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ABSTRACT

This paper establishes the superlinear convergence of a symmetric primal-dual path following
algorithm for semidefinite programming under the assumptions that the semidefinite program has
a strictly complementary primal-dual optimal solution and that the size of the central path neigh-
borhood tends to zero. The interior point algorithm considered here closely resembles the Mizuno-
Todd-Ye predictor-corrector method for linear programming which is known to be quadratically
convergent. It is shown that when the iterates are well centered, the duality gap is reduced su-
perlinearly after each predictor step. Indeed, if each predictor step is succeeded by r consecutive
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proof relies on a careful analysis of the central path for semidefinite programming. It is shown

corrector steps then the predictor reduces the duality gap superlinearly with order

that under the strict complementarity assumption, the primal-dual central path converges to the
analytic center of the primal-dual optimal solution set, and the distance from any point on the

central path to this analytic center is bounded by the duality gap.
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1 Introduction

Recently, there have been many interior point algorithms developed for semidefinite programming
(SDP), see for example [1, 2, 5, 9, 11, 13, 17]. These algorithms differ in their choices of scaling
matrix, the size of the central path neighborhoods, and stepsize rules, among others. In particular,
the algorithms of Kojima-Shida-Hara [5] and Nesterov-Todd [11] are based on the primal-dual
scaling and they both can be viewed as extensions of the predictor-corrector method for linear
programming [8]. It has been shown [4, 6, 11, 13, 17] that these algorithms for SDP retain many
important properties of the interior point algorithms for linear programming including polynomial

complexity. For an overview of SDP and its applications, we refer to Vanderberghe and Boyd [15].

However, there exists considerable difficulty in extending one key property of the predictor-
corrector method for linear programming to the interior point algorithms for SDP. This is the
property of quadratic convergence of the duality gap (see [16] for a proof of the LCP case). In
some sense, the need for superlinear convergence in solving SDP is more pronounced than that for
the linear programming case. This is because for SDP there cannot exist any finite termination
procedures as in the case of linear programming. Indeed, the recent papers of Kojima-Shida-Shidoh
[4] and Potra-Sheng [12] are both focused on the issue of superlinear convergence for solving SDP.
In particular, the latter reference provided a sufficient condition for the superlinear convergence of
an infeasible path following algorithm, while the former reference [4] established the superlinear
convergence of their algorithm [5] under certain key assumptions. These assumptions are: (1) SDP
is nondegenerate in the sense that the Jacobian matrix of its KKT system is nonsingular; (2) SDP
has a strictly complementary optimal solution; (3) the iterates converge tangentially to the central
path in the sense that the size of the central path neighborhood in which the iterates reside must
tend to zero. Among these three assumptions for superlinear convergence, (2) is inevitable since it
is needed even in the case of LCP (see [16]). Assumption (3) is needed to ensure the duality gap
is reduced superlinearly after each predictor step for all points in the central path neighborhood.
In the reference [4], an example was given which showed that, without the tangential convergence
assumption, the duality gap is reduced only linearly after one predictor step for certain points in

the central path neighborhood.

Our goal in this paper is to establish the superlinear convergence of a symmetric path following
algorithm for SDP under the only assumptions of (2) and (3) (i.e., without the nondegeneracy
assumption). In particular, we consider the primal-dual path following algorithm of Nesterov-
Todd [11] (later discovered independently by Sturm and Zhang [13] using a V-space notion). In
this paper we adopt the framework of [13] since it greatly facilitates the subsequent analysis. We
show that this symmetric primal-dual path following algorithm has an order of convergence that

is asymptotically quadratic (i.e., sub-quadratic). Indeed, for any given constant positive integer r,



the algorithm can be set so that the duality gap decreases superlinearly with order after one

predictor (affine scaling) step followed by (at most) r corrector steps. The cornerstone in our bid
to establish this superlinear convergence result is a bound on the distance from any point on the
central path to the optimal solution set (see Section 3). Specifically, it is shown that, under the
strict complementarity assumption, the primal-dual central path converges to the analytic center
of the optimal solution set, and that the distance to this analytic center from any point on the
central path can be bounded above by the duality gap. These properties of the central path are
algorithm-independent and are likely to be useful in the analysis of other interior point algorithms

for SDP.

The organization of this paper is as follows. At the end of this section, we describe some basic
notation to be used in this paper. In Section 2, we will discuss some fundamental background
notions, and we will make two assumptions concerning the solution set of the SDP. In Section 3
we will analyze the limiting behavior of the primal-dual central path. In Section 4, the notion
of V-space for SDP is reviewed and a path following algorithm in the spirit of [13] is introduced.
The superlinear convergence of this algorithm is established in Section 5. Finally, some concluding

remarks are given in Section 6.

Notation. The space of symmetric n X n matrices will be denoted S. Given X and Y in R"*",

the standard inner product is defined by
XeoY =tr X7y,

where tr (-) denotes the trace of a matrix. The notation X | Y denotes orthogonality in the sense
that X ¢ Y = 0. The Euclidean norm and its associated operator norm, viz. the spectral norm,
are both denoted by [|-||. The Frobenius norm of X is || X|| = VX ¢ X. If X € S is positive
(semi-) definite, we write (X = 0) X > 0. The cone of positive semi-definite matrices is denoted
by S; and the cone of positive definite matrices is Sy4. The identity matrix is denoted by I. We
use the standard “big O” and “small 0” notation. In particular, w(u) = O(p) with g > 0 means
that there is a positive constant I', possibly dependent on problem data but independent of 4, such
that w(p) < T'p for all p; w(p) = o(p) for p — 0 means that lim,_,o w(p)/p = 0. Moreover, we
write w(pu) = O(p) whenever we have both w(p) = O(p) and g = O(w(u)). For a positive definite
matrix, we use “O” and “©O” to denote the order of all its eigenvalues. Hence, for W(u) € Sy,
the notation W (u) = O(u) signifies the existence of I' > 0 such that

1
Wi(p) XTI, for all p > 0.

iy
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2 Problem formulation

A semidefinite programming (SDP) problem is given as
minimize C e X
subject to AW e X =b;, fori=1,2,...,m, (P)
X >0
where C € S, AW, A®) .. AM ¢ § and b € R™. The decision variable is X € S. The
corresponding dual program can be formulated as

maximize by

subject to Z =C — ZyiA(i), (D)
i=1
Z = 0.

Denote the feasible sets of (P) and (D) by Fp and Fp respectively, i.e.
Fp={XeS: ADeX =0;,i=1,2,...,m, X = 0},

and

m
Fp:={Z¢€S: ZyiA(i) + Z = C for some y € R, Z = 0}.
i=1

We make the following assumptions throughout this paper.

Assumption 1 There exist positive definite solutions X € Fp and Z € Fp for (P) and (D)

respectively.
Assumption 2 There exists a pair of strictly complementary primal-dual optimal solutions for (P)
and (D). Specifically, there exists (X*, Z*) € Fp x Fp such that

X*Z* =0,
X* 4+ Z* = 0.

Since X*Z* = Z* X* = 0, we can diagonalize X* and Z* simultaneously. Therefore, by applying
an orthonormal transformation to the problem data if necessary, we can assume without loss of

generality that X*, Z* are both diagonal and of the form

Ap 0 0 O
G A , (2.1)
0 0 0 Any

3
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where Ap := diag(A1, ..., \x), An := diag(Ag+1, ..., A\p) for some integer 0 < K < n and some
positive scalars \; > 0, ¢ = 1,2,...,n. Here the subscripts B and N signify the “basic” and
“nonbasic” subspaces (following the terminology of linear programming). Throughout this paper,
the decomposition of any n x n matrix X is always made with respect to the above partition B

and N. In fact, we shall adhere to the following notation throughout:

Xp X
X — B AU :
Xt Xy
so Xy will always denote the off-diagonal block of X with size K x (n — K), etc.

Notice that X € Fp is an optimal solution to (P) if and only if XZ* = 0. Hence, by Assump-

tion 2, the primal optimal solution set can be written as
Fp:={X e€Fp: Xy =0and Xy =0}.
Analogously, the dual optimal solution set is given by

fB;:{ZEfDi ZUZOE:LDdZB:O}.

Given p € R, the pair (X, Z) € Fp x Fp is said to be the u-center (X (u), Z(u)) if and only
if
XZ = ul. (2.2)

We refer to [5, 14] for a proof of the existence and uniqueness of u-centers. The central path of the

problem (P) is the curve
{(X (), Z()) = > 0}

To be consistent with the above definition of the central path, we define the analytic center of

F} as the unique solution X* of the system
X%Zp =1,
m .
i=1
X% e Fpand Zp = 0.
In a similar fashion, we define the analytic center of F7, as the unique solution Z% of the system
XnZ% =1,

AVexy=0 i=12,..,m,
Xy = 0 and 2% € T3,



3 Properties of the central path

The notion of central path plays a fundamental role in the development of interior point methods
for linear programming. In this section, we shall study the analytic properties of the central path
in the context of semidefinite programming. These properties will be used in Section 5 where we

perform convergence analysis of a predictor-corrector algorithm for SDP.

For linear programming (i.e., A®’s and C are diagonal), it is known that the central path
curve converges: (X (u),Z(p)) — (X% Z%), as p — 0, with (X%, Z%) being the analytic center of
the primal and dual optimal solution sets F}, and F7, respectively ([7]). It is also known for linear
programming that the central path does not approach (X%, Z%) tangentially to the optimal solution

set, viz. it is shown in [10] that
1X (1) = X+ 112(1) = 2% = O(p)-
In the following we shall extend these result to the semidefinite programs (P) and (D).

The following lemma shows that the set

{(X (1), Z2(1)) : 0 <p <1}

is bounded.

Lemma 3.1 For any u > 0 there holds

X+ 112 = O(1 + 1)

Proof. We have
np+n = X(p)eZ(u)+ X(1)e Z(1)
= X(1) e Z(u) + Z(1) » X(1),

where we used the property (X (u)—X (1)) L (Z(n)—Z(1)) in the second equality. Since X (1) > 0
and Z(1) > 0, we have

IX () + [1Z()]l = O(X (1) ® Z(u) + Z(1) @ X (1)) = O(1 + p).
Q.E.D.

It follows from Lemma 3.1 that the central path has a limit point. We will now show that
any limit point of the central path {(X A is a strictly complementary optimal primal-dual
y p p )y L\ Yy p Yy op p

pair.



Lemma 3.2 For any pu € (0,1) there holds
Xp(p) =0(1), Xn(p)=0(n), Xn(p)—Xu(w)" Xp(p)™ Xu(p) = O(k)

Zp(p) =0(n), Zn(p)=0(1), Zp(p) — Zv(p)Zn (1)~ Zu ()" = 6(w).

Hence, any limit point of {(X (u), Z(u))} as p — 0 is a pair of strictly complementary primal-dual
optimal solutions of (P) and (D).

Proof. Let 0 < u < 1. For notational convenience, we will use X and Z to denote the matrices

X (p) and Z(p). Let (X*,Z*) be the pair of strictly complementary primal-dual optimal solutions
postulated by Assumption 2. Since A o (X — X*) =0,i=1,...,m, and Z — Z* € Span{A®), i =
1,...,m}, it follows that (X — X*) L (Z — Z*). Therefore, we have

0 = (X—X")e(Z-2%)
= XeoeZ - XeoeZ*—X*"eZ
= tr (Wl —XZ*"—-X"Z7)

K n
= nu-— Z >\iZii — Z AiXiia
i=1

i=K+1

where the last step follows from (2.1). Since A; > 0 for all 4 and X;; > 0 and Z; > 0 (by the

positive semidefiniteness of X and Z), we obtain

ZZZ:O(:U‘)a i=1,.,K,
Xii:O(,u), 1=K+1,..,n.

Since X = 0, Z > 0, it follows that
Xn=0(), Zp=0(). (3.1)
From X > 0 and Z > 0 we obtain
Xy — XEXp' Xy =0, Zp— ZyZy'ZE - 0.
Now consider the identities
log det X = logdet Xp + logdet(Xy — X} X ;' X)),
logdet Z = logdet Zy + log det(Zp — ZUZIQIZ?}).

Since det X det Z = det(ul) = p", it follows that log det X + logdet Z = nlog u and

1 1
log det X + log det <—(XN — X%X;XU)> + log det Zy + log det (—(ZB — ZUZ];125)> = 0.
7 I
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By the estimates (3.1) and using Lemma 3.1, we see that

1 1
;(XN — X{Xp'Xu) =0(1), Zy=0(1), p

Therefore each of the four logarithm terms in the preceding equation are bounded from above as

Xp =0(1), (Zp — ZuZN'ZE) = O(1).

i — 0. Since these four terms sum to zero, we must have
Xp = 6(1)7 (XN - XnglXU) = 6(1)3

Zn = 0(1), (Zp — ZuZy'ZE) = 6(1).

RIRrE|=

Together with (3.1), this implies
Xy =O(), Zy=0(u)
This completes the proof of the lemma. Q.E.D.

Lemma 3.2 provides a precise result on the order of the eigenvalues of Xp(u), Xn (1), Zp (1)
and Zy (). We will now prove a preliminary result on the order of the off-diagonal blocks X ()
and Zy ().

Lemma 3.3 For pu € (0,1), there holds

1 Xv (@l = ©lZu (),
~Xu(n) o Zu(p) = 01X (W), (3.2)
1 Xv (Wl = o(vi), 2l = o(v/p), — asp— 0.

Proof.

By the central path definition, we have

I [ Xp(p)  Xv(w) Zp(p)  Zu(p) ]
Xow)" Xn() | | Zvw)" Zn(p)

Expanding the right-hand side and comparing the upper-right corner of the above identity, we have

0= Xp(p)Zv(p) + Xv(p)Zn (1), (3.3)

or equivalently,
Zu(p) = —Xp(u) ™ Xu (1) Zn (1)-

Using Xp(u) = ©(1) and Zn(p) = O(1) (see Lemma 3.2), this implies that

1Zv ()l = (| Xv ()])-



This proves the first part of the lemma.

We now prove (3.2). Let {(X(ug),Z(pk)) : k= 1,2,...} be an arbitrary convergent sequence
of the central path with pp — 0. By Lemma 3.2, the limit of this sequence satisfies strict comple-
mentarity. Let (X*, Z*) denote this limit point so that

X* = lim X(pg), Z*= lim Z(ug).
k—o0 k—o0

As before, we assume without loss of generality that X* and Z* are diagonal. In addition, since
(3.2) holds trivially when || X (ug)|| = 0, we thus assume || Xy (ug)|| > 0 for all k.

First, we divide both sides of (3.3) by || Xv (uk)|| and let & — oo to obtain
0=XpZF + X Zy,
where X7 and Z;° are defined by

Z
7 = lim —20\)

= X Gl ST () (3.4

(If the above limits do not exist, then we define X§° and Z7° to be any two limit points of the
corresponding sequences.) Since X} and Z3, are both positive diagonal matrices, it follows that
the nonzero entries of the matrices X°, Zg° must have opposite signs. By || X{°|| = 1, we conclude
that

X e Zyy <. (3.5)

This establishes (3.2) along the sequence {(X (), Z(1g)) : k = 1,2,...}. Since this sequence is
arbitrary, we see (3.2) holds.

It remains to establish the last part of the lemma. Once again, we consider an arbitrary
convergent sequence {(X (ux), Z(ux)) : k£ =1,2,...} on the central path with p; — 0; we continue
to use the same notation X*, Z*, X°, Z;° defined above. Since || Zy(uk)|| = O(||Xv(pr)l]), we
only need to show || Xy (ux)l| = o(y/ix) . Assume this is not the case. Using Lemma 3.2 and
passing onto a subsequence if necessary, we have || Xy (ug)||? = ©(ug) for all k. Since (X (ug) —
X*) L (Z(ug) — Z*), we have

0 = (Xp(pk) — Xp) e Zp(puk) +2Xu (k) © Zu (1k)
+ XN (k) ® (Zn (k) — Zy).

Dividing both sides of this equation by || Xy (ux)]|? and taking limit yields

0 = 2XP ez

+ <(XB(Mk) —Xj)e | Z(ptr) X (pk)

| X (ue)ll? [ X () |12

o (Zn () — z;‘v)) |



Since | Xy (up)||? = ©(p) and Zp(ug) = O (ux), Xn(pr) = O(ug) (cf. Lemma, 3.2), it follows

Zp (k) X (pr)
| Xt (1) 12 | Xt (1) |12

Therefore, the limit in the preceding equation equals zero, implying

= 0(1), = 0(1).

X e Zy =0.
But this contradicts (3.5), so we must have

| X0 () | = o(v/1ik)-
The proof is complete. Q.E.D.

We now use Lemma 3.2 and Lemma 3.3 to prove that the central path {(X(u), Z(u)) : p > 0}

converges to (X%, Z%), and to estimate the rate at which it converges to this limit.

Lemma 3.4 The primal-dual central path {(X (1), Z (1)) : p > 0} converges to the analytic centers
(X, Z%) of F} and Fj, respectively. Moreover, if we let

_ [ Xu ()
6(lu’) T \//__1, )
then
1 X5(1) = X§] = O(e(u) +vE)*),  11Zn (1) = Zi | = O((e(p) + V)?)-

Proof. Suppose 0 < u < 1. By expanding X (1)Z () = pl and comparing the upper-left block,
we obtain
plp = Xp(1) Zp(n) + Xu () Zu ()"
Pre-multiplying both sides with (uXp) ! yields
_ 1 1 __
Xz = ;ZB(H) + ;XBIXU(M)ZU(M)T. (3.6)
Let J be an index set of minimal cardinality such that

Span{Ag) 1eJ) = Span{Ag) c1=1,2,...,m}.

As Z3 =0, it follows from the dual feasibility and (3.6) that

1 i
—Zp(p) = E l/i(,u)A%), for some scalars v;(u)
. ey
1 1
= X5' - ;XBIXU(M)ZU(M)T- (3.7)



Now consider the following nonlinear system of equations:

Xgl — Zl/lA(é) =0,
e (3.8)
A%)OXB:bi, 1€ J.

By (2.3), we know that X is a solution of (3.8) for some v, i € J. Using the linear independence
of the matrices A%), ¢ € J and using the fact that X% is positive definite, it can be checked that
the Jacobian (with respect to the variables Xp and v;, ¢ € J) of the nonlinear system (3.8) is

nonsingular at the solution X%, v, © € J. Hence we can apply the classical inverse function

7

theorem to the above nonlinear system at the point: Xp = X%, v; = v, i € J, to obtain

nXBm>—X%n=c>Qm;l—}ij?n+§jLﬁ?-XBw>—mO. (3.9)
€T €T

and from X (p) € Fp we obtain

By (3.7) we have

X5t =3 vAf) = O(e(p)?) (3.10)

€J

1
= H;XBlXU(N)ZU(N)T

‘Ag) * Xp(n) — b

= ‘2A§}" o Xy(u)+ A o XN(N)‘
= O(e(p)v/p+ 1), forie J.
Combining this with (3.9) and (3.10) yields

X5 (1) — X5l = O((e(n) + i2)?).-
It can be shown with an analogous argument that

1Zx (1) = Zi |l = O((e(w) + vs)?)-

The proof is complete. Q.E.D.

Lemma 3.4 only provides a rough sketch of the convergence behavior of the central path as

@ — 0. Our goal is to characterize this convergence behavior more precisely.

Theorem 3.1 Let u € (0,1). There holds

Xp(p) =0O(1), Zn(p) =06(1), Xn(p)=0(), Zpp)=06(u), (3.11)

and

X (1) = X° = O), N1 Z(p) = Z2°|| = O(n). (3.12)

10



Proof. The estimate (3.11) is already known from Lemma 3.2, so we only need to prove (3.12).

By Lemma 3.3 and Lemma 3.4, it is sufficient to show that

1 Xv (@)l = O(u)-

Suppose to the contrary that there exists a sequence

(X k), Z(up)) : bk =1,2,..}

with || Xy (pg)]| > 0 for all £ and

. Hk
lim ————— =0
koo || Xur () |
To simplify notations, we introduce
. Hk
AL (00) := lim ————(Xp(ur) — X3B). 3.13

(By virtue of Lemma 3.4, we can assume the above limit exists because otherwise we can always

pass onto a convergent subsequence.) From Lemma 3.3 it follows that

Afy(o0) 0 ]

. HE a
lim —————— (X - X% =
(Gu) = x%) = | B

koo || X () ||

Since for each Z € Fp we have
(X(pug) — XY L(Z-2%) fork=1,2,...

it follows
AB(0) @ Zp = Aj(c0) e (Zp — Z%) = 0.
We know from Lemma 3.2 that Zp(ux) = ©(uy) so that the above relation implies

(Xp(pp) — X3) ® Zp(u)

lim =0. (3.14)
k=00 1 X0 ()12
Analogously, it can be shown that
X Z - 78
lim AN () @ ( N(“’;) M) _o, (3.15)
k=00 [ X (pe)

As (X (pr) — X*) L (Z(pg) — Z%), we have from (3.14) and (3.15) that

(X (pr) — X9) o (Z(pg) — Z°%)

0 = lim

k—00 | X v () [|2
X Z
— lim 2 vlpe) e Uguk)
k—>00 | Xt () |l

11



which clearly contradicts (3.2). The proof is complete. Q.E.D.

Theorem 3.1 characterizes completely the limiting behavior of the primal-dual central path as
u — 0. We point out that this limiting behavior was well understood in the context of linear
programming and the monotone horizontal linear complementarity problem, see Megiddo [7] and
Monteiro and Tsuchiya [10] respectively. Notice that under a Nondegeneracy Assumption (i.e.,
the Jacobian of the nonlinear system (2.2) is nonsingular at (X%, Z%)), the estimates (3.12) follow
immediately from the application of the classical inverse function theorem. Thus, the real con-
tribution of Theorem 3.1 lies in establishing these estimates in the absence of the nondegeneracy

assumption.

It is known that in the case of linear programming the proof of quadratic convergence of
predictor-corrector interior point algorithms required an error bound result of Hoffman. This error
bound states that the distance from any vector z € R™ to a polyhedral set P := {z : Az < a} can
be bounded in terms of the “amount of constraint violation” at x, namely |[[Az — a]4 ||, where [-]+
denotes the positive part of a vector. More precisely, Hoffman’s error bound ([3]) states that there

exists some constant 7 > 0 such that
dist(z, P) < 7||[Az — a]+]|, Vr e R".

Unfortunately, this error bound no longer holds for linear systems over the cone of positive semidef-
inite matrices (see the example below). In fact, much of the difficulty in the local analysis of interior
point algorithms for SDP can be attributed to this lack of Hoffman’s error bound result (see the
analysis of [4, 12]). Specifically, without such error bound result, it is difficult to estimate the
distance from the current iterates to the optimal solution set. In essence, what we have established
in Theorem 3.1 is an error bound result along the central path. In other words, although Hoffman
type error bound cannot hold over the entire feasible set of (P), it nevertheless still holds true on
the restricted region “near the central path”. One consequence of this restriction to the central
path is that we will need to require the iterates stay “sufficiently close” to the central path in order
to establish the superlinear convergence of the algorithm. Such a requirement on the iterates was
called “tangential convergence to the optimal solution set” by Kojima et. al. [4]. Notice that
the analysis in this reference required the additional nondegeneracy assumption to establish their
superlinear convergence result. In contrast, this assumption is no longer needed in our analysis

because Theorem 3.1 holds without the nondegeneracy assumption.

Example. Counsider the following linear system over the cone of positive semidefinite matrices in
§R2X2:

X1 X2
X11=0, Xpp=1 X= - 0.
Xo1 Xoo

12



Clearly, there is exactly one solution X* to the above linear system, namely

X*:ZOO.
01

For each € > 0, consider the matrix

Clearly, X(¢) > 0. The amount of constraint violation is equal to €. However, the distance

| X (€) — X*||z = O(¢). Thus, there cannot exist some fixed 7 > 0 such that || X(e) — X*|| < 7¢2,
for all e > 0. Instead, we have in this case || X (¢) — X*|| < 7|X11(e)|"/?; that is, the error bound
holds with an exponent of 1/2.

4 A polynomial predictor-corrector algorithm

We begin by summarizing some of the results on V-space path following for SDP that were obtained
in [13].

Let (X,Z) € Fp x Fp with X = 0, Z = 0. Then, there exists a unique positive definite matrix
D € 8,4 such that ([13, Lemma 2.1])
X =DZD. (4.1)

Let L be such that
LLY =D, (4.2)

and let V := LT ZL. It follows that
V=L'XLT=L"ZL.

The quantity
1
§(X,Z) = HI - L 'XZL
v’

F
serves as a centrality measure, with p := X e Z/n. It is easy to see that the central path is the set of

solutions (X, Z) with §(X, Z) = 0 or, equivalently, those solutions for which V' = ,/ul. Moreover,
we have )
(1+0(X,2)I = ~V? = (1-§X,2))I. (4.3)
W

In V-space path following, we want to drive the V-iterates towards the origin by Newton’s method,
in such a way that the iterates reside in a cone around the identity matrix. Before stating the

Newton equation, we need to introduce the linear space A(L),

A(L) :=Span{L"AVL : i=1,2,...,m}

13



and its orthoplement in S
ANL) :={AX €S8: (LTAYL)e AX =0 fori=1,2,...,m}.

A Newton direction for obtaining a (yu)-center, for some 7y € [0,1], is the solution (AX,AZ) of
the following system of linear equations ([13], equation (17)):
AX +DAZD =yuZ=' — X
(4.4)
AX € AN, AZe A(I).

For v = 0, we denote the solution of (4.4) by (AXP, AZP), the predictor direction. For v = 1, the
solution is denoted by (AX¢, AZ¢), the corrector direction. If we let

AX := L7'AXL7T, AZ .= L'AZL,
then we can rewrite (4.4) as
AX +AZ =ypuV-t -V
AX € ANL), AZe A(L).
It follows from orthogonality that
|AX?|5 +[|AZP|5 = VI = nu. (4.5)
The corrector direction does not change the duality gap,
(X +AX) e (Z+AZ)=X e Z, (4.6)

whereas

(X +tAXP) o (Z +tAZP) = (1 — )X  Z, (4.7)

for any ¢ € R, see equation (16) of [13].
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Algorithm SDP

Given (X, 2% € Fp x Fp with §(X°,2°%) < 1.
Parameter ¢ < (X° o Z%)/n and positive integer 7.
Let £ =0.
REPEAT (main iteration)
Let X = X¥, Z = ZF and pp = X o Z/n.
Predictor: compute (AXP, AZP) from (4.4) with v = 0.
Compute the largest step t; such that for all 0 < ¢ < ¢, there holds
§(X +tAXP, Z +tAZP) < 1/2
and
(X +tAXP Z +tAZP) < ((1 —t)ux/e)? .
Let X' := X + t,AX?, 7" := Z + t;, AZP and B = min(+, (1 — t)ux/€).
Corrector:
FOR7=1 tor DO
Let X =X'.Z=27".
IF §(X, Z) < By THEN exit loop.
Compute (AX¢ AZ¢) from (4.4) with v = 1.
Set X' =X +AX¢, 7' =7+ AZ°.

END FOR
Xk;+1 — XI Zk+1 — Z/
Set k =k + 1.

UNTIL convergence.

Interestingly, each corrector step reduces d(-,-) at a quadratic rate as stated in the following

result:

Lemma 4.1 If §(X,Z) < % then

(X +AXS Z + AZ) <6(X, 7).

Proof. It follows from Lemma 4.5 in [13] that

X+AX =0, Z+AZ =0.

Hence, the desired result is an immediate consequence of Lemma 4.4 in [13]. Q.E.D.
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Also, it follows from (4.6), (4.7) and Lemma 4.1 that for any £ > 1

5(Xk’Zk) < Bk—l
(L —tp—1)pr—1/€
pi/€ = O(p)- (4.8)

IN

Furthermore, if 5 = 1/4, then only one corrector step (i.e., 7 = 1) is needed to recenter the iterate
(see [13]). In other words, the iterations of Algorithm SDP are identical to that of the primal-dual
predictor-corrector algorithm of [13], for all & with

Ph S 2
=2

| =

We can therefore conclude from Theorem 5.2 in [13] that the algorithm yields pz < § for k=
O(y/nlog(po/€)). Thus, we have the following polynomial complexity result.

Theorem 4.1 For each 0 < ¢ < (Xg ® Zy)/n, Algorithm SDP will generate an iterate (X*, Z¥) €
Fp x Fp with X* ¢ ZF < ¢ in at most O(y/nlog(uo/€)) predictor-corrector steps.

In addition to having polynomial complexity, Algorithm SDP also possesses a superlinear rate

of convergence. We prove this in the next section.

5 Convergence analysis

We begin by establishing the global convergence of Algorithm SDP. Notice that Algorithm SDP
chooses the predictor step length ¢, to be the largest step such that for all 0 < ¢ < t; there holds

1 —r
§(X +tAXP, Z + tAZP) < min {5, (1 —t)u/e)? } : (5.1)
It was shown in [13] (equation (21) therein) that
(1—1)0(X +tAXP, Z + tAZP) < (1 — t)6(X, Z) + 7 || AXPAZP| . /ps. (5.2)
Combining (5.1) and (5.2), we can easily establish the global convergence of Algorithm SDP.
Theorem 5.1 There holds
lim pg =0,
k—o00

i.e. Algorithm SDP is globally convergent.
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Proof. Due to (4.7), u’,u',... is a monotone decreasing sequence. Hence, the sequence has a

limit. Suppose contrary to the statement of the lemma that

foo = lim pig, oo > 0. (5.3)

k—o0
Then, we obtain from (4.5), (5.1) and (5.2) that t; = ©(1). Together with (4.7) this implies that
1 — 45 = ©(1), which contradicts (5.3). Q.E.D.

Next we proceed to establish the superlinear convergence of Algorithm SDP. In light of (4.7),
we only need to show that the predictor step length ¢; approaches to 1. Hence we are led to bound
tr from below. For this purpose, we note from (5.2) that, for ¢t € (0,1),

§(X +tAXP, Z +tAZP) < §(X, Z) + %t |AXPAZP| . /p. (5.4)

Thus, if we can properly bound HAXPAZP
step length #.

H o> then we will obtain a lower bound on the predictor

To begin, let us consider L, with

LuLZ - ﬁX(M)

Remark that
VAL = L X ()L, = LY 20 L.

Now define the predictor direction starting from the solution (X (u), Z(p)) on the central path as

follows: . .
AXP(p) + AZP(p) = —\/pl,

AXP(n) € AH(Ly), AZP(p) € A(Ly).

Let (X a Z“) be the analytic center of the optimal solution set in the L,-transformed space,
va . 7—1vyvar—T Sa . 17T r7a
X%:=L,XL,~, Z":=L,Z°L,.

We will show in Lemma 5.1 below that AXP(y) is close to the optimal step X% — Vi1 for small pu.
We will bound the difference between AXP (1) and AX? afterwards.

Lemma 5.1 There holds

= 0(*?).

H\/ﬁl +AXP(n) — X°

+ H\/ﬁl Y AZP(u) — 20

17



Proof. Since
XZ%=L;'X"Z°L, =0,
it follows
(VAL — X9 (VRI — 2%) = (Vi — 2%)(/fl - X°).
Therefore, the matrix (\/pl — X (il — Z @), or equivalently, the matrix

L, N(X () = XY (Z(u) — Z) Ly,

is symmetric. By the property of F-norm, we obtain

|(var = Xy (vmr - 2%

12,1 (X () = XY (Z () = 2 L,
= (X(u) = X)(Z(p) = Z2|lp
= o), (>

where the last step follows from Theorem 3.1. Now since X¢Z% = 0 and AXP () +AZP(u) = -/,

we have

F

(X = VAD(Z° = Jal) = ul — /(X" + 2%
= V(AL + AXP () - X°)
VAR + AZP () - 2°).

As
VL +AXP(n) = X% € AX(L,), il +AZP(u) — 2% € A(Ly),

it follows that )

|vit + axr = x|+ |var + azeg) - 22
-1 H(X — VA (Z® - \/ﬁI)H; = 0(1?),

where last step is due to (5.5). This proves the lemma. Q.E.D.

F

Lemma 5.1 applies only to (AXP(u), AZP(1)), namely the predictor directions for the points
located exactly on the central path. What we need is a similar bound for (AXP?, AZP) (obtained
at points close to the central path). This leads us to bound the difference AX? (1) — AXP. Indeed,

our next goal is to show (Lemma 5.5) that
HAX”(M) . AXPHF = O(/id(X, Z)).
We prove this bound by a sequence of lemmas. Let D be given by (4.1) and define
D:=L,'DL,",
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so that D =T if X = X(u) and Z = Z(u). Choose L by
H1/2
L:=L,D'?

and notice that indeed LL' = D, as stipulated by (4.2).

Lemma 5.2 Suppose §(X,Z) < % There holds

[L7HX () = X)L+ [|LT(Z(1) = Z2)L]| = O(VRd (X, Z)).

Proof. Let
Aolp) = LNX () - X)LT, Au(w) = LE(Z(n) - Z)L.

Clearly, Az (u) and A,(u) are symmetric and Az () L A,(u). Let p denote the smallest eigenvalue
of Ay(p) + Ay(u), ie.

p=argmax{p: Ag(u) + A;(n) = pl}.
Since X @ Z = X () ® Z(p) = np, we have

tr (Z(X ()~ X) + X(Z(0) — 2)) = tr (X(0) — X)Z + X(Z(n) — 2))
= —tr (X(0) — X)(Z(n) - 2)) — tr XZ + tr X () Z(n)
= 0,

where the last step follows from (X (u) — X) L (Z(p) — Z). Recall that V = L='XL=1 = LT ZL.

Consider

tr (V(As(p) +Ax(p) = tr (LYZ(X () = X)L " + L X(Z(p) — Z)L)
= tr (Z(X(p) - X) + X(Z(n) — 2))
= 0.

By (4.3), the matrix V' is symmetric positive definite and V' = ©(1). Diagonalize the symmetric
matrix Ay (p) + A, (p) = QTAQ and consider

0 =tr (V(Az(p) +Az(n))) = tr (VQTAQ) = tr (QVQTA).

Since QV QT = O(1), the diagonal entries of QVQ? must be ©(1). Therefore, the preceding
equation implies that the diagonal matrix A must have a nonpositive eigenvalue and that its diagonal
entries are of same order of magnitude. In other words, p < 0 and ||A]| = O(|p|). This further
implies

1Az (1) + Az ()] = O(p))- (5.6)
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By the definition of the central path, we have

pl = (V+Ax(p)(V + Ax(p))

_ (V 4 Agy(p) ‘;‘ Ay (p) + Agy(p) ; Az(l‘)) <V+ Ag(p) +As(p)  Aglp) - Az(#)) ‘

Now using the fact that the above matrix is symmetric, it follows that

Ay(p) + Az(ﬂ)>2 .

9 (Ag(p) — Az(#))2

ul = <V—i—

and therefore,

Using (4.3), we obtain
ol = O(Viid(X, 2)).
Combining this with (5.6) and using the fact that Az(u) L A,(p), we have
1Az() | + 1Azl = O(lpl) = O(VRd(X, Z)).

Q.E.D.

Lemma 5.3 Suppose 6(X,Z) < 1/2. Then there holds

|D—1]| = 0(5(X, 2)).

Proof. Notice that
L' XL, = /pl + Ly (X = X () L"

and
LIZL, =il + LI(Z — Z(p)) L.

Now using
“1yvr=T _ p(rT -
L, XL, =D(L,ZL,)D,

1/2

we have, by pre- and post-multiplying the above two equations with D~!/2 and rearranging terms,

V(DL = D) = LN (X (i) — X)L + LT(Z — Z(w)L.
Together with Lemma 5.2, this implies D = ©(1) and

|D - 1| = 0(5(X, 2)).
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The lemma, is proved.

Now, let
AXP := DV2AXPDY?  AZP .= D Y2AZPDV2,

Notice that (AXP, AZP) € A+(L,) x A(L,).

Lemma 5.4 We have

HAXP - AXPH + HA?” - AZPH = O(VEd(X, Z)).

Proof. We have

AXP = DY?AXPDY? = AXP + (DY? — I)AXPD'? + AXP(D'? - I).

Now using Lemma 5.3 and (4.5), we see that
HAX” - AXPH = O(/id(X, Z)).
It can be shown in an analogous way that

HA?P . AZPH = O(/id(X, Z)).

Now we are ready to bound the difference between AX? (1) and AX?.

Lemma 5.5 Suppose 6(X,Z) <1/2. We have

HAX”(M) _ AX”H + HAZ”(M) . AZPH = O(VEd(X, Z)).

Proof. By definition of the predictor directions, we have

AXP(p) + AZP(p) = —/pl

and
AXP + AZP = V.

Combining these two relations yields

AXP(u) — AXP + AZP(u) — AZP =V — Jul + AXP — AXP + AZP — AZP.
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Now using Lemma 5.4 and using the fact that

IV — VAL = [(V + Val) " (V? = uD)| < Vid(X, Z),

we obtain

HAXP(H) —AXP £ AZP(n) — AZPH = O(VEd(X, Z)).

Since (AXP(u) — AXP) L (AZP(u) — AZP), the lemma follows from the above relation, after
applying Lemma 5.4 once more. Q.E.D.

Combining (5.5), Lemma 5.1 and Lemma 5.5 we can now estimate the order of HA)_{”AZ”H,

and hence, using (5.4), we can estimate the predictor step length .
Lemma 5.6 We have

|AXPAZP|| = O(pu(n + 0(X, Z))).

Proof. Combining Lemma 5.5 with Lemma 5.1, we have

v+ axr - e

+ H\/EIJFAZP -z

— O(Va(u + §(X, 2))), (5.7)

so that, using (4.5),
— O(v/i). (5.8)

+H\/ﬁl—2“

-

Moreover,

AXPAZP = (X°— /ul)(Z2%— ul) + (X — /ul)(Vul + AZP — Z9)
+(/il + AXP — XY)AZP.

Applying (5.5), (5.7), (5.8) and (4.5) to the above relation yields
|AZPAZ?| = O(u(u + 5(X, 2))).

Q.E.D.

Theorem 5.2 The iterates (X*, Z¥) generated by Algorithm SDP converge to (X, Z%) superlin-
early with order 2/(1+27"). The duality gap u* converges to zero at the same rate.

Proof. From (5.4) we see that for any ¢ > 0 satisfying
Bt + [|[AXPAZP|| . Jure < (L= 1) (L= t)ux/e)* ",
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there holds
§(X +tAXP, Z +tAZP) < (1 —t)u/e)/?.

This implies using (4.8) and Lemma 5.6 that

(1 o tk)1+2_T

IN

(Br—1 + [|AXPAZP|| /o) (ue/e) 2
= O(my, ),

so that

pra1 = (L —tg)pp = O(MZ/(IH_T’)-

This shows that the duality gap converges to zero superlinearly with order 2/(1 +2"). It remains

to prove that the iterates converge to the analytic center with the same order. Notice that

1X*5 = X (ui)ll e < ILTLY| - 1L (XE = X (i) LT e (5.9)
However, using the definition of F-norm and applying Lemma 5.3,

\LLilp = |LL" | = 1Ly DLE, |7 = O(1Lu LT I ).

Recall that L, L = ﬁX (ug) by definition, so that using Lemma 3.1,

Hk ™ pog
1
LTL||p = O(—). 5.10
IL" L r (\/H_k) (5.10)
Combining (5.9) and (5.10) with Lemma 5.2, we have
1 _ _
1XF = X () lr = O(—=IIL~H(XF = X (up)) LT |r) = O(8(X*, Z%)) = O(us)-
N

Hence, we obtain from Theorem 3.1 that
1XF = X% = O(us)-

Similarly, it can be shown that
1Z% = Z|» = O s

This shows that the iterates converge to the analytic center R-superlinearly, with the same order

as [ converges to zero. Q.E.D.

6 Conclusions

We have shown the global and superlinear convergence of the predictor-corrector algorithm SDP,
assuming only the existence of a strictly complementary solution pair. The local convergence anal-
ysis is based on Theorem 3.1, which states that | X (x) — X®|| +||Z(n) — Z°%|| = O(p). By enforcing
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§(X*, Zk) — 0, the iterates “inherit” this property of the central path. For the generalization of

the Mizuno-Todd-Ye predictor-corrector algorithm in [13], we do not enforce §(X*, Z*) — 0, and

hence we cannot conclude superlinear convergence for it yet. In this respect, it will be interesting to

study the asymptotic behavior of the corrector steps. Finally, it is likely that our line of argument

can be applied to the infeasible primal-dual path following algorithms of Kojima-Shindoh-Hara [5]
and Potra-Sheng [12].
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