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Abstract—Implementation of the unipolar barrier detector
concept in HgCdTe-based compound semiconductor alloys is a
challenging problem, primarily because practical lattice-matched
materials that can be employed as the wide bandgap barrier
layer in HgCdTe nBn structures present a significant valence
band offset at the n-type/barrier interface, thusimpeding the free
flow of photogenerated minority carriers. However, it is possible
to minimise the valence band offset by replacing the bulk
HgCdTe alloy-based barrier with a CdTe-HgTe superlattice
barrier structure. In this paper, an 8x8 k.p Hamiltonian
combined with the non-equilibrium Green’s function formalism,
has been employed to numerically demonstrate that the single-
band effective mass approximation is an adeguate numerical
approach which is valid for the modelling, design, and
optimisation of band alignment and carrier transport in
HgCdTe-based nBn detectors incorporating a wide bandgap
superlattice barrier.

Index Terms — mercury cadmium telluride (HgCdTe),
unipolar barrier, nBn detector, infrared , 8x8 k.p, numerical
simulation, non-equilibrium Green’s function (NEGF)

L INTRODUCTION

The family of unipolar barrier nBn infrared (IR)
photodetectors based on the n (contact) B (barrier) n
(absorber) structure represent a new device concept compared
to conventional photovoltaic technology, and have
demonstrated improved performance at higher operating
temperatures [2, 3]. In particular, detectors based on the nBn
concept utilizing I11-V compound semiconductor technology
have demonstrated a significant increase in operating
temperature from the typical 77K to around 150K; however,
implementation of the nBn detector concept in the HgCdTe
compound semiconductor system is not straightforward [4-
10]. This is due to the fact that the heterointerfaces present in
the HgCdTe nBn detector, when formed employing Hg;.
{Cd, Te alloys, exhibit a type-IIl heterostructure band
alignment that results in a relatively large valence band offset
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at the barrier/n-type absorber hetero interface, thus
significantly blocking the flow of photogenerated minority
carriers from the absorber layer to the contact layer [7-12]. As
illustrated in Fig. 1, this relatively large valence band offset
(AEy) severely degrades the performance of HgCdTe-based
nBn detectors in comparison to the ideal unipolar nBn detector
in which a negligible AEy is present at the barrier/n-type
absorber heterointerface.
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Fig. 1. (a) Ideal unipolar nBn photodetector with negligible valence band
offset (AEy), and (b) HgCdTe-based nBn detector with barrier layer exhibiting
a relatively large AEy, in which the flow of photogenerated minority carriers

in the absorber to the contact layer is affected by AEy.

Several bandgap engineering approaches have been
proposed to minimize AEy to values below or approaching the
thermal energy of minority carriers [10, 11, 13, 14]. These
designs propose lowering AEy at the barrier/n-type
heterointerface by grading both the doping and composition
across the interface formed employing HgCdTe alloys or,
alternatively, propose the use of superlattice-based barrier
structures. Of these two bandgap engineering approaches, the
superlattice method is the most promising since it does not
demand the need for highly controlled graded p-type doping in
the barrier layer, which can be problematic in HgCdTe [11]. It
is noted, however, that superlattices have yet to be studied in
detail as suitable barrier layers for nBn photodetector designs.
In their report, Kopytko and co-workers modelled superlattice-
barrier HgCdTe nBn detectors employing a simple Kronig-
Penny model, and the solution to the eigenvalue problem, in
order to calculate the equilibrium energy levels in a CdTe-
HgTe-CdTe quantum-well structure. The obtained energy
levels were then used to approximate an equivalent effective-
mass, bandgap and band alignment, which were then
employed in an effective-mass commercial solver to predict
the dark current and photogenerated current of a superlattice-



barrier HgCdTe detector [11]. While this device modelling
method is convenient and relatively easy to implement, it does
not adequately capture the fundamental physical details
associated with the superlattice structure, such as
wavefunction overlap, density of states, nor the influence of
layer doping on the resulting band diagram. In this work, we
present results of a full quantum mechanical approach based
on the non-equilibrium Green’s function (NEGF) to predict
the carrier transmission and band diagram of the HgCdTe nBn
detector with superlattice barrier [15, 16]. Bulk 8x8 k.p
Hamiltonian parameters for HgTe and CdTe have been
employed to calculate the electronic structure. Although the
8x8 k.p calculations employed for modelling are more
computationally intensive than a simple one-band effective
mass approximation, our results indicate that the latter
approach yields accurate results which can also be used to
model the band structure and carrier transport in HgCdTe nBn
structures, and to predict the performance of nBn infrared
photodetectors [16-18].

II. NUMERICAL SIMULATION DETAILS

The electronic properties of a superlattice barrier nBn
HgCdTe detector structure are determined by the electronic
properties of the individual layers that form the superlattice
basis. From a semiconductor growth technology viewpoint,
the simplest superlattice basis structure in the HgCdTe alloy
system is to employ the binary compounds HgTe and CdTe.
However, it is noted that, in practice, the high Hg over-
pressure during molecular beam epitaxial growth of HgCdTe
is likely to result in a superlattice structure comprised of HgTe
and a high x-value Hgg¢sCdggsTe alloy. Thus, the starting
point is the band structure calculation for a CdTe/HgTe/CdTe
basis structure of the superlattice, in which the band structure
parameters for the superlattice defined by the 8-band k.p
Hamiltonian at T=0 K are summarized in Table 1. It should be
noted that superlattice electronic properties have been
theoretically analysed employing several approaches,
including tight binding, pseudopotentials, and density
functional theory, in addition to 8x8 k.p. However, the k.p
envelope function approach has been shown to yield results

Table 1. Band structure parameters of HgTe and CdTe. E, is the energy
gap, 4 is the spin-orbit splitting energy, A is the valence band offset
between the two materials, Ep is the energy related to the Kane
momentum matrix element P, F is related to the normalized conduction
band effective mass m./mo , and v;’s are the valence band Luttinger
parameters [1].

Band parameter HgTe CdTe
E; (eV) -0.303 1.606
A (eV) 1.08 0.91
A (eV) 0 0.350
Ep (eV) 18.8 18.8
F 0 -0.09
71 4.1 1.47
Y2 0.5 -0.28
Y3 1.3 0.03

that are similar to other approaches [1, 19]. In addition, the k.p
method is particularly valid around the gamma point of the
band structure where, the relevant physics of an nBn detector
are determined. More importantly, and in contrast to the
parameters required for other theoretical approaches, the band
structure parameters for CdTe and HgTe materials are well
established in the k.p framework [1, 20]. Details of the 8x8 k.p
Hamiltonian and the numerical discretization is provided in
the Appendix.

Following the method in the Appendix, and setting up the
discretized Hamiltonian, the band structure of the bulk
material is calculated by solving:

(Di + Di+e+ik: + Di:—le_ikz )l//l = Eil//i (1)

where £, is the wavenumber in the transport direction, and E;,
w; are the eigenvalue and eigenfunction of layer i, respectively.
For the simplest case of a bulk material band structure, since
there is only one material type which does not vary along the
transport direction z, the matrix D takes the form:

D,_,=D,=D,,
D/, =D/ =D}, 2
D._,=D; =D,
and hence, the band structure of bulk material can be
calculated by setting /=0, which gives,
(Do + D(;reﬂkz + Do_e_ikz )V/o =Ew, )
The band structure of bulk CdTe and HgTe thus calculated is
presented in Fig. 2, where it can be seen that CdTe exhibits a
normal direct band gap structure, with the conduction band
minimum (I') located above the valence band maximum (Tg).
In contrast, HgTe manifests an inverted band structure in
which hole states (I's) are located above the electron states
(T¢). It is also possible to extract the effective mass of
electrons, heavy holes and light holes from the bulk band
structures. The effective mass at the I' point is equal to the
inverse of the E(k) curvature at £=0, which is given by,

. R [ d7E(k)
m =—-,|——— 4)

gm,\ dk” | _,

where m,and / are the free electron rest mass and the reduced
Planck constant, respectively. The band structure of CdTe and
HgTe calculated using the 8x8 k.p Hamiltonian and the
equivalent parabolic band approximation using the effective
masses of ['s and I's bands for electrons and heavy holes are
shown in Fig. 2. From the k.p calculations, the effective mass
of electrons in the I's band is equal to 0.031 and 0.090 for
HgTe and CdTe, respectively, whereas the effective mass of
heavy holes in the I'g band is equal to 0.3226 and 0.4926 for
HgTe and CdTe, respectively. These values of effective mass
are in good agreement with reported values by other groups,
thus validating our approach [19, 21].

Having detailed the methodology to construct the
Hamiltonian for both bulk material and superlattice structures,
and verified that the parabolic effective mass approximation
yields band structure results consistent with the 8-band k.p in
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Fig. 2. Bulk band structure (solid lines) of (a) CdTe and, (b) HgTe from
the 8x8 k.p calculations. The relative position of the conduction band
minimum and valence band maximum at the minimum bandgap at k=0 in
HgTe is opposite to that in CdTe; in HgTe, the I's hole states lie above the
I's electron states. Also shown by the (x) symbols are the corresponding
parabolic energy dispersion band structure characteristics calculated using
the effective mass approximation for conduction band electrons and
valence band heavy holes. The effective mass approximation adequately
describes the band structure of electrons and heavy holes close to the I’
point at £=0.

bulk HgCdTe materials, we can proceed to calculate the band
structure of the HgTe/CdTe superlattice barrier basis using the
quantum well (QW) "building block" shown schematically in
Fig. 3. Thus, the QW is taker as the unit cell in a periodic one-
dimensional superlattice in the growth direction z by imposing
periodic boundary conditions, which is a reasonable
approximation to describe the physics of quantum transport
near the I' point. In Fig. 3, Dyy represents the discretized
Hamiltonian matrix of the QW unit cell in the z direction, and
Dy corresponds to the matrix connecting adjacent unit cells.
The Doy matrix is effectively equivalent to D;, in (2), and is
thus constructed exactly in the same way. The final form of
the complete Hamiltonian matrix for periodically arranged
QWs in the superlattice structure is given by:

DL DQW DU
Hy, = D, D,, D, (5)
DL DQW DU
with,
0 0
Dy=| ()
0 0
D; 0 0
0 - 0 Dy
0
D, = : (7)
0 0

0,=0,;
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Fig. 3. Schematic representation of the HgTe/CdTe quantum well
"building block" and its corresponding periodic superlattice structure. Dy,
and Dy are matrices which link two adjacent cells.

where Doy, D, and Dy are all of size (N.XNp)X(N.xNj), and N,
is the number of bands (V,=8 for the 8-band k.p Hamiltonian,
or N,=1 for the single-band effective mass Hamiltonian). D,
and Dy are matrices that serve to link two adjacent QW unit
cells in the periodic representation. The band structure of the
QW superlattice is then calculated from:

(Dyy +Dye*™ +D,e™™ )y = Ey ®)

The above equations allow calculation of the superlattice band
structure which, in the most general case, demands the
calculation of eigenvalues using the relatively large matrices
of Doy, D, and Dy over k. values of interest. For the simplest
and most relevant case of k. in the vicinity of the I' point,
however, setting k=0 reduces the computational cost while
allowing the calculation of available energy levels within the
superlattice structure in the framework of the parabolic band
effective mass approximation.

II1. RESULTS AND DISCUSSION

The energy levels calculated for a 2nm/8nm HgTe/CdTe
quantum well basis, obtained employing the above detailed
8x8 k.p theoretical simulation framework, are presented in
Fig. 4 in relation to their energy location within the band
diagram as well as their energy-momentum dispersion. The
CdTe and HgTe layer thicknesses were chosen within a
specific range (i.e. Inm<HgTe<3nm and 5nm<CdTe<8nm) in
order to achieve an equivalent barrier bandgap that is
significantly larger than the bandgap of the absorber region in
an nBn structure [11]. It is evident that the eigenvalues of the
quantum well match the energy levels of the E-k dispersion
diagram at £=0.

The energy levels for the HgTe/CdTe superlattice as a
function of HgTe layer width were then calculated both
employing the 8-band k.p Hamiltonian and the single-band
effective mass approximation. The calculated results presented
in Fig. 5 clearly indicate that as the thickness of the HgTe
layer increases, the conduction band electron energy levels
predicted by the one band effective mass approximation
deviate from those obtained from the more rigorous 8-band
k.p approach [22]. This is a consequence of increased band
mixing arising from the influence of remote bands, an effect
that is neglected in the one-band effective mass
approximation. Since the electron mass is much lighter than
the heavy hole mass in the valence band, this effect is more
readily evident on the electron states in the conduction band.
The energy levels of the HgTe/CdTe superlattice were
calculated without taking into account that, in practical nBn
detector structures, the HgTe/CdTe superlattice is constrained
to have a finite number of QW building blocks and is bounded
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Fig. 4. (left) Energy levels of HgTe/CdTe quantum well unit cell, with a
HgTe layer thickness of 2nm, calculated using the 8x8 k.p Hamiltonian,
and (right) band structure of the quantum well with k; (£,=0, £,=0).
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Fig. 5. Energy levels of HgTe/CdTe quantum well as a function of HgTe
layer thickness for a fixed CdTe thickness of 8nm, calculated using the
8x8 k.p Hamiltonian and equivalent one-band effective mass
approximation at the I" point with K; (£,=0, k&,=0) and k.=0.

on both sides by adjacent narrow gap absorber and contact
regions. For the practical design of a superlattice-barrier nBn
detector a more sophisticated approach, such as the density
matrix theory, transfer matrix method (TMM) or the non-
equilibrium Green’s function (NEGF) formalism, is required
in order to gain better insight into the available energy states
participating in carrier transport across the superlattice barrier
region [16-18, 23, 24]. In particular, these methods take into
account effects associated with density of states, wavefunction
overlap, charge density, scattering mechanisms, and tunnelling
phenomenon. In what follows, we employ the NEGF
approach, which has been proven to be a powerful approach
for the calculation of electronic properties and carrier transport
in semiconductor devices where quantum effects are dominant
[24].

NEGF modelling approach

In contrast to the periodic arrangement required to calculate
the energy levels of the superlattice alone, which correspond
to the effective bandgap presented by the superlattice as a
barrier in nBn photodetector structures, the NEGF approach
enables theoretical calculation of energy states and carrier
transport probabilities using the actual layered structure of an
nBn device, as depicted in Fig. 6. The absorber and contact
regions are composed of bulk Hg,3Cd,;Te material, and thus
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Fig. 6. Schematic representation of HgCdTe nBn detector with superlattice
barrier treated as a layered structure.

corresponds to an nBn structure optimised for detection of
midwave IR (3-5 pum wavelength band). As detailed
previously, the diagonal blocks of the Hamiltonian matrix D
represent the interaction within each layer of the detector,
whereas the off-diagonal blocks of matrix D couple adjacent
layers (denoted D;’=D;,]), thus ensuring that D is Hermitian.
The NEGF equation for quantum transport can then be
expressed as [25]:
G(E)=(E+in)l - D=3, (E)=Z(E)]" ©)
where G is the Green’s function, X; and X are the self-energy
matrices, E is the energy, and # is an infinitesimally small
number. Since the Hamiltonian D is infinite at the left and
right extremities of a realistic nBn detector structure, we adopt
the self-energy matrix concept to render it finite, which can be
calculated using recursive methods such as the Sancho-Rubio
algorithm or direct methods which are based on solving the
eigenvalue problem [26]. In this study we have used a
recursive algorithm implementation, an in-house developed
software which is based on the previous works [24,25].

Following calculation of the Green’s function for the
practical detector structure, the transmission probability for
carrier injection across the barrier at different energies is
calculated from [25]:

T(E) = trace(G(E)T,(E)G" (E)T(E)) (10)
r,=i(z,-%;) (11)
r,=i(z,-2}) (12)

where T is the transmission probability, I'; and T'p are
broadening matrices, and “trace” is the summation over all
diagonal elements of the matrix. The matrix G is a retarded
Green’s function matrix, with the imaginary component of the
diagonal elements corresponding to the local density of states
(LDOS). The calculated local density of states, transmission
probabilities, and eigenenergies for a HgCdTe nBn detector
structure and, with 1 nm HgTe and 1 nm CdTe layer
thicknesses, a total superlattice barrier thickness of 5 nm are
presented in Fig. 7. It is evident that the carrier transmission
probability peaks at energy levels corresponding to the highest
local density of states located at ~0.8 eV and ~1eV. It should
be noted that while the energies obtained from solution of the
eigenvalue problem align with energy locations where the
maximum LDOS occur, a solution of the eigenvalue problem
cannot predict the overlap of the wavefunctions from adjacent
wells and is thus unable to model the transmission probability
broadening that determines the flow of carriers across the
superlattice barrier.
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Fig. 7. From left to right: LDOS, transmission probability, and eigenvalues of HgCdTe nBn detector calculated using the 8x8 k.p Hamiltonian. The
superlattice layers have a barrier width of 1nm and a well width of Inm. The peaks in the transmission probability correspond to energy levels where the
LDOS is maximum, which represent energy levels at which carrier transport across the barrier can take place.
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Fig. 8. Schematic diagram of energy band alignment in the HgTe-CdTe
system used in [11]. A represents the valence band offset. The superlattice
electron and heavy-hole states are associated with the quantum well for
electrons (thick solid black line) and the quantum well for heavy holes
(thick dashed black line).
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Recently, Kopytco et. al. determined the energy levels of a
CdTe/HgTe superlattice as a function of well width [11]. The
schematic diagram of the quantum well is shown in Fig. 8. In
this diagram, the bottom of the electron well and top of the
heavy-hole well are located at the same energy level relative to
the CdTe valence band edge I's, and has a value determined by
the valence band offset A=350 meV. The effective mass
values used for each layer are the same as those used by
Kopytco et. al. [11]. Fig. 9 compares the resonance levels
calculated from an eigenvalue solver (left) and the NEGF
solver (right). Of particular relevance, are the resonance states
above the conduction band edge of the bulk HgCdTe material,

which is at 0.5 eV. It can be observed that the eigenvalue
solver predicts two resonance states in the barrier conduction
band, whereas the transmission probability from the NEGF
solver indicates that only one of these states is available for
carrier transport. A similar situation exist for valence band
resonance states, where the eigenvalue solver predicts many
states; whereas the transmission probability obtained from the
NEGF approach indicates that only those resonance states
below 0 eV can contribute to carrier transport. Fig. 10 shows
the calculated resonance states of the superlattice as a function
of HgTe thickness for a fixed CdTe thickness of 8 nm, where
the resonance levels predicted by Kopytco et. al. have been
compared with our NEGF and eigenvalue solver. In this figure
the two lowest energy levels in the conduction band have been
plotted and labelled as eig-1 and eig-2. It is evident that for
HgTe thickness less than 2nm, the second eigenvalue is in
agreement with the transmission probability from our NEGF
and with the results of Kopytco et. al.. For the hole resonance
states, our eigenvalue results match with the results of
Kopytco et. al., which have not been plotted for clarity.
However, note that the hole transmission probabilities
calculated from our NEGF results indicate that the hole states
with energies above 0 ¢V do not contribute to carrier transport.

It is now appropriate to compare results from the 8x8 k.p
Hamiltonian calculations with those from a single-band
effective mass approximation for the nBn superlattice device.
Fig. 11 shows the schematic band diagram of the CdTe/HgTe
quantum well associated with the superlattice, where the
bottom of the electron quantum well is located at the I'¢ band
edge of the HgTe, and the top of the hole quantum well is
located at the I's band edge of the HgTe. It should be noted
that this is different from the electron/hole quantum well
definition used by Kopytco et. al[l11]. Fig.12 shows the
eigenvalues of an nBn superlattice device calculated using the
8x8 k.p Hamiltonian and the single-band effective mass
approximation. Compared to the effective mass
approximation, there are several eigenvalues from the k.p
calculations that arise from band mixing of heavy-holes and
electrons; however, only the eigenvalue located at 0.75 meV is
shared between the k.p and effective mass calculations. Fig. 13
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shows the transmission probability of carriers through the
barrier calculated using the NEGF formalism in the same nBn
superlattice for an 8x8 k.p Hamiltonian and a single-band
effective mass approximation. It is clear that despite having
several eigenvalues (as indicated in Fig. 12), only certain
energy levels contribute to carrier transport through the
barrier, which depend on the carrier wavefunction overlap and
density of states. It is evident that both the 8x8 k.p and single-
band effective mass calculations show the same transmission
probability for electrons, whereas in the case of holes the
single-band effective mass indicates a different transmission
probability compared to the 8x8 k.p approach, which is due to
the complicated band mixing that is taken into account by the
8x8 k.p model. Fig. 14 shows the electron and heavy-hole
energy levels as a function of HgTe well width calculated via
the NEGF formalism for the case of an 8-band and a single-
band Hamiltonian. It is clear that the electron states predicted
by the single-band approximation are in a good agreement
with those obtained from the 8x8 k.p Hamiltonian, whereas
the heavy-hole states strongly depend on band-mixing and
well width. However, for the specific nBn detectors in this
paper, we noticed that choosing the heavy-hole effective mass
equal to 0.15 can lead to hole states which are in good
agreement with those predicted by an 8x8 k.p Hamiltonian, as
shown in Fig. 14b.

Iv. CONCLUSIONS

We have performed a theoretical study of band structure and
quantum carrier transport in superlattice barrier HgCdTe nBn
detector structures using a full quantum mechanical approach
using the NEGF formalism. The presented results indicate that
the HgTe layer thickness in a HgTe/CdTe superlattice barrier
has a strong effect on the band alignment between the absorber
and barrier, indicating that it needs to be critically controlled
in order to simultaneously obtain a large conduction band
offset and a minimum valence band offset. Our results indicate
that for quantum-well structures with a well width of less than
2 nm, a single-band effective mass approximation, when
coupled with the NEGF approach, yields results that are in
relatively good agreement with those obtained employing the

CdTe | HgTe .

electron well

Fig. 11. Schematic diagram of energy band alignment in the HgTe-CdTe
system used in this paper, in which A is the valence band offset. The
superlattice electron and heavy-hole states are associated with the quantum
well for electrons (solid line) and the quantum well for heavy holes (dotted
line).
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more computationally intensive 8x8 k.p Hamiltonian in NEGF
based calculations.

APPENDIX

In order to construct the superlattice nBn detector
Hamiltonian, we start with the 8-band k.p envelope function
Hamiltonian defined in the (001) growth direction, which is a
well-accepted model and has been previously used by several
groups to calculate the band structure of HgTe/CdTe in bulk,
quantum well, and superlattice configurations [1, 27].
Therefore, assuming kH:kx2+ky2 and k=(k,k,)=(0,0,k,), the full
8x8 k.p Hamiltonian reduces to:

H(k =0,k,)=
e 0 0 mt o o TR
V2
O e 0 0 s 0 o Mkt
' ' V21 (Al
0o 0 e 0 o0 0 o o |®D
hk_t 0 0 g 0 0 -g, 0
0 hkt 0 0 £ 0 —£,
o 0 0 0 g, 0
ML 0 e, 0 0 & 0
V2
o ML o g 0 0 e
V2

with the matrix elements defined by:
2

€, =Ec(2)+—(k.(2F +1)k.)
m,
h2
&, = E,(2)———(k.(, =27)k.)
2m,
hZ
gH :EV(Z)__(kz(}/l +27/2)kz)
2m,
hZ
gs = _A(Z)_ (kz(yl )kz)
2m,
1/
Vs = \/_ (kz(}/Z)kz)
2m,
t= Er
3m,

where £, is the energy gap, 4 is the spin-orbit splitting energy,
A is the valence band offset between the two materials, Ep is
the energy related to the Kane momentum matrix element P, '
is related to the normalized conduction band effective mass
m./my, and y;’s are the valence band Luttinger parameters.

Discretization
Having identified the Hamiltonian, it needs to be discretized in
the growth direction, since this is the direction of carrier

transport (i.e. z direction), by replacing the scalar &, with the
differential k,—-i0/0z , and keeping k, and k, constant. Using
the finite difference method (FDM), the discrete first and
second derivatives of the wavefunction can be written as [24,
25]:

a_l// _ W, —dY,, (A2)
0z 2Az

2 —
Oy _ 9y, —20y, +9y,, (43)

oz’ Az
where i are the cartesian mesh indices in the z direction, and
Az is the mesh spacing. Correspondingly, for the case of a one
dimensional device topology, the discretized Hamiltonian of
(A1) can be divided into three matrices, as follows [24]:

H(K,,kz)=H(K)+H"(K)k.+H® (K)k: (A4)

where k; = (k,, k), and H” with i = 0, 1, 2 are the 8x8 matrices
obtained by writing the k-p Hamiltonian in increasing order of
k. . For example,

|
St
<

0 00w 00— 0
0 000 mo o L
V2 (45)

0000 00 0 O
HYK)=lcc 0 0 0 0 0 0 0
cc 00 00 0 0
000 00 0 O

cc 0000 00 0 0

0 cc 0 00 0 0

where cc is the complex conjugate of the corresponding upper
diagonal matrix element. Thus, the discretized equations at all
grid points can be expressed as a single block tri-diagonal
matrix D as follows:

Dz:l Di—l DiJr—l
D= D, D, D! (A6)
Di_+1 DH] Dz’:l
where,
(2) (2) (2) (0) (0) (0)
D, =42 +21Z;_21 HHG 2H0HO+HG
H®+H?®  HY+H
Dl-_ —_ i . i1 +l i i-1 (A8)
2Az 4Az
H®+H?  HY+H"
D[+ —_ i 2AZZ i+l —J i 4AZ i+1 (A9)

Thus, the complete detector matrix D, defined by (A6), has a
size of (N, xN,)x(N,XN), where N, defines the number of grid
points in the z-direction, and N, is the number of bands in the
Hamiltonian matrix of the material (in our case N,=8, but it
can be any number). The above matrix definition is valid for



bulk structures as well as quantum-wells, superlattices, and
heterostructures, where the material parameters change
between adjacent grid points i and i+1 in the growth direction.
It is also valid for any type of Hamiltonian, whether it is
single-band or multi-band. As mentioned earlier, the
parameters summarized in Table 1 correspond to the (001)
growth direction, whereas all the equations are valid for any
crystal orientation. The H matrix in (Al) can be transformed
to any desired growth direction by applying an appropriate
“transformation matrix”, as detailed in reference [24].
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