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Crystalline Er2O3 thin films were epitaxially grown on Si �001� substrates. The dielectric constant

of the film with an equivalent oxide thickness of 2.0 nm is 14.4. The leakage current density as

small as 1.6�10−4 A/cm2 at a reversed bias voltage of −1 V has been measured. Atomically sharp

Er2O3 /Si interface, superior electrical properties, and good time stability of the Er2O3 thin film

indicate that crystalline Er2O3 thin film can be an ideal candidate of future electronic devices.

© 2006 American Institute of Physics. �DOI: 10.1063/1.2208958�

To meet the requirement of International Technology

Roadmap for Semiconductors �IRTS�, 50 nm complementary

metal oxide semiconductor �CMOS� devices must be real-

ized by the end of this decade. Accordingly, the thickness of

the commonly used gate SiO2 layer must be reduced to the

level of 0.6–0.8 nm with the scaling down of whole metal

oxide semiconductor field effect transistor �MOSFET�
devices.

1
However, when the thickness of the oxide layer

decreases to 2 nm or less, the tunneling effect becomes sig-

nificant, resulting in an exceptional increase of the leakage

�tunneling� current �up to a level of 10 A/cm2�.
2

In order to

reduce such a leakage current, metal oxide layers with high

dielectric constants �high k� are required and need to be

developed.
3

To convert such a system to a corresponding

SiO2 system, we may define an equivalent oxide thickness

�EOT� as

EOT = tkSiO2/km, �1�

where t, kSiO2, and km are the physical thickness of a high-k

oxide layer, the dielectric constant of SiO2, and the dielectric

constant of the high-k oxide layer, respectively. From this

equation, it is seen that, for a given physical thickness of an

oxide layer �to be sufficiently thick to prevent the leakage

current�, the EOT is inversely proportional to its dielectric

constant. When scaling down MOSFET devices, the EOT

needs to be reduced accordingly. To attain a reduced EOT

while using a relatively thick oxide layer, the oxide layer

must exhibit a high dielectric constant.

Apart from the high dielectric constant, it is generally

believed that, for a high-k material, it is essential for it to

have a low gate current, good stability �in terms of service

time�, and a low interface state density. Because of this, the

search for suitable oxide layers has been carried out exten-

sively, such as SrTiO3,
4

HfO2,
5

ZrO2,
6

and Al2O3.
7

Among

these materials, HfO2 has been believed to be a promising

high-k oxide in the near future. In general, rare earth �RE�
oxides have relatively high dielectric constants, larger band

gaps ��5.4 eV�,
8

higher conduction band offset with Si

�over 2 eV�,
9

and a good thermodynamic stability.
10,11

Re-

cently, RE oxide thin films, such as Y2O3,
12,13

Pr2O3,
14–16

and La2O3,
16

have been studied. In this work, we concentrate

on the Er2O3 oxide thin film. This is because Er2O3 thin film

is the most stable one of RE oxide thin films, particularly in

high temperatures such as 900 °C,
17

which puts it as a

unique candidate in high-temperature devices. For this rea-

son, the electrical property of Er2O3 films was studied

30 years ago.
18

In recent years, Er2O3 thin films grown on Si

substrates were achieved in several groups with different

techniques.
10,19,20

For example, Mikhelashvili and

Eisenstein
10

grew a series of Er2O3 thin films with different

thicknesses using electron-beam gun evaporation. They mea-

sured km=9 for a 10 nm thick Er2O3 thin film. This low km

value is due to the nature of its structure—a mixture of amor-

phous and polycrystalline phases as a result of the deposition

technique. To achieve improved electrical properties of

Er2O3 thin films, we used molecular beam epitaxy �MBE�
technique to grow Er2O3 thin films with thicknesses less than

10 nm.
20

In this study, the nanostructure of Er2O3 thin films

and their electrical properties are investigated and the physi-

cal reasons behind the demonstrated electrical properties are

discussed.

Approximately 7.5 nm thick Er2O3 thin film was grown

on a 1.5 in., p-type Si �001� wafer with a resistivity of

2–10 � cm by MBE with a growth temperature of 700 °C.

The details of the growth has been given in our previous

publication.
20

After growth, the sample was annealed at

450 °C for 30 min in 1 atm O2 ambience. The structure of

the Er2O3 thin film and the interface between the film and its

underlying Si substrate were investigated by x-ray diffraction

�XRD� and high resolution transmission electron microscopy

�HRTEM�. The surface morphologies of the Er2O3 thin film

was characterized by atomic force microscopy �AFM�. Their

electrical properties, such as capacitance-voltage �C-V� and

current-voltage �I-V� characteristics, were measured by an

HP 4284 LCR meter and a Keithley 2400 sourcemeter, re-

spectively �in which metallic Al was deposited on both sides

of the sample as electrodes�.
Figure 1 is an XRD pattern with the diffraction vector

along the growth direction and shows only one diffraction

peak at 2�=48.84° that corresponds to the �440� lattice spac-

ing of the cubic Er2O3 structure. This indicates that the �110	

a�
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direction of cubic Er2O3 is well aligned with the �001� direc-

tion of the Si substrate.

To certify the structure of the Er2O3 thin film and the

interfacial structure between Er2O3 and Si, HRTEM was car-

ried out on cross-sectional specimens. Figure 2 shows a typi-

cal HRTEM image, taken along the �110	 direction of the Si

substrate. From Fig. 2�a�, we can see the ripple of the film

surface with the maximum thickness of �8 nm. Figure 2�b�
is enlarged image from a part of Fig. 2�a�, where it is clearly

shown that the Er2O3 structure is well aligned with the Si

structure. Unlike other promising metal oxide films �such as

HfO2 and Pr2O3� where an interfacial layer might be formed

between the metal oxide film and the Si substrate, a rela-

tively sharp interface can be clearly revealed. The thin white

layer at the interface perhaps represents oxidized silicon.

Figure 3�a� shows high-frequency C-V curves of the

Er2O3 thin film with a MOS structure, measured at 10 kHz.

Measurement along the forward direction means the mea-

surement starting from an accumulation region to an inver-

sion region. Based on the capacitance value in the accumu-

lation region, the dielectric constant of the oxide film can be

calculated to be 14.4 and, correspondingly, EOT to be

2.0 nm. In Fig. 3, we find that hysteresis in bidirectional

C-V characteristics is very small, indicating that our oxide

film has a very low inner-interface trap density.
21

It is well known that,
22

for a dielectric material film, the

fixed charge density in an oxide film is another issue in real

applications, which can be calculated using the following

equation:

Q/S = Cox�− Vms − VFB�/S , �2�

where Q is the amount of the fixed charge within the elec-

trode area of the film, S is the electrode area �can be deter-

mined by direct measurement�, Cox is the capacitance of the

oxide layer �in our case, which is equal to the capacitance in

the accumulation region of the C-V curve�, Vms is the differ-

ence of the work functions between the semiconductor sub-

strate and the metal gate �for a given material system, Vms is

fixed and can be calculated; in our Al/Si system, Vms

=0.65 V�, and VFB is the flat-band voltage and its value can

be extracted from the C-V curve with the calculated the flat-

band capacitance. Other researchers have reported the value

of fixed charge density from 8�1013 to 1�1010 cm−2.
8,10,19

Based on our measurements, we have obtained that the maxi-

mum fixed charge density in our Er2O3 thin film is less than

1012 cm−2.

Figure 3�b� shows the I-V curve of the Er2O3 thin film

with the MOS structure. Well behaved I-V curve is observed.

The leakage current density has been measured to be as small

as 1.6�10−4 A/cm2 at a reversed bias voltage of −1 V. With

a reversed bias voltage less than 4.5 V, no breakdown is

observed.

It is of interest to compare the electrical property of our

Er2O3 thin film with HfO2 thin films, the most promising

future high-k material. Hong et al.
23

reported that, for a typi-

cal HfO2 thin film, an EOT=4.3–5.2 nm has a leakage cur-

rent density of �2.5–2.7��10−2 A/cm2 measured at −1.5 V,

which is much higher than our case �3.6�10−4 A/cm2 at

−1.5 V�. In fact, the leakage current density in our case is

two orders better than the typical HfO2 thin film with the

comparative EOT thickness, which satisfies commercial ap-

plications. It is well known that the leakage current is related

to the material energy band alignment and crystal structure.
24

Based on our estimation using x-ray photoelectron spectros-

copy �XPS�, the band gap of our Er2O3 thin film is 7.5 eV

and the conduction band offset for our Er2O3 /Si structure is

�3.5 eV. In contrast, the band gap of HfO2 thin film has

been determined to be 5.8 eV with �1.5 eV of the conduc-

tion band offset for the HfO2 /Si structure.
24

The comparison

of these values implies that there is a much higher barrier for

electrons in the interface between the Er2O3 layer and the Si

substrate, which will eliminate the leakage current signifi-

cantly. The sharp interface observed by HRTEM indicates

that the low leakage current is intrinsic of the thin film.

It is worth to notice that annealing in O2 ambience is a

critical process to improve the electrical properties of the

Er2O3 thin film. In order to estimate the importance of using

oxygen as an annealing medium, the electrical properties of

the Er2O3 thin film annealed in O2 and N2 ambiences were

measured and compared. It was found that the dielectric con-

stant of the Er2O3 film annealed in N2 ambience is �70% of

the dielectric constant of the Er2O3 film annealed in O2 am-

bience. This indicates that the as-deposited Er2O3 thin film is

FIG. 2. �a� A typical HRTEM image of an Er2O3 thin film grown on a Si

�001� substrate and �b� an enlarged HRTEM image of �a�.

FIG. 3. Electrical properties of the crystalline Er2O3 film are shown. �a�

C-V curves of the Er2O3 film tested at 10 kHz. A small hysteresis in bidi-

rectional C-V characteristics can be seen. �b� The I-V curve of the Er2O3

thin film. Leakage current density can be directly measured from this plot.

FIG. 1. An XRD pattern of an Er2O3 thin film with the diffraction vector

along the growth direction.
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deficient in oxygen, and annealing it in O2 ambience pro-

vides oxygen to adjust the film stoichiometric ratio and in

turn to improve its electrical properties. AFM results �taken

before and after annealing the thin film in O2 ambience�
show that the surface root mean square �rms� changes from

0.75 to 0.36 nm after the annealing process, indicating that a

smoother surface can be achieved through the annealing pro-

cess and the annealing process is critical to improve the elec-

trical properties of the Er2O3 thin film.

In order to investigate the stability of the Er2O3 thin film

under air exposure, XRD patterns of the Er2O3 thin film were

recorded in a regular interval. Figure 4 shows two XRD pat-

terns taking ten months apart. There is no obvious change in

their XRD patterns, implying no structural degradation dur-

ing this period of time. This is in a strong contrast to the

Pr2O3 thin film grown on Si,
25

where the structure of Pr2O3

thin film has changed even after several days of preparation.

The electrical properties of our Er2O3 thin film were also

frequently measured to assess its stability. Again, the result

confirmed that the dielectric properties were not degraded

after five months exposure in atmosphere.

In summary, we have grown crystalline Er2O3 films on

the Si �001� substrate through the epitaxial growth. The mea-

sured electrical properties of the thin film suggest that the

epitaxially grown Er2O3 thin film can be an ideal candidate

of future electronic devices, particularly for high-temperature

applications. Atomically sharp interface found through HR-

TEM in the Er2O3 /Si interface indicates that the near-perfect

epitaxial growth is responsible to the superior electrical

properties.
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