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barrier HgCdTe detector [11]. While this device modelling 
method is convenient and relatively easy to implement, it does 
not adequately capture the fundamental physical details 
associated with the superlattice structure, such as 
wavefunction overlap, density of states, nor the influence of 
layer doping on the resulting band diagram. In this work, we 
present results of a full quantum mechanical approach based 
on the non-equilibrium Green’s function (NEGF) to predict 
the carrier transmission and band diagram of the HgCdTe nBn 
detector with superlattice barrier [15, 16]. Bulk 8×8 k.p 
Hamiltonian parameters for HgTe and CdTe have been 
employed to calculate the electronic structure. Although the 
8×8 k.p calculations employed for modelling are more 
computationally intensive than a simple one-band effective 
mass approximation, our results indicate that the latter 
approach yields accurate results which can also be used to 
model the band structure and carrier transport in HgCdTe nBn 
structures, and to predict the performance of nBn infrared 
photodetectors [16-18].  
 

II. NUMERICAL SIMULATION DETAILS 

The electronic properties of a superlattice barrier nBn 
HgCdTe detector structure are determined by the electronic 
properties of the individual layers that form the superlattice 
basis. From a semiconductor growth technology viewpoint, 
the simplest superlattice basis structure in the HgCdTe alloy 
system is to employ the binary compounds HgTe and CdTe. 
However, it is noted that, in practice, the high Hg over-
pressure during molecular beam epitaxial growth of HgCdTe 
is likely to result in a superlattice structure comprised of HgTe 
and a high x-value Hg0.05Cd0.95Te alloy. Thus, the starting 
point is the band structure calculation for a CdTe/HgTe/CdTe 
basis structure of the superlattice, in which the band structure 
parameters for the superlattice defined by the 8-band k.p 
Hamiltonian at T=0 K are summarized in Table 1. It should be 
noted that superlattice electronic properties have been 
theoretically analysed employing several approaches, 
including tight binding, pseudopotentials, and density 
functional theory, in addition to 8×8 k.p. However, the k.p 
envelope function approach has been shown to yield results 

that are similar to other approaches [1, 19]. In addition, the k.p 
method is particularly valid around the gamma point of the 
band structure where, the relevant physics of an nBn detector 
are determined. More importantly, and in contrast to the 
parameters required for other theoretical approaches, the band 
structure parameters for CdTe and HgTe materials are well 
established in the k.p framework [1, 20]. Details of the 8×8 k.p 
Hamiltonian and the numerical discretization is provided in 
the Appendix. 

Following the method in the Appendix, and setting up the 
discretized Hamiltonian, the band structure of the bulk 
material is calculated by solving: 

( ) iii
ik

i
ik

ii EeDeDD zz ψψ =++ −−
+

++
1                              (1) 

where kz is the wavenumber in the transport direction, and Ei, 
ψi are the eigenvalue and eigenfunction of layer i, respectively. 
For the simplest case of a bulk material band structure, since 
there is only one material type which does not vary along the 
transport direction z, the matrix D takes the form: 
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                                                               (2)                   

and hence, the band structure of bulk material can be 
calculated by setting i=0, which gives, 

( ) 000000 ψψ EeDeDD zz ikik =++ −−++                              (3) 

The band structure of bulk CdTe and HgTe thus calculated is 
presented in Fig. 2, where it can be seen that CdTe exhibits a 
normal direct band gap structure, with the conduction band 
minimum (Γ6) located above the valence band maximum (Γ8). 
In contrast, HgTe manifests an inverted band structure in 
which hole states (Γ8) are located above the electron states 
(Γ6). It is also possible to extract the effective mass of 
electrons, heavy holes and light holes from the bulk band 
structures. The effective mass at the Γ point is equal to the 
inverse of the E(k) curvature at k=0, which is given by, 
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kEd
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                                              (4)  

where m0 and ħ are the free electron rest mass and the reduced 
Planck constant, respectively. The band structure of CdTe and 
HgTe calculated using the 8×8 k.p Hamiltonian and the 
equivalent parabolic band approximation using the effective 
masses of Γ6 and Γ8 bands for electrons and heavy holes are 
shown in Fig. 2. From the k.p calculations, the effective mass 
of electrons in the Γ6 band is equal to 0.031 and 0.090 for 
HgTe and CdTe, respectively, whereas the effective mass of 
heavy holes in the Γ8 band is equal to 0.3226 and 0.4926 for 
HgTe and CdTe, respectively. These values of effective mass 
are in good agreement with reported values by other groups, 
thus validating our approach [19, 21]. 

Having detailed the methodology to construct the 
Hamiltonian for both bulk material and superlattice structures, 
and verified that the parabolic effective mass approximation 
yields band structure results consistent with the 8-band k.p in 

Table 1. Band structure parameters of HgTe and CdTe. Eg is the energy 
gap, Δ is the spin-orbit splitting energy, Λ is the valence band offset 
between the two materials, EP is the energy related to the Kane 
momentum matrix element P, F is related to the normalized conduction 
band effective mass  mc/m0 , and γi’s are the valence band Luttinger 
parameters [1]. 

 
Band parameter HgTe CdTe 

Eg (eV) -0.303 1.606 

Δ (eV) 1.08 0.91 

Λ (eV) 0 0.350 

EP (eV) 18.8 18.8 

F 0 -0.09 

γ1 4.1 1.47 

γ2 0.5 -0.28 

γ3 1.3 0.03 
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more computationally intensive 8×8 k.p Hamiltonian in NEGF 
based calculations.    
 

APPENDIX 

In order to construct the superlattice nBn detector 
Hamiltonian, we start with the 8-band k.p envelope function 
Hamiltonian defined in the (001) growth direction, which is a 
well-accepted model and has been previously used by several 
groups to calculate the band structure of HgTe/CdTe in bulk, 
quantum well, and superlattice configurations [1, 27]. 
Therefore, assuming k||=kx

2+ky
2 and k≡(k||,kz)=(0,0,kz), the full 

8×8 k.p Hamiltonian reduces to: 
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with the matrix elements defined by: 
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where Eg is the energy gap, Δ is the spin-orbit splitting energy, 
Λ is the valence band offset between the two materials, EP is 
the energy related to the Kane momentum matrix element P, F 
is related to the normalized conduction band effective mass  
mc/m0, and γi’s are the valence band Luttinger parameters. 
 
Discretization 
Having identified the Hamiltonian, it needs to be discretized in 
the growth direction, since this is the direction of carrier 

transport (i.e. z direction), by replacing the scalar kz with the 
differential kz→-i∂/∂z , and keeping kx and ky constant. Using 
the finite difference method (FDM), the discrete first and 
second derivatives of the wavefunction can be written as [24, 
25]: 
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where i are the cartesian mesh indices in the z direction, and 
Δz is the mesh spacing. Correspondingly, for the case of a one 
dimensional device topology, the discretized Hamiltonian of 
(A1) can be divided into three matrices, as follows [24]: 

2
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|| )()()(),( zz kKHkKHKHkzKH ++=          (A4)   

where k|| = (ky, kx), and H(i) with i = 0, 1, 2 are the 8×8 matrices 
obtained by writing the k·p Hamiltonian in increasing order of 
kz . For example, 
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where cc is the complex conjugate of the corresponding upper 
diagonal matrix element. Thus, the discretized equations at all 
grid points can be expressed as a single block tri-diagonal 
matrix D as follows: 
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  (A9) 

Thus, the complete detector matrix D, defined by (A6), has a 
size of (Nz×Nb)×(Nz×Nb),  where Nz defines the number of grid 
points in the z-direction, and Nb is the number of bands in the 
Hamiltonian matrix of the material (in our case Nb=8, but it 
can be any number). The above matrix definition is valid for 
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bulk structures as well as quantum-wells, superlattices, and 
heterostructures, where the material parameters change 
between adjacent grid points i and i+1 in the growth direction. 
It is also valid for any type of Hamiltonian, whether it is 
single-band or multi-band. As mentioned earlier, the 
parameters summarized in Table 1 correspond to the (001) 
growth direction, whereas all the equations are valid for any 
crystal orientation. The H matrix in (A1) can be transformed 
to any desired growth direction by applying an appropriate 
“transformation matrix”, as detailed in reference [24]. 
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