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Abstract
Background Many studies are investigating the role of living and nonliving models to train microsurgeons. There is controversy
around which modalities account for the best microsurgical training. In this study, we aim to provide a systematic literature
review of the practical modalities in microsurgery training and compare the living and nonliving models, emphasizing the
superiority of the former. We introduce the concept of non-technical skill acquisition in microsurgical training with the use of
living laboratory animals in the context of a novel proposed curriculum.
Methods A literature search was conducted on PubMed/Medline and Scopus within the past 11 years based on a combination of
the following keywords: “microsurgery,” “training,” “skills,” and “models.” The online screening process was performed by two
independent reviewers with the Covidence tool. A total of 101 papers was identified as relevant to our study. The protocol was
reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.
Results Livingmodels offer the chance to develop both technical and non-technical competencies (i.e., leadership, situation awareness,
decision-making, communication, and teamwork). Prior experience with ex vivo tissues helps residents consolidate basic skills prior to
performing more advanced techniques in the living tissues. Trainees reported a higher satisfaction rate with the living models.
Conclusions The combination of living and nonliving training microsurgical models leads to superior results; however, the gold
standard remains the living model. The validity of the hypothesis that living models enhance non-technical skills remains to be
confirmed.

Level of evidence: Not ratable.
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Introduction

Many studies are investigating the role of living and nonliving
models to train microsurgeons. In the current literature, there is
controversy around which modalities account for the best

microsurgical training. Living models include live animals used
in the laboratory for research and/or experiments. Nonliving
models are subdivided in the following categories: (a) non-vital,
such as chicken wing/thigh [1] or aorta [2], porcine trotters, and
human cadavers [3]; (b) prosthetic; and (c) virtual reality [4]. One
major difference between these two broad categories is the lack
of blood circulation in the ceased specimens. Thus, the trainee
microsurgeon is unable to practice intraoperative hemostasis and
postsurgical assessment of anastomotic patency (i.e., the survival
of the reconstructed flap).

International consensuses on minimum standards for mi-
crosurgical courses [5, 6], minimum microsurgery case re-
quirements [7], and several validated training models with
objective structured assessment of technical skills (OSATS)
have been devised to evaluate the trainees’ performance in
microsurgery [8–11]. The development of assessment tools
for robot-assisted microsurgery (RAMS) skills is still in prog-
ress [12–15]. All of these innovative grading tools are com-
prehensive and reliable for assessing the students’ progress
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throughout a microsurgical course [16, 17]. However, they
focus solely on the technical aspects [18], such as manual
dexterity, hand-eye coordination, meticulous suture place-
ment [19, 20], speed, operative flow, motion [21], and patency
of the anastomosis based on task-specific checklists [22–26].

On the other hand, non-technical skills (NTS) are equally
important. Non-technical skills include five broad categories:
leadership, situation awareness, decision-making, communi-
cation, and teamwork [27, 28]. Recent research has shown
non-technical skills are important to successful outcomes; up
to 43% of errors made in surgery can be attributed to poor
communication in the operating room [29]. In the operating
room, NTS rise to the forefront when completing a procedure.
Without prior exposure to NTS acquisition, surgeons are left
to learn these skill sets while in the operating room. The need
for proper evaluation of these skills when examining and
treating patients is critical. However, empirical evidence sug-
gests that there is a gap in current microsurgical training by
means of not incorporating NTS into the curriculum, and by
the use of solely nonliving models by some programs.

In this study, we aim to provide a systematic literature
review of the practical modalities in microsurgery training
and compare the living and nonliving models, emphasizing
the superiority of the living models. Also, we introduce the
concept of non-technical skill acquisition in microsurgical
training with the use of living laboratory animals in the con-
text of a novel proposed curriculum.

Materials and methods

A systematic literature review was conducted in PubMed/
Medline and Scopus. The keywords used to identify relevant
literature in PubMedwere the following: “microsurgery,” “train-
ing,” “skills,” and “models.” The filters applied were English
language and articles within the past 11 years. Two independent
reviewers (K.G., J.R.P.) performed the search and screening
process, based on title and abstract with the Covidence tool.
Irrelevant articles were screened against the following inclusion
and exclusion criteria. Conflicts in the selection process were
resolved by discussion between these two authors.

Inclusion criteria:

& microsurgical training models
& both living and nonliving models
& experimental studies
& English language
& studies available electronically

Exclusion criteria:

& non-microsurgical training models
& human studies

& Letters to the Editor/correspondence
& articles without an abstract or full text
& non-English articles

We focused on articles on experimental living and nonliv-
ing microsurgical training models and their effect in non-
technical skill acquisition. We intend to perform a meta-
analysis depending on the homogeneity or heterogeneity of
the results from our study.

Results

PubMed/Medline and Scopus searches between 2010 and
2020 yielded 121 and 186 papers, respectively. Upon appli-
cation of filters (within the past 11 years, English language)
and screening for eligibility, relevant PubMed/Medline and
Scopus articles accounted for 48 and 53, respectively. A total
of 101 articles was included in the study. The Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) algorithm is shown in Fig. 1. The study designs
and methodologies were highly variable among the articles.
The data retrieved were heterogeneous and could not be com-
bined numerically. Therefore, a review was performed with-
out a meta-analysis. For the included studies, the following
information was extracted: (a) authors (year of publication),
(b) demographics, (c) training modality, (d) type of skills
assessed, and (e) conclusion. A summary of the major studies
is described in Table 1.

Advantages of living training models

Throughout the history of microsurgery evolution, there are
many outstanding examples of using live animals in experi-
mental microsurgery. Firstly, the Nobel Prize winner Alexis
Carrel (1902) performed transplantation of several organs in
animals and invented the triangulation technique in vascular
repair. In 1903, Hopfner was the first to report the successful
mid-thigh limb replantation in a dog. In 1964, Buncke and
Schulz performed the first total ear replantation in a rabbit
[30]. Today, we learn from these experiments and revolution-
ize these techniques in human patients.

Live animal models have long been used as a means to
train microsurgeons since they are considered the gold
standard with many pros [31, 32]. Rats, in particular, are
larger in size than mice; therefore, there is an abundance
of tissues to work with and perform multiple exercises all
in one specimen. That leads to a reduction in the number
of live animals required, which translates to cost-effec-
tiveness. In addition, the physiology of the rat is closer
to that of the human. Established protocols in experimen-
tal surgery exist for usage of laboratory rat models in the
study of virtually all anatomical systems [33, 34].

168 Eur J Plast Surg (2021) 44:167–176



Rat vessels are a very close prototype of humane vessels that
gives trainees an extra edge of competence. The trainees learn
immaculate dissecting skills using hemostasis and ligating
branches from main vessels. Advanced training exercises can
be performed by trainees in rabbits, such as interposition vein
graft [35], bypass graft, free tissue transfer (e.g., groin flap), and
auricular transplantation. Apart from building technical skills
faster and more efficiently under the guidance of an expert in-
structor [36], the presence of an experienced teacher during the
execution of these exercises is fundamental in acquiring commu-
nication, teamwork, and decision-making skills.

Working with live rats simulates the operating theater ex-
perience because the rat is anesthetized. An intraperitoneal
infusion of ketamine is administered before and throughout
the exercises by the trainee to minimize the pain suffered by
the animal. The institutions which organize living model
courses are well established and have legal approval to run
as per the official research ethical regulations in each country
[37]. Also, a simulation environment which resembles a real
operating room (OR) contributes to the engagement of the
trainee. For example, operating in a theater suite scrubbed
and mentally prepared to perform a challenging exercise puts
the surgeon in a position of responsibility and raises pressure.
This situation is difficult to generate with a do-it-yourself
(DIY) device at home, even though such practice helps to

maintain basic technical microsurgical skills. Some training
centers have linked the role of positive psychology and spiri-
tual alertness with successful outcomes [37].

Preliminary studies show the detrimental effect of external
stressors and cognitive distraction to the accuracy of microsurgi-
cal performance [38]. Simulation assists learners to becomemore
dexterous and competent in controlling their level of anxiety or
stress [39], thus decreasing hand tremor and improving their
overall performance in simulated settings [40]. As a result,
trainees begin being capable of handling challenging situations
in the real clinical environment.

The living model offers the chance to develop non-
technical competencies, including decision-making capacities
and stress management while operating. Several examples of
non-technical skills include communication with instructors
and colleagues, observational learning, time management,
awareness of intraoperative distractions, reflective practice,
and consolidation of ethical practice (i.e., administering anes-
thesia and assessing for pain) [41, 42].

Due to the variability of the experimental livingmodels, the
residents learn the importance of flexibility, judgment, and
readiness to make a decision. In so doing, residents develop
a surgical reconstructive plan given the unique task at hand.
Technical and non-technical skills attained from live rats are
transferable to the human operating room.

Fig. 1 The screening process as
per the PRISMA algorithm
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Discussion

Alternative nonliving models as a stepping milestone
for basic skill consolidation

Microsurgery classrooms globally have recognized a principle
shift toward the “3 R’s”: (1) reducing the quantity of live animals
used, (2) replacing live models with virtual or classroom learning,
and (3) refining experimental designs [43]. The Animals
(Scientific Procedures) Act 1986 Amendment Regulations 2012,
paragraph 22/20B:(4) defines alternative strategies as “scientific
methods and testing strategies which do not use protected animals,
orwhich use fewer protected animals or reduce the pain, suffering,
distress or lasting harm caused to protected animals” [44].

In order to abide by these regulations, researchers and pol-
icy creators have begun to recognize and started to turn to
alternative educational modalities, such as nonliving models,
virtual reality/augmented reality (VR/AR) and three-
dimensional tools for microvascular anastomosis training
[45]. Thus, a reduction between 50 and 90% was achieved
in the usage of living animal models because of enhanced
skills gained through bench models prior to embarking on to
the real live tissues of the rat model [46] without compromis-
ing the quality of training [47].

Other studies support that the re-use of animals or ex vivo
human-based tissues, when appropriate, reduce the number of
animals consumed in the microsurgical laboratories while im-
proving basic skill sets [48]. For example, the human placenta

Table 1 List of major systematic reviews on various training modalities in microsurgery

Author (year) Type of study Training modality Skills assessed Conclusion

Abi-Rafeh et al.
(2019) [80]

Systematic review Nonbiological (prosthetic
models, VR)

Technical Reduction in live experimental animals
for microsurgery training

Beris et al.
(2020) [31]

Descriptive study of
novel proposed
curriculum

Live lectures, e-learning
modules, nonliving and living
models, VR

Technical Combination of teaching methods
yields high performance

Brown and Rapaport
(2016) [32]

Systematic review LF and HF models Technical Advocates LF models as excellent
alternatives to HF models

Dumestre et al. (2014)
[8]

Systematic review LF and HF models, basic and
advanced

Technical Each model offers unique training
features

Dumestre et al.
(2015) [25]

Systematic review Mixture of methods Technical (e.g., motion
analysis, dexterity)

Examines types of objective
assessment tools of microsurgical
skills

Ghanem et al.
(2013) [33]

Systematic review Mixture of methods Technical Quality analysis of other studies

Javid et al.
(2019) [34]

Systematic review Mixture of methods (bench,
cadaveric animal, live animal,
cadaveric human, VR)

Technical Lack of good LoE microsurgical
simulators

Margulies et al.
(2020) [35]

Systematic review Interactive and passive digital
resources (e.g., YouTube
videos, e-learning, social
media platforms, smartphone
applications, VR)

Technical Adjuncts to traditional training
modalities

Pafitanis et al.
(2018) [36]

Systematic review Living and nonliving SM
models

Technical Proposed SM curriculum

Chouari et al.
(2018) [3]

Experimental study Artificially perfused fresh frozen
cadavers

Technical Significant improvement in training
potential

Almeland et al.
(2020) [9]

RCT Silicone tube (microsurgery)
Latex model (macrosurgery)

Technical (microscopic
and macroscopic)

Poorer macrosurgical skills in medical
students exposed only to
microsurgical training vs both

van Mulken et al.
(2018) [14]

Preclinical study Microsure robotic system Technical Steeper learning curve and poorer
performance with robot vs
conventional method

Paladino et al.
(2020) [37]

Double-center
experimental cohort
study

Live rats Technical Expert instruction enhances
microsurgical performance vs
self-directed practice

Alshomer et al.
(2020) [38]

Proposed technological
innovation (to be
validated)

Novel 3D printed tool Technical Multiaxial/angular vessel orientation
for microvascular anastomosis
training simulating real clinical
cases

Oliveira et al.
(2018) [39]

Experimental model for
neurosurgery

Ex vivo human placenta
simulator

Technical Great resemblance with brain vessels,
practice bypass techniques

Malik et al.
(2017) [40]

RCT Home-based chicken femoral
artery

Technical Self-directed home-based training with
either jewelers microscope or iPad
has comparable results to
laboratory-based training using a
tabletop microscope

Yule et al.
(2018) [41]

Double-center study of
construct validity

Simulated surgical videos Non-technical Validation of NOTSS tool

LF low-fidelity, HF high-fidelity, VR virtual reality, LoE level of evidence, SM supermicrosurgery, RCT randomized controlled trial, NOTSS Non-
Technical Skills for Surgeons
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model of education offers the opportunity to practice duringmul-
tiple sessions, since there is a multitude of vessels to work with.
These vessels are prepared with macrodissection or microdissec-
tion after removal of the outermembrane of the placenta [49–51].
A myriad of novel synthetic [52] (e.g., silicone [53, 54], polyvi-
nyl alcohol gelatin tubes [55]) and biological training models has
been devised [56–58], applicable to surgical specialties (e.g.,
hand [59, 60], urology [61, 62], otolaryngology [63], ophthal-
mology [64, 65], orthopedics [66]). Another example is the
ex vivo ovine model for microsurgical training on parotidectomy
and facial nerve reanimation [67]. Persistent, repeated, interval
[68], deliberate, self-directed practice on low-fidelity platforms
are excellent alternatives to high-fidelity models [69–71]. It is
found that having previous practical experience with ex vivo
models enhances skill retention [70, 72], confidence [73], and
cognitive perception within the operating room because the tech-
nical skills have been mastered and become automatic. Using
both living and nonliving models offers the opportunity to reach
the highest level of competency needed in microvascular free
tissue transfer; each modality offers a unique skill set to the
trainee microsurgeon [70]. Transferable skills from nonliving
models are acquired and applied successfully in the live ratmodel
[70, 74, 75]. It should be emphasized that nonlivingmodels work
as an intermediate stage to consolidate basic skills prior to
embarking on more advanced exercises in the living model.
This allows for multitasking and increased efficiency within the
operating room [76].

Advantages of virtual reality and nonliving training
models

There is no doubt that nonliving models offer several advan-
tages. Grober et al. [41] concluded that microsurgical skills
attained in low- and high-fidelity training models are equally
effective for novice participants. In the current COVID-19 era,
where clinical exposure for trainees is minimized, VR/AR
helps sustain skills through simulated-based practice
[77–81]. Following the advent of new-age VR technology,
the next goal was to determine its predictive validity in human
operating rooms. Virtual reality was seen as a new educational
tool to both appeal to a growing movement toward minimiz-
ing live animal use, and as a new technological wave to update
curricula [82].

While early results are encouraging, multidimensional VR
applications have remained somewhat limited to specific
subprocedures of broader operations, such as harvesting of
free fibula and transplanting it for femoral head osteonecrosis.
As a result, select microsurgery courses have proposed mod-
ernized curricula consisting of a blend of both live and virtual
learning experiences [83]. A wealth of digital content is now
readily available and easily accessible to learn microsurgery
via YouTube videos, phone applications, professional
websites, and academic Institutions [84].

The porcine [46] and bovine [85] hearts and the microsur-
gical simulation model with pulsatile flow system [86] have
been devised as alternative methods of education for the train-
ee microsurgeon. Another example is the home-based micro-
surgical training model; this modality was shown to be a re-
alistic, cheap, and reproducible tool to help the trainee
microsurgeon to maintain already obtained skills [87, 88].
Another examples of a simple DIY type of simulator are the
plant-based model which uses the halved stem of a chive for
microsurgical anastomosis [89], the grapefruit training model
for cerebral artery side-to-side microsurgical bypass proce-
dure [90], and other innovations related to neurosurgery [91,
92]. Other considerable advantages of nonbiological micro-
surgical simulators include ease of setup and storage, low cost
[93], low maintenance, repeated use, no risk of infectious
disease transmission [82], and portability [94]. Thus, the tran-
sition from the ex vivomodel to the in vivo one will be smooth
for the resident [95–97].

Disadvantages of nonliving models

Byworking in isolation with artificial specimens, the trainee is
unlikely to receive immediate feedback from an instructor,
which would be deemed invaluable in building better micro-
surgical skills [36]. In contrast, residents are being monitored
from real-time video projectors and assessed with hand mo-
tion analysis technology through sophisticated computer soft-
ware [16, 98–101]. This offers an unparalleled experience of
quality feedback from the instructors to the students [41].
Other microsurgical training programs incorporated electroen-
cephalographic (EEG) monitoring to provide feedback to the
trainees [102].

Nonliving models cannot replicate the physiological pro-
cesses which take place within a living organism, such as
thrombogenesis, natural blood flow, the real feel of the living
tissues, and inflammatory processes secondary to traumatized
tissues, while the trainee performs exercises and handles tis-
sues in a rough manner. The basic structure of the vessel can
be generated with technology. For instance, the adventitia and
the vessel wall are possible to simulate with technology [103];
however, there is not yet a substitute for the intima and the role
of the living endothelial cells [104].

Additionally, studies on andragogical and pedagogical the-
ories support the view that trainees prefer to work with living
models than nonliving tissues [95]. When it comes to training
the future generation ofmicrosurgeons, it is wise to ensure that
the journey is enjoyable, and the educational techniques are
standardized, well studied, and proven effective. The teaching
modality should be attractive to the trainee microsurgeon in
order to enhance the learning process.

Mitchell and Arora [105] stated that “knowledge, the stan-
dard of work, coping with complexity and perception of con-
text” are the constructs of “the Dreyfus and Dreyfus model,”

171Eur J Plast Surg (2021) 44:167–176



which pertains to building surgical competencies. It is impor-
tant to remember this andragogy model in microsurgical train-
ing because the goal is not only a vital anastomosis but also a
well-rounded surgeon [105]. Decision-making constitutes
most of the surgical skill, especially when it comes to raising
flaps and performing more advanced microsurgical tech-
niques. Emphasis should be placed on the right mindset, frus-
tration, and stress management, along with interim practical
sessions. A summary of pros and cons for both living and
nonliving models is listed in Table 2.

Identifying the gap

While microsurgery education tools have focused on the
adoption of new technology and the latest cutting-edge
supermicrosurgical simulation training curricula [106–108],
we contend that the development of softer skills is necessary
for a surgeon in an operating room. Microsurgery is a de-
manding core skill set with a steep learning curve applied
across a variety of specialties. Often, students in a teaching
lab are encouraged to perform many procedures as respective
weeklong courses; procedures are tedious and often consume
the entirety of a day. As such, the work is siloed, and surgeons
are left to their own devices to adapt to a new environment and
successfully produce viable vessels. However, a specialist sur-
geon should excel in the following nine categories: teamwork,
communication, health advocacy, judgment, leadership, ex-
pertise, professionalism, scholarship, and technical expertise.
All these skills should be addressed when devising a training
curriculum in microsurgery [109].

Here, we notice a significant discrepancy between the ed-
ucational setting and the real-world operating room; practicing
surgeons in an operating room are often working together with
multiple technicians, assistants, and even other surgeons. As
such, many of the learned skill sets surgeons take from a
microsurgery teaching lab need to be adjusted for the operat-
ing room working with others [110].

In recent years, non-technical skills have beenmore closely
examined, both retroactively and proactively. The Non-
Technical Skills for Surgeons (NOTSS) system has been
adopted as a tool to provide feedback to surgeons in these
important non-technical skills, comprised of 14 elements that
are evaluated on a 4-point scale to provide transparency to
surgeons on observed operating room behaviors [29]. Given
the more widespread acknowledgment for the development of
surgeons’ non-technical skills, we propose microsurgery labs
to likewise explore opportunities to adjust to contemporary
andragogy models to develop a well-rounded microsurgeon.

Bridging the gap: development of an integrated non-
technical skill curriculum

We suggest classrooms are already designed to easily incorporate
NTS development. Microsurgery labs are often designed for 3–6
students in a weeklong course. This provides students with the
opportunity to learn from each other, in addition to individual
work. The culmination of a week of microsurgery procedures
could manifest in a group procedure among students using either
living or nonliving subjects. The microsurgery instructor can
suggest a procedure which would require the group to work
together to accomplish a goal. Instructors then evaluate students
across a multitude of non-technical skill measurements in order
to gauge readiness for the operating theater.

Similar to how the NOTSS system has proven an effective
tool for non-technical skill evaluation [111], we outline a pro-
spective grading system for implementation in existing micro-
surgery courses. Our scorecard mirrors elements of the
NOTSS system, though layers of both process scoring and
results scoring. The aim of the system is to provide both stu-
dents and instructors with repeatable and predictable process-
es for successful microsurgical outcomes. We devised a sim-
ilar grading system of 21 elements that has been tailored and
weighted to fit the demands of a microsurgeon in a real oper-
ating environment. Each student is given a role (in a team) to
execute an advanced microsurgery procedure, along with

Table 2 Summary of advantages
and disadvantages of
experimental living and nonliving
microsurgical training models

Type of models Advantages Disadvantages

Living models Abundance of physiological tissues Ethical concerns
Multiple exercises in 1 specimen High cost (enrolment, maintenance)
Hemostasis Standard precautions
Need for anesthesia and monitoring Steep learning curve
Closer to human vessels Expert instruction often required
Improved simulation experience for learners
Development of NTS

Nonliving models Significant reduction of live animals Low fidelity
Lower cost, easy setup (DIY synthetic kits) No circulation—inability to practice hemostasis
VR simulation—enhanced visuospatial skills Infectious diseases (e.g., human placenta)
Smooth transition to living models

(transferable skills)
Inability to develop NTS

NTS non-technical skills, DIY do-it-yourself
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guidelines for completion of the task (time, method, and
roles). The surgeons are then asked to carry out the procedure
under the parameters mentioned and to work together to ac-
complish the goal (Table 3). The validity of this novel assess-
ment tool for NTS remains to be tested in a pilot cohort study.

Conclusions

The use of artificial models has generally proved to bemore cost-
effective than the maintenance of an animal experimental labo-
ratory. Every method of microsurgical training assists residents
with the acquisition of a variety of skills. However, the combi-
nation of all pedagogical entities guarantees enhanced results. In
a step-wise approach, it must be stressed that residents should
always start practicing on simple low-fidelity models and then
upgrade to more complex exercises with live models. However,
training with live rats is considered the gold standard in the
current microsurgical training. Our proposed scorecard attempts
to evaluate non-technical skills. Due to the paucity of evidence in
this field, future research should focus on developing curricula
with integrated NTS specific to microsurgery.
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