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Abstract  

Due to constantly varying wind speed, wind turbine (WT) rotor and the other drive train 

components often operate at variable speeds in order to capture energy from wind as efficiently as 

possible and therefore generate more electric power. Due to the variable loads and rotational speed, 

the condition monitoring (CM) signals collected from WTs always contain intra-wave features, 

which are difficult to extract through performing conventional Time-Frequency Analysis (TFA) 

because the successful extraction of these intra-wave characteristics requests a locally adaptive 

signal processing technique. To now, only Empirical Mode Decomposition (EMD) and its 

extension form can meet such a requirement. However, practice has shown that the EMD and those 

EMD-based techniques also suffer a number of defects in TFA (e.g. weak robustness of against 

noise, unidentified ripples, inefficiency in detecting side-band frequencies, etc.). The existence of 

these issues has significantly limited the extensive application of the EMD family techniques to 

WT CM. Recently, an alternative TFA method, namely Variational Mode Decomposition (VMD), 

was proposed to overcome all these issues. The purpose of this paper is to verify the superiorities 

of the VMD over the EMD and investigate its potential application to the future WT CM. 

Experiment has shown that the VMD outperforms the EMD not only in noise robustness but also 

in multi-component signal decomposition, side-band detection, and intra-wave feature extraction. 

Thus, it has potential as a promising technique for WT CM.   



 

Keywords: wind turbine, condition monitoring, variational mode decomposition, empirical mode 

decomposition    

    

1. Background 

Wind turbine (WT) condition monitoring (CM) has been widely accepted as one of the most 

effective approaches to reducing the Cost of Energy (COE) of wind power [1-7], premised on that 

CM is able to give reliable indication and prediction to the actual health condition of the WTs and 

their components. While, reliable CM relies on the use of effective signal processing tools, which 

enable the successful extraction of those fault-related features from WT CM signals. 

    Nowadays, variable speed control is adopted by most large mega-watt scale WTs to adapt for 

constantly varying wind load and enable WTs to work efficiently over a wide range of wind speeds. 

Such a control strategy does maximize WT power generation. However, it also brings challenge 

to WT CM at the same time because intra-wave features are present in the WT CM signals when 

the WT rotates at variable speeds. The successful extraction of these intra-wave features requests 

locally adaptive signal processing technique that can match the gradual evolution of the time 

waveform of the signal. However, so far most Time-Frequency Analysis (TFA) tools, except the 

Empirical Mode Decomposition (EMD) [8] and its extension forms (e.g. Local Mode 

Decomposition (LMD) [9] and Intrinsic Time-scale Decomposition (ITD) [10]), are not locally 

adaptive in nature.  

In contrast to conventional TFA methods, the EMD and LMD provide more realistic signal 

representations without artifacts imposed by the non-adaptive limitations of both Fourier- and 

Wavelet-transform based TFA methods. They are completely adaptive to the change of signal 

waveforms and decompose the signal into a limited number of Intrinsic Mode Functions (IMFs) 

or production functions through automatically performing a series of recursive calculations. These 

decomposed functions represent the fundamental oscillatory modes of the signal, from which the 

instantaneous time-frequency features of interest are deemed to be observed. This enables the 

EMD-based methods have potential as promising tools for dealing with the engineering problems 

associated with the analysis of intra-wave signals, for example sea waves, earthquake waves, 

biomedical signals and so on. In recent years, the application of EMD and its extension forms 

(such as LMD and ITD) have been extended to the field of machine CM [8-19]. However, practice 



has disclosed that the EMD and its extension forms also show the following defects in signal 

processing and feature extraction: 

 weak robustness of against noise. The EMD-based techniques are sensitive to the noise 

contained in the signal. A little change in the Signal-to-Noise Ratio (SNR) of the signal 

can lead to significantly different signal decomposition results. Such a phenomenon 

inspired the development of Ensemble Empirical Mode Decomposition (EEMD) [20];  

 unidentified features. Unidentified ‘ripples’ are often present in the results obtained from 

EMD-based techniques, particularly at low frequencies [8]. They spoil the time-frequency 

features of the signal and thus increase the difficulty of signal interpretation;   

 inefficient capability in decoupling frequency components. The EMD-based techniques 

have limitations in distinguishing different components in narrowband signals [21]. They 

often allocate those frequency components in immediate vicinity into the same decompose 

function by mistake. As a consequence, the fault-related instantaneous time-frequency 

features, such as the side-band characteristics induced by fault, cannot be successfully 

extracted from the signal. 

All these disadvantages discount the added value of the EMD-based techniques in signal 

processing and thus significantly limit their extensive application to machine CM, despite the lots 

of efforts for improvement, such as the work reported in [9], [20], [22] and so on. To address these 

issues, an alternative signal processing tool, namely Variational Mode Decomposition (VMD), 

was developed recently [23]. It has been claimed that in theory, the VMD outperforms the EMD 

in tone detection, tone separation, and noise robustness [23]. These merits potentially enable the 

VMD to be an effective tool for processing non-stationary signals and implementing machine CM 

tasks. In order to investigate the actual benefit of the VMD in real life, the comparison of the VMD 

and the EMD were performed quite recently in a few literatures [24-27]. However, the comparisons 

performed in the reported literatures lack depth, i.e. they mainly focus on comparing the time-

waveforms of the functions decomposed respectively by the VMD and EMD, rather than 

investigating their different capabilities in tone detection, tone separation and noise robustness as 

well as the superiorities of the VMD in extracting instantaneous time-frequency features from non-

stationary signals. For this reason, a depth investigation of the non-stationary signal processing 

capability of the VMD is further conducted in this paper via both numerical simulation and 

experimental approaches. Its superiorities in tone detection, tone separation, noise robustness and 



instantaneous time-frequency feature extraction are demonstrated through the comparison with the 

EMD.    

The remaining part of the paper is arranged as follows. Firstly, the fundamental theory of the 

VMD is explained in Section 2; secondly, the superiorities of the VMD over the EMD in tone 

detection, tone separation, noise robustness and time-frequency feature extraction are 

experimentally verified in Section 3; thirdly, the potential application of the VMD to WT CM is 

investigated in Section 4. The paper is finally concluded in Section 5.      

 

2. Variational mode decomposition (VMD) 

According to [23], the VMD decomposes an original signal 𝑓(𝑡) into a given number of modes 

(𝑢𝑘(𝑡), 𝑘 = 1,2,3, … … , 𝐾) either exactly or in a least squares sense, i.e. 

                                              𝑓(𝑡) = ∑ 𝑢𝑘(𝑡)𝐾𝑘=1                                                                         (1) 

where the number of modes 𝐾 is defined in advance. 𝑢𝑘(𝑡) are narrow-band mode functions. They 

can be written as 𝑢𝑘(𝑡) = 𝐴𝑘(𝑡)cos(𝜙𝑘(𝑡))                           (2)                               

where 𝐴𝑘(𝑡) and the time derivative of phase change 𝜙𝑘′ (𝑡) are assumed to be positive and slowly 

varying component compared to phase 𝜙𝑘(𝑡).                                                                         

    The decomposed modes have specific sparsity property while reproducing the input signal. In 

other words, each mode is mostly compact around a central frequency. To reach this purpose, the 

bandwidth of every mode is assessed by using the following scheme: 

    Step 1: For each mode 𝑢𝑘(𝑡), compute the associated analytic signal ℋ(𝑢𝑘(𝑡))by means of 

the Hilbert transform, i.e. 

                                              ℋ𝑢𝑘(𝑡) = 1𝜋 𝑝. 𝑣. ∫ 𝑢𝑘(𝜐)𝑡−𝜐ℝ 𝑑𝜐                                                    (3) 

Then, a new analytic function 𝑢𝑘(𝑡) + 𝑗ℋ𝑢𝑘(𝑡) (𝑗 = √−1) can be formed, which is a unilateral 

frequency spectrum. 

    Step 2: Shift the frequency spectrum of the mode to “baseband” by mixing with an exponential 

function tuned to the estimated central frequency 𝜔𝑘 of the mode. 

                                              𝑢𝑘𝑀 = (𝑢𝑘(𝑡) + 𝑗ℋ𝑢𝑘(𝑡))𝑒−𝑗𝜔𝑘𝑡                                           (4) 



    Step 3: Then, the bandwidth of the inspected mode can be estimated through the H1 Gaussian 

smoothness of the demodulated signal, i.e. the squared L2 norm of the gradient, 

                                              𝐵𝑊𝑘 = ‖𝜕𝑡 [((𝛿(𝑡) + 𝑗𝜋𝑡) ∗ 𝑢𝑘(𝑡)) 𝑒−𝑗𝜔𝑘𝑡]‖22                           (5) 

This is associated with a constrained variational problem, i.e. 

                        min𝑢𝑘,𝜔𝑘 {∑ ‖𝜕𝑡 [((𝛿(𝑡) + 𝑗𝜋𝑡) ∗ 𝑢𝑘(𝑡)) 𝑒−𝑗𝜔𝑘𝑡]‖22𝑘 }   𝑠. 𝑡. ∑ 𝑢𝑘 = 𝑓𝑘                (6) 

    In order to render the problem unconstrained, both a quadratic penalty term and Lagrangian 

multipliers are used to construct the following augmented Lagrangian: 

   ℒ(𝑢𝑘, 𝜔𝑘, 𝜆) = 𝛼 ∑ ‖𝜕𝑡 [((𝛿(𝑡) + 𝑗𝜋𝑡) ∗ 𝑢𝑘(𝑡)) 𝑒−𝑗𝜔𝑘𝑡]‖22𝑘 + ‖𝑓 − ∑ 𝑢𝑘𝑘 ‖22 + 〈𝜆, 𝑓 − ∑ 𝑢𝑘𝑘 〉  
                                                                                                                                                  (7) 

where, 𝛼 is a parameter designed to control the bandwidth of the filter. 

The resultant constrained variational problem can be solved by separating minimizations with 

respect to the resultant modes {𝑢𝑘} and their corresponding central frequencies {𝜔𝑘}.  

Based on the theory depicted above, the VMD is implemented via the following computing 

algorithm: 

(1) Define the number of modes 𝐾; 

(2) Initialize {�̂�𝑘1} , {𝜔𝑘1}, �̂�1, and 𝑛 = 0; 

(3) Update 𝑛 with 𝑛 + 1, and repeat the following loop 

 

For 𝑘 = 1: 𝐾  

Update �̂�𝑘  for all 𝜔 ≥ 0 with 

                                              �̂�𝑘𝑛+1(𝜔) = �̂�(𝜔)−∑ 𝑢𝑖𝑛+1(𝜔)−∑ 𝑢𝑖𝑛𝑖>𝑘 (𝜔)+�̂�𝑛(𝜔)2𝑖<𝑘 1+2𝛼(𝜔−𝜔𝑘𝑛)2                             (8) 

Update 𝜔𝑘  with 

                                              𝜔𝑘𝑛+1 = ∫ 𝜔|𝑢𝑘𝑛+1(𝜔)|2𝑑𝜔∞0∫ |𝑢𝑘𝑛+1(𝜔)|2𝑑𝜔∞0                                                             (9) 

End for. 



Dural ascent for all 𝜔 ≥ 0 

                                              �̂�𝑛+1(𝜔) = �̂�𝑛(𝜔) + 𝜏(𝑓(𝜔) − ∑ �̂�𝑘𝑛+1(𝜔)𝑘 )                        (10) 

Until the following convergence condition is satisfied  

                                              ∑ ‖𝑢𝑘𝑛+1−𝑢𝑘𝑛‖22‖�̂�𝑘𝑛‖22𝐾𝑘=1 < 𝜀                                                                (11) 

where, 𝑓 represents the Fourier transform of original signal 𝑓(𝑡). 
From the algorithm depicted above, there are two key parameters that can affect the VMD results. 

They are 

 the number of modes 𝐾; and 

 bandwidth control parameter 𝛼 

The former is determined based on the number of frequency components included in the signal 

being inspected, while the latter is determined based on the central frequency of interest. They are 

correlated to each other. In theory, 

 a large number of modes would lead to redundant VMD information, while a small number 

of modes would result in the phenomenon of mode mixing in the VMD results;  

 the smaller the value of bandwidth control parameter, the wider the bandwidth of the filter 

tends to be. When the bandwidth of the filter is wide, more background noise and 

interference items will be included in the VMD result. But if the filter bandwidth is too 

narrow, the VMD results are likely to be distorted sometimes. 

 From these reasons, both parameters 𝐾 and 𝛼 should be optimised to assure the accuracy of the 

VMD. Since this paper is focused only on investigating the superiorities of the VMD in contrast 

to the EMD rather than improving the VMD, the achievements on optimized VMD will be reported 

in a separate paper. 

 

3. Verification of the VMD 

In this section, the superiorities of the VMD over the EMD in noise robustness, multi-component 

signal decomposition, side-band feature detection, and intra-wave signal interpretation will be 

investigated. Herein, it is necessary to repeat once again that the number of modes 𝐾 used for 

VMD calculation needs to be defined in advance. However, how to define an appropriate value of 𝐾 is still an open question remaining to resolve. In this paper, to facilitate the comparison of the 



VMD and EMD the number of IMFs resulted by the EMD in corresponding scenario will be taken 

as the value of 𝐾.  

 

3.1 Noise robustness  

    To investigate the noise robustness performance of the VMD, a simulated signal 𝑥(𝑡)  is 

designed, which is the sum of a harmonic signal and white noise 𝜎(𝑡).   

                                              𝑥(𝑡) = sin(2𝜋𝑓𝑡) + 𝜎(𝑡)                                                         (12) 

where 𝑓 = 70Hz, 𝑡 = 0~1s. 

When the Signal-to-Noise Ratio (SNR) is 10 dB, the time waveform of the discrete signal 

collected by using a sampling frequency of 1000 Hz is shown in Fig.1, from which it can be clearly 

seen that the harmonic signal has been seriously distorted by noise. Then, both the VMD and EMD 

are applied to processing the signal and the corresponding results are shown in Fig.2. 

 

 

Fig.1 Noise polluted signal 

 

    The comparison of Figs.2a and 2b shows that the VMD shows more powerful capability than 

the EMD in filtering white noise from 𝑥(𝑡), i.e. the white noise distributed in different frequency 

bands has been successfully extracted out by the VMD, see modes 1, 2, 4, 5 and 6 shown in Fig.2a. 

By contrast, the noise, particularly those in high-frequency bands, are not successfully extracted 

out by the EMD, see the IMFs shown in Fig.2b. This implies that noise still exists in the resultant 

IMFs by the EMD. As a consequence, the 70 Hz harmonic component is seriously smeared in the 

time-frequency map shown in Fig.2d, while it has been precisely illustrated in Fig.2c. From this 

example, it is sure that the VMD does surpass the EMD on noise robustness. Herein, it is worthy 

to note that the time-frequency maps shown in Figs.2c and 2d are obtained by simply performing 

the Hilbert transforms of the ‘modes’ and ‘imfs’ respectively in Figs.2a and 2b. This is a standard 

method adopted by the Hilbert-Huang transform to extract the instantaneous time-frequency 

features from nonlinear, non-stationary signals [21].    

 



  

(a) Modes by the VMD (b) IMFs by the EMD 

  

(c) Time-frequency map by the VMD (d) Time-frequency map by the EMD 

Fig.2 Verification of noise robustness 

 

3.2 Multi-component signal decomposition  

    Assume a multi-component signal 𝑥(𝑡) 

                                              𝑥(𝑡) = sin(2𝜋𝑓1𝑡) + sin(2𝜋𝑓2𝑡) + sin(2𝜋𝑓3𝑡)                       (13) 

consisting of three harmonic components. 𝑓1 = 30Hz, 𝑓2 = 50Hz, and 𝑓3 = 70Hz. Apply both the 

VMD and EMD to decomposing the signal and the corresponding results are shown in Fig.3. 

From Fig.3, it is found that the VMD has successfully decoupled the three harmonic components 

30Hz, 50Hz and 70Hz in the raw signal and moreover allocated them correctly to right modes. By 

contrast, the EMD fails to correctly decouple these three frequency components. The components 

of 50Hz and 70Hz are wrongly allocated to the same IMF function. The 30Hz component is 

allocated into IMF2, but a small leakage of it still can be observed from IMF1. Due to this 

unsatisfactory signal decomposition result by the EMD, the three frequency components are 

smeared in the time-frequency map shown in Fig.3d. In comparison, the three frequency 

components are explicitly illustrated in the time-frequency map in Fig.3c despite the distortions 



appearing at both sides of boundaries. Thus, it can be said that the VMD does outperform the EMD 

in multi-component signal decomposition. Moreover, such a powerful tone separation capability 

of the VMD is also extended to detecting side-band features, which are often related to the presence 

of a fault. 

 

  

(a) Modes by the VMD (b) IMFs by the EMD 

  

(c) Time-frequency map by the VMD (d) Time-frequency map by the EMD 

Fig.3 Verification of multi-component signal decomposition 

 

3.3 Side-band feature detection  

    In order to demonstrate the capability of the VMD in detecting side-band features, the following 

signal is simulated and its corresponding VMD and EMD results are shown in Fig.4. 

                                              𝑥(𝑡) = 0.2 sin(2𝜋𝑓1𝑡) + sin(2𝜋𝑓2𝑡) + 0.2 sin(2𝜋𝑓3𝑡)            (14) 

where 𝑓1 = 45Hz, 𝑓2 = 50Hz, and 𝑓3 = 55Hz. The first and third items in the equation are 

designed with small amplitude in order to simulate weak side-band frequency components induced 

by fault. 



    From Fig.4a, it is found that although the three frequencies are very close to each other and the 

side-band components are insignificant in amplitude, both side-band components have been 

successfully detected by the VMD and perfectly decoupled from the central frequency 50Hz. 

Thanks to this successful decomposition, all three frequency components are correctly illustrated 

in the time-frequency map shown in Fig.4c. On the contrary, the EMD fails to perform successful 

detection of the side-band features. All three frequency components are wrongly allocated into the 

same IMF. As a consequence, only the central frequency 50Hz can be identified from the time-

frequency map in Fig.4d. The map does not give any indication to both side-band frequencies. 

Through this experiment, it can be said that the EMD is inefficient in side-band feature detection, 

while the VMD shows a powerful capability in this aspect.       

 

  

(a) Modes by the VMD (b) IMFs by the EMD 

  

(c) Time-frequency map by the VMD (d) Time-frequency map by the EMD 

Fig.4 Verification of side-band feature extraction 

 

3.4 Intra-wave signal interpretation 

    From the computing algorithm described in Section 2, it can be inferred that the VMD is, in 

essence, a signal filtering technique originated from the Hilbert transform. It is not locally adaptive. 



Thus, it is essential to verify its capability in processing intra-wave signals. In addition, considering 

the VMD will be applied to interpreting WT gearbox signals that are often modulated by a number 

of exciting sources, the following signal is deliberately designed to test the capabilities of the VMD 

in interpreting intra-wave and amplitude-modulated signals.     

                                              𝑥(𝑡) = {sin(2𝜋𝑓1𝑡) 0 ≤ 𝑡 < 0.5𝑠sin(2𝜋𝑓𝑐ℎ𝑖𝑟𝑝𝑡) 0.5𝑠 ≤ 𝑡 < 1𝑠sin(2𝜋𝑓2𝑡) sin(2𝜋𝑓3𝑡) 1𝑠 ≤ 𝑡 ≤ 1.5𝑠                     (15) 

where 𝑓1 = 10Hz, 𝑓2 = 100Hz, 𝑓3 = 5Hz, and the chirp frequency 𝑓𝑐ℎ𝑖𝑟𝑝 increases linearly from 𝑓1 to 𝑓2 over the time from 0.5s to 1s. 

To ease understanding, the time waveform of the signal is shown in Fig.5. Likewise, both the 

VMD and EMD are applied to the signal and the corresponding results are shown in Fig.6. 

 

 

Fig.5 Intra-wave signals 

 

From Fig.6, it is found that the intra-wave feature has been successfully extracted out by both 

the VMD and the EMD. However, the comparison suggests that the VMD is still superior to the 

EMD because the EMD generates unidentified components while the VMD does not. These 

unidentified frequency components spoil the time-frequency map and consequently make signal 

interpretation more difficult. In addition, from Fig.6 it is seen that the amplitude modulation feature |𝑓1 ± 𝑓2| have been successfully detected also by the VMD, from which frequencies 𝑓1 and 𝑓2 can 

be readily derived. By contract, the modulation feature cannot be observed at all from the EMD 

results.   

 

 



  

(a) Modes by the VMD (b) IMFs by the EMD 

  

(c) Time-frequency map by the VMD (d) Time-frequency map by the EMD 

Fig.6 Intra-wave feature extraction and signal modulation detection 

 

From the above experiments, it can be concluded that the VMD does outperform the EMD on 

the performance of noise robustness, tone detection, tone separation and time-frequency feature 

extraction. All these superiorities enable the VMD to have potential as a promising tool for WT 

CM. Accordingly, experiments are further conducted on test rig in the next section in order to 

verify this potential capability of the VMD. 

 

4. Applications to WT CM  

To investigate the potential of the VMD in WT CM, in this section the VMD is applied to detect 

both a mechanical and an electrical fault occurring in ‘geared WTs’. The vibration signal used for 

detecting the mechanical fault was collected from the high-speed stage of the gearbox in an 

operating WT, while the electric power signal used for detecting the electrical fault was collected 

from the induction generator in a WT CM test rig. 

 

4.1 Mechanical fault detection 



The raw gearbox vibration signal was collected by using a sampling frequency of 20 kHz. Its 

time waveform is shown in Fig.7, where the vibration acceleration data collected before and after 

the gear tooth surface was damaged (i.e. pitted) are integrated into one signal for facilitating the 

understanding of fault detection results.    

 

 

Fig.7 Raw gearbox vibration signal 

 

In order to highlight the powerful feature extraction ability of the VMD in WT CM, in the 

experiment both the VMD and EMD are applied to interpret the vibration signal shown in Fig.7. 

The corresponding signal analysis results are shown in Fig.8.   

From Fig.8, it is found that in comparison of the EMD, the VMD accomplishes a precise 

decomposition of the signal, i.e. the raw vibration signal is manifested by 14 modes that are sorted 

in ascending frequency order. These modes are ‘not exactly’ but are nearly mono-component 

signals attributed to their limited bandwidth, see Fig.8a. In contrast to the VMD, the EMD 

decomposes the signal into 13 IMFs and 1 residual component. The IMFs are sorted in descending 

frequency order. But their frequency bandwidth is not constrained at all. For example, from Fig.8b 

it is clearly seen that both IMF1 and IMF2 have very wide bandwidth. It is such a defect leads to 

the smeared time-frequency features in Fig.8d. This is because the instantaneous time-frequency 

features of the signal always cannot be extracted satisfactorily by the means of the Hilbert 

transform if the signal being investigated has wide bandwidth. Such a point of view is also 

supported by the signal decomposition and feature extraction results shown in Figs.3, 4 and 6. On 

the contrary, the Hilbert transform can work very well in extracting the instantaneous time-

frequency features if the signal of interest has limited bandwidth. Also for this reason, the time-

frequency features that indicate the pitted gear tooth surface are precisely illustrated in Fig.8c. It 

has no doubt that the VMD has shown success in detecting this gear tooth fault, while the EMD 

fails in fault detection. 



  

(a) Modes by the VMD (b) IMFs by the EMD 

  

(c) Time-frequency map by the VMD (d) Time-frequency map by the EMD 

Fig.8 Detection of the fault occurring in the gearbox of an operating WT  

 

4.2 Electrical fault detection 

    As mentioned above, the signal used in this section was collected from the generator of a geared 

WT CM test rig by using a sampling frequency of 5 kHz. The test rig comprises a 54 kW dc 

variable-speed motor, a two-stage gearbox and a 30 kW two pole pair induction generator, 

instrumented and controlled using LabVIEW [28]. To simulate the variable operational conditions 

of an operating WT, a variety of wind speed inputs were applied to the test rig via the dc motor, 

the speed of which was controlled by an external model incorporating the properties of natural 

wind at a variety of speeds and turbulences. In the experiment, the generator rotor was connected 

to an external load bank, allowing the simulation of generator electrical asymmetry faults via 

adjusting the phase resistances in the load bank. When the rotor phase resistances are repeatedly 

adjusted to be imbalanced, the electric power signal collected from the variable speed generator is 



shown in Fig.9. Since for a two pole pair induction generator, the generator electrical signals will 

be modulated twice by the slip frequency as the rotor asymmetry moves through the air gap 

magnetic field twice for every pole pair cycle, the twice slip frequency can be regarded as the 

characteristic frequency for detecting the generator electrical asymmetry fault. Therefore, to ease 

fault detection the corresponding twice slip frequency against the variable rotational speed of the 

generator is also calculated and shown in Fig.9. 

 

 

Fig.9 Generator electrical signal from a WT CM test rig 

 

    Likewise, both the VMD and EMD were applied to interpret the electric power signal in Fig.9 

and the corresponding signal processing results are shown in Fig.10. 

From Fig.10, it is found that all merits of the VMD in contrast to the EMD in signal 

decomposition and feature extraction have been demonstrated once again, i.e. the raw signal is 

precisely decomposed into a number of modes with limited frequency bandwidth, which allows a 

correct description of the instantaneous time-frequency features in Fig.10c by the means of the 

Hilbert transform. From Fig.10c, it is seen that despite the variable rotational speed, the fault-

related twice slip frequency component is present immediately as soon as the generator rotor 

becomes asymmetry, while it is absent when the rotor phases are electrically symmetry. 

Undoubtedly, the generator electrical asymmetry fault can be readily detected from this 

observation. In comparison, Fig.10b shows that the EMD resultant IMFs are not necessary limited 

bandwidth signals. Their instantaneous time-frequency features cannot be correctly detected by 

using the Hilbert transform. As a consequence, they smear the time-frequency features in Fig.10d, 

increase the difficulty of CM, and make it impossible to implement fault detection.        

 



  

(a) Modes by the VMD (b) IMFs by the EMD 

  

(c) Time-frequency map by the VMD (d) Time-frequency map by the EMD 

Fig.10 Detection of an electrical fault occurring in a ‘WT’ generator  

 

5. Conclusions  

In order to explore a more effective signal processing method for realizing reliable WT CM, the 

superiorities of the recently developed VMD over the EMD in noise robustness, tone detection, 

tone separation and instantaneous time-frequency feature extraction are investigated in this paper. 

From the work reported above, the following conclusions are reached: 

 Attributed to the use of a bandwidth constrain condition depicted by (4) and (5), the VMD 

resultant modes have limited frequency bandwidth. By contrast, as the EMD does not 

perform any bandwidth checking in calculation, the obtained IMFs are not necessary 

narrow-band functions; 

 The narrow-band modes obtained from the VMD are ‘not exactly’ but almost mono-

component signals, of which the instantaneous time-frequency features can be accurately 

extracted with the aid of Hilbert transform. By contrast, the IMFs derived from the EMD 



are not necessarily narrow-band functions, of which the instantaneous features cannot be 

correctly extracted by performing the Hilbert transform. Thus, the instantaneous time-

frequency features of the signal being inspected are more likely to be successfully extracted 

by the VMD rather than by the EMD; 

 The VMD outperforms the EMD also in intra-wave signal analysis because the EMD 

generates unidentified ripples at low frequencies, which spoil the time-frequency map thus 

make signal interpretation more difficult; 

 In contrast to the EMD, the VMD is not only robust in against noise, but also efficient in 

detecting weak side-band features contained in the signal. These merits make the VMD 

ideal for processing real WT CM signals, which are often polluted by background noise 

and the fault induced features are usually weak and difficult to detect.  

The experimental results depicted in Section 3 and WT CM results reported in Section 4 

have provided convincing proofs to support the above conclusions although further verification 

is still required in the future. In view of these merits, to further improve the accuracy of the 

VMD by optimizing its parameters 𝐾 and α and then turn the VMD to be a feasible in-situ WT 

CM technique will be a future work. 
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