme only with s small, but we are interested in its behaviour
for large m and ω. Any analysis of the error in the presence of two variables
that may grow large independently of each other rapidly leads to complicated
uniform asymptotics. For this reason, we study the asymptotic behaviour
for large m and large ω separately, but in both cases we also investigate the
dependence of the leading order term on the other parameter.
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5.1 Large m asymptotics explicit in ω

We start with an analysis of the behaviour of the Cauchy transform in (5.1),

∫ 1

−1

Pm,s(x)

z − x
eiωxdx =

∫ π

0

eiω cos θLs(−iω − iω cos θ)Ls(iω − iω cos θ)

z − cos θ

cosmθ sin θdθ.

The asymptotic behaviour of integrals of this form can be inferred via in-
tegration by parts. For a given smooth function f , we have from repeated
integration by parts

∫ π

0
f(θ) sin θ cosmθdθ = − 1

m

∫ π

0
(f(θ) sin θ)′ sinmθdθ

=
1

m2
f(θ) cos θ cosmθ

∣

∣

∣

∣

π

0

− 1

m2

∫ π

0

(

f ′(θ) sin θ + f(θ) cos θ
)′
cosmθdθ

=
1

m2

[

(−1)m+1f(π)− f(0)
]

+O
(

1

m3

)

.

This means that
∫ 1

−1

Pm,s(x)

z − x
eiωxdx ∼ 1

m2

[

(−1)m+1 e
−iωLs(2iω)

z + 1
− eiωLs(−2iω)

z − 1

]

. (5.3)

Note that we have applied the property Ls(0) = 1.
We proceed with the analysis of the error term (5.1). An explicit expres-

sion for the Chebyshev polynomials is [18, §1]

Tm(z) =
1

2

[

(z +
√

z2 − 1)m + (z −
√

z2 − 1)m
]

.

We consider a contour Γ that is an ellipse with foci at ±1. For z on such an
ellipse, the quantity ρ = z +

√
z2 − 1 is a constant and we have the bound

1

2
(ρm − ρ−m) ≤ |Tm(z)| ≤ 1

2
(ρm + ρ−m).

We may conclude that Tm(z)−1 ∼ 2ρ−m and combined with (5.3) we find

|Rm,s| ∼
1

2πi
m−22ρ−m

×
∣

∣

∣

∣

∫

Γ

f(z)Tm(z)

Pm,s(z)

[

(−1)m+1 e
−iωLs(2iω)

z + 1
− eiωLs(−2iω)

z − 1

]

dz

∣

∣

∣

∣

≤ 1

πi
m−2ρ−m

∫

Γ

|f(z)|
|Ls(−iω(z + 1))Ls(−iω(z − 1))|

×
[ |Ls(2iω)|

|z + 1| +
|Ls(−2iω)|
|z − 1|

]

dz

= C(ω)m−2ρ−m.
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This shows that the leading order behaviour in m is m−2ρ−m, where ρ
is as large as we may take it depending on the domain of analyticity of f .
In order to obtain the dependence of the constant C(ω) on ω, it suffices to
note that each Laguerre polynomial in this expression behaves as ωs. Since

Ls(x) ∼
(−1)s

s!
xs, |x| → ∞, (5.4)

we have for ω ≫ 1

Ls(iω(z ± 1)) ∼ (−i)s

s!
(z ± 1)sωs

and

Ls(±2iω) ∼ (−2i)s

s!
ωs.

It follows that the error has the following bound:

|Rm,s| ≤ Ds[f ]ω
−sm−2ρ−m,

for some constant Ds[f ] dependent only on f and s. This shows that the
fast convergence rate of Chebyshev expansions is combined with high asymp-
totic order in ω, but the superinterpolation rate of ω−2s−1 is not completely
maintained in this regime.

5.2 Large ω asymptotics explicit in m

First, we show that Pm,s(z) behaves as ω
2s. From (5.4) we have for ω ≫ 1,

Pm,s(x) ∼
(−1)s

s!
(−iω(x+ 1))s Tm(x)

(−1)s

s!
(−iω(x− 1))s

=
(−1)s

(s!)2
(x2 − 1)sTm(x)ω2s.

Next we consider the Cauchy transform in (5.1). Since z is bounded
away from [−1, 1], we have for ω ≫ 1 that

∫ 1

−1

Pm,s(x)

z − x
eiωxdx =

(
∫

Γ1

+

∫

Γ2

)

Pm,s(x)

z − x
eiωxdx

+

{

2πiPm,s(z)e
iωz −1 < ℜz < 1 and ℑz > 0

0 otherwise
,

where Γ1 and Γ2 are the steepest descent paths at −1 and 1 respectively.
We do not define this deformation for ℜz = ±1 as a single point does not
contribute to the integral over Γ (though one could do so by using principal
value integrals). The last term is exponentially small as ω → ∞, hence will
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not contribute to the asymptotic expansion. We now concentrate on the
integral along Γ1. Parameterizing by x = −1 + it/ω, we find

∫

Γ1

Pm,s(x)

z − x
eiωxdx =

e−iω

ω

∫ ∞

0

Ls(t)Tm(−1 + it/ω)Ls(2iω + t)

z − (−1 + it/ω)
e−tdt. (5.5)

We further expand

1

z − (−1 + it/ω)
=

1

z + 1

1

1− it
ω(z+1)

=
1

z + 1

(

s
∑

k=0

(−i(z + 1))−k(t/ω)k +O(ω−s−1)

)

.

For certain constants cm,k and lk we have

Tm(−1 + it/ω)Ls(2iω + t)

= ωs
m
∑

k=0

cm,k(t/ω)
k

s
∑

k=0

[

lk(t/ω)
k + tkO(ω−k−1)

]

= ωs
m+s
∑

k=0

rm,k(t/ω)
k +

m+s
∑

k=0

tkO(ωs−k−1)

where rm,k =
∑k

j=0 cm,jlj−k. The second sum consist of higher order terms
which will not contribute to the leading term asymptotics, hence we can
drop them. Thus we get (using the orthogonality of Ls(t) with lower degree
polynomials)

(5.5) ∼ e−iωωs−1

z + 1

∫ ∞

0

m+s
∑

k=0

rm,k(t/ω)
k

s
∑

k=0

(−i(z + 1))−k(t/ω)kLs(t)e
−tdt

∼ e−iωωs−1

z + 1

∫ ∞

0
(t/ω)s

s
∑

k=0

rm,k((−i(z + 1))s−kLs(t)e
−tdt

=
e−iω

ω
(−i)s(z + 1)s−1

∫ ∞

0
tsLs(t)e

−tdt
s
∑

k=0

rm,k(−i(z + 1))−k

=
e−iω

ω
is(z + 1)s−1s!

s
∑

k=0

rm,k(−i(z + 1))−k.

The last integral is evaluated by writing ts = (−1)ss!Ls(t) +O(ts−1).
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Thus we obtain the asymptotic expression (as ω → ∞)

∫

Γ

f(z)

Pm,s(z)

∫

Γ1

Pm,s(x)

z − x
eiωxdxdz

∼
∫

Γ

f(z)

Pm,s(z)

e−iω

ω
is(z + 1)s−1s!

s
∑

k=0

rm,k(−i(z + 1))−kdz

∼ (−1)s
e−iω

ω2s+1
is(s!)3

s
∑

k=0

rm,ki
k

×
∫

Γ

f(z)

(z2 − 1)sTm(z)
(z + 1)s−k−1dz. (5.6)

We wish to show that this improves as m increases. rm,k for k = 0, . . . , s
depend on cm,k also for k = 0, . . . , s. So the rate of growth is proportional
to the worst such cm,k. Note that that the Taylor series of Tm(x) around
−1 is

Tm(x) = (−1)mm
m
∑

k=0

(

m+ k

m− k

)

(−2)k

k +m
(x+ 1)k.

This expression can be proved by using 18.7.3 (an expression for Chebyshev
polynomials as Jacobi polynomials), 18.5.7 (the Taylor series of Jacobi poly-
nomials at x = +1 and 5.5.5 (an expression of Γ(n+1/2) in terms of Γ(2n)
and Γ(n)) in [21]; along with the fact that Tm(x) = (−1)mTm(−x).

Now from Stirlings formula we have

(

m+ k

m− k

)

=
(m+ k)!

(m− k)!(2k)!
∼

√
m+ k

(

m+k
e

)m+k

√
m− k

(

m−k
e

)m−k
(2k)!

∼

(

m+k
m−k

)m
(

m2 − k2
)k

(2k)!e2k
∼
(

m2 − k2
)k

(2k)!
.

We thus have

cm,k ∼
(

m2 − k2
)k

(2k)!

(−2i)k

k +m
.

Since k ranges over 0, . . . , s, the largest growth is for cm,s ∼ Csm
2s−1, and

this only contributes to rm,s, hence we obtain (now for m → ∞, and using
that l0 = 1):

(5.6) ∼ D1,s[f ]
e−iω

ω2s+1
m2s−1ρ−m.

Similarly, the equivalent expression along Γ2 behaves like

D2,s[f ]
eiω

ω2s+1
m2s−1ρ−m.
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6 General oscillators

Up until now, we have restricted our attention to oscillators of the form
xr. In this section, we will see that integrals with general oscillators can
be rewritten in that form, and thus the results of the previous sections
automatically apply. Consider the oscillatory integral

I[f ] :=

∫ b

a
f(x)eiωg(x)dx

where a < 0 < b, f and g are analytic in a neighbourhood of (a, b), g(x) ∼ xr

as x → 0 and g(x), g′(x) 6= 0 away from the stationary point at x = 0. If
instead g has a single stationary point at a < ξ < b of the form g(ξ) =

g(ξ) + g(r)(ξ)
r! (x− ξ)r with g(x) 6= g(ξ) away from ξ, we can put the integral

into the desired form by writing

∫ b

a
f(x)eiωg(x)dx = eiωg(ξ)

∫ b−ξ

a−ξ
f(x+ξ)e

i

(

ω
g(r)(ξ)

r!

)[

r!

g(r)(ξ)
(g(x+ξ)−g(ξ))

]

dx.

If the integral contains multiple (but finitely many) stationary points or
points where g(x) = g(ξ), we can subdivide the interval into multiple inte-
grals to impose the necessary conditions.

If the integral is free of stationary points (i.e., r = 1), a simple trans-
formation has been used effectively to map the integral to the canonical
situation [11]. Define u = g(x), thence

I[f ] =

∫ g(b)

g(a)

f(g−1(u))

g′(g−1(u))
eiωudu

Since g is monotonic, it is invertible (and its inverse is easily computable
using e.g. Newton’s method). Since g′ does not vanish, the denominator in
the integrand does not blow up.

For higher order r, the above approach does not work since g is not neces-
sarily uniquely invertible, and g′(g−1(u)) vanishes, introducing a singularity.
However, consider the following map:

r√g (x) := x

(

g(x)

xr

)
1
r

,

The notation is justified since ( r√g )r = g, and we will see that it is an

analytic continuation of r
√

g(x) from x positive to x negative. This map
was proposed in this form for the use in moment-free Filon-type methods
and a differential GMRES method [22, 23]. The way we will use the map
is based on an earlier construction in [26], which split the interval and used
the non-analytically continued map r

√

g(x) .
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Note that g(x)
xr = 1 + O(x). Since g(x) does not vanish away from zero

(and the reason we needed to make that assumption), we obtain g(x)
xr >

0, and therefore r√g is analytic in a neighbourhood of the unit interval.
Furthermore,

( r√g )′ =
g′

g
r√g

cannot vanish anywhere except at zero, and at zero

g′

g
r√g ∼ r > 0.

Thus ( r√g )′ > 0 and r√g is monotonic, and hence invertible.
We can now do the transformation u = r√g (x), so that

I[f ] =

∫ r√g (b)

r√g (a)

f( r√g −1(u))
r√g ′( r√g −1(u))

eiωu
r
du

=

∫ r√g (b)

r√g (a)
f( r√g −1(u))

g( r√g −1(u))

u g′( r√g −1(u))
eiωu

r
du.

Note that f( r√g −1(u)) r√g ′( r√g −1(u)) is analytic in a neighbourhood of
( r√g (a), r√g (b)), since r√g is analytic in a neighbourhood of (a, b) and the
inverse of a monotonic, analytic function is also monotonic and analytic
in a sufficiently small neighbourhood. We have thus reduced the general
oscillator to the form previously considered.

7 Numerical results

We illustrate the convergence characteristics of complex Filon-type methods
with a number of experiments.

Consider first the integral without stationary points,

I1 :=

∫ 1

−1
(cosx+ sinx)eiωxdx.

Fig. 2 illustrates numerical convergence both for increasing frequency ω and
for increasing number of Chebyshev pointsm. In the left figures, convergence
is plotted as a function of ω. The errors decay as O(ω−3), O(ω−5) and
O(ω−7) respectively in Figures 2(a), (c) and (e). For larger m, the errors are
small and they still decay with ω. There appears to be a kink phenomenon
in the three figures, most visible in Fig. 2(e). The asymptotic convergence
rates match the smaller slopes at larger ω. We currently have no explanation
for the initial convergence that appears to be faster. In the right figures,
convergence is shown as a function of m. Exponential convergence is seen
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Figure 2: Convergence of the superinterpolation scheme with Chebyshev
points for the integral

∫ 1
−1(cosx+ sinx)eiωxdx as a function of increasing ω

(left figures) or as a function of increasing number of Chebyshev points m
(right figures).

in the three cases, that levels off only when machine precision is reached.
Errors are consistently smaller for larger values of ω.

We compare the results to Filon-type quadrature using interpolation of
derivatives at the endpoints in Fig. 3. We have used function values and
derivatives up to order 2 at the endpoints. This should be compared to
using 3 superinterpolation points near both endpoints, as in Fig. 2(e)-(f).
The errors in the superinterpolation scheme are smaller by several orders of
magnitude, while the computational cost is the same since the degree of the
interpolant is the same and an equal number of moments are used in both
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Figure 3: Similar setup as in Fig. 2, but with Filon-type quadrature using
derivatives at the endpoints. Results are shown using Hermite interpolation
of derivatives up to order 2 at the endpoints. This should be compared with
Fig. 2(e)-(f), where 3 superinterpolation are used at both endpoints instead.

methods.
Next, consider the integral with a stationary point of order 2,

I2 :=

∫ 1

−1

1

1 + 5x2
eiωx

3
dx.

In addition, the integrand has a pole in the complex plane at z = i/
√
5. Re-

sults are shown in Fig. 4 both for increasing ω and for increasing m. Due to
the pole close to the real axis, a larger number of Chebyshev points is needed
in order to reach machine precision. However, the exponential convergence
as a function ofm is clear. The asymptotic convergence rates in this example
are again O(ω−3), O(ω−5) and O(ω−7). These rates are exhibited in the left
figures for small m. For larger m, the asymptotic regime is not fully reached
within the range of ω shown in the figures. However, errors are consistently
smaller for larger m. Note that the numerical method of steepest descent
as proposed in [15] would not converge to the correct value of the integral
unless the residue at i/

√
5 was taken into account explicitly. This issue is

avoided with the currently proposed method: analyticity of the integrand in
a neighbourhood of the endpoints is sufficient since interpolation at Cheby-
shev points distributed on the real axis ensures numerical convergence. We
may conclude that the vicinity of the pole affects the convergence rate, but
not convergence itself.
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