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ABSTRACT:

In this paper variable metric algorithms are extended to
solve general nonlinear programming problems. In the algorithm
we iteratively solve a linearly constrained quadratic program which
contains an estimate of the Hessian of the Lagrangian. We suggest
the variable metric updates for the estimates of the Hessians and
justify our suggestion by showing that, when some well known update
such as the Davidon-Fletcher-Powell update are so employed, the
algorithm converges locally with a superlinear rate. Our algorithn
is in a sense a natural extension of the variable metric algorithm
to the constrained optimization and this extension offers us not
only a class of effective algorithms in nonlinear programming but
also a unified treatment of constrained and unconstrained optimization

in the variable metric approach.
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SUPERLINEARLY CONVERGENT VARIABLE METRIC ALGORITHMS
FOR GENERAL NONLINEAR PROGRAMMING PROBLEMS

Shih~Ping Han

1. Introduction

The nonlinear programming pfoblem to be considered in this

paper is defined as

minimize £(x)

(P)

subject to the constraints gi(x) 0 i=l,...m,
where £, 9yreecs9p denote real-valued functions of a vector x in
the n-dimensional Euclidean space R®., For convenience we shall
restrict ourselves to problems with inequality constraints only.
The inclusion of equality constraints causes no difficu;ties and
all the results go through with minor modifications.

In developing methods for solving constrained optimization
problems much can be learned from the established methods for un-
constrained optimization problems, which can be viewed as a special
case of Problem P with m=0. We usually can obtain efficient meth-
ods by extending successful unconstrained optimization methods td
the constrained case. 1In this paper some variable metric methods
including the Davidon-Fletcher-Powell method are extended to solve
Problem P and we establish a local superlinear convergence for these
methods.

In Section 2 we state the algorithm and compare it with the
related work in the nonlinear programming literature. We establish
some general local convergence theorems for the algorithm in Section

.and discuss the superlinear rate of convergence in Section 4. 1In

Section 5 some variable metric updates are incorporated into the



2

algorithm for updating the estimates of the‘Hessian of the
Lagrangian in the quadratic programming subproblems; by the results
of Section 3 and 4, we show that the resulting algorithms con-
verge locally with superlinear rates. Some comments and computa-
tional results are contained in Section 6.

We note here that all vectors are column vectors and a row
vector will be indicated by superscript T. For convenience a
column vector in Rn+m is sometimes written as (X,u) instead of [ﬁ].
We use x5 to denote the i-th component of vector x. Superscripts
are used to denote different vectors; i.e., xl and x2. To avoid
some cumbersome constapts we restrict ourselves to the 22 vector
and operator norm and denote it by |]<|l. An e-neighborhood N(x,€)
of a point x in R" is the set N(x,c). = {y € R" : |{y-x|| < ¢} , and

N(x,e) is its closure.

2. The algorithm

The class of algorithms to be considered are for finding a
Kuhn-Tucker point. of Problem P. The algorithm constructs a
sequehce of (n+m)-vectors {(xk,uk)) which are estimates of a Kuhn=-
Tucker pair (x*,u*) of Problem P, This is done by solving a
sequence of linearly constrained quadratic programming subproblems
which can be effectively solved bf the existing algorithms
{1,5,6,28). Each subproblem contains an estimate H of the Hgssian
of the lLagrangian of Problem P, and the matrix nk can be updated
by ; variety of variable metric schemes which are well known in
unconstrained optimization. Before the statement of the algorithm

we first define the following quadratic programming problem Q(x,H):

.



min VE(x)Ts + %STHS
S

s.t. gi(x) + Vgi(x)Ts < 0, i=1,...m,

which can be associated with any x in R" and any nxn matrix H.

f s - - +m . :
Definition 2.1l: A vector z = (x+s,u) in R is a z-solution of

Q(x,H) if (5,0) is a Kuhn-Tucker pair of Q(x,H). O

Now we can state the algorithm as follows:

Algorithm
Step 1. Start with an estimate zo = (xo,uO) of a Xuhn-Tucker
pair of problem P and an estimate Hy of the Hessian

of the Lagrangian evaluated at that Kuhn-Tucker pair.
Step 2. Set k = 0.

Step 3. Find a z-solution of Q(xk,Hk) and call this z-~solutioen

zk+l = (xk+l,uk+l). If there are more than one such

z-solutions, choose one which is closest to zk .

k+1 _ (xk+1’uk+1

Step 4. If z } satisfies a prescribed conver-

gence criterion, stop; otherwise, go to step 5.

Step 5. Update Hk+l by some updating scheme, then set k = k+1l

and go to step 3. DO

We propose to use variable metric schemes to update the matrix

Hk+1 from the matrix Hk and the vectors sk = xk+l - xk and

yk = VXL(xk+l,ug+l) - VxL(xk,uk+l

}, where L(x,u) = £(x) + uTg(x) is
the Lagrangian of Problem P; the Davidon-Fletcher-Powell update [7,11]

and an update by Powell [23,24] will be so utilized in our algorithm



and shown to possess local and superlinear convergence properties.
It is roted here that the algorithm is just the variable metric
algorithm in the degenerated case m=0 and therefore can be viewed
as its natural exéension to the constrained case.

The algorithm was first studied by Wilson [29] with
Bk = VxxL(xk,uk). Though converging quadratically, Wilson's algo-
rithm, like Newton's method in unconstrained optimization, is .
expensive in computing second derivatives. Robinson [25] proposed
a modified ¥Wilson's algorithm which avoids the need for second
derivatives and at the same time preserves the gquadratic rate of
convercence; however, in this algorithm we have to solve more
difficult general linearly constrained minimization subproblems
inztead of quadratic programming subproblems. An approach adopted
by Garcia and Mangasarian [12,13]'15 to update Hk as an estimate
of Vx,L(xk,uk). The main difference between our algorithms and
Garcia's is in the way we update matrices. In Garcia's algorithms
an (n+m) x{n+m) matrix is updated in each iteration to approximate
the matrix 7§L(zk) and the upper left nxn submatrix is used in the
éuadratic programming subproblems.' This is wasteful especially
if the number of constraints is very large. In our algoritﬂms we
update only nxn matrices which directly approximate the matrix
TxxL{z*). To guarantee superlinear rates of convergence for Garcia's
updates we need a very stringent condition called "uniform linear
independence”, i.e., each n consecutively generated vectors are,
in some sense, uniformly linearly independent. Strictly speaking,
this condition cannot be assumed beforehand and therefore super-

linear rates of convergence have not really been guaranteed for his



updates. However this condition is never needed in establishing
superlinear rates for our algorithms, We would aléo like to note
here that some other different extensions of the variable metric
algorithm to constrained optimization have been studied by Goldfarb

[15] and Gill and Murry [14]) for the linearly constrained case.

3. Local Convergence Theorems

In this section we shall present sufficient conditions for
ensuring the local convergence of our algorithm; such conditions

turn out to be satisfied by several updates. To begin with, we

. s . - s o~y s +
introduce some definitions and notation. For any z = (X%,8) in | G

n+m

and any nxn matrix H we define the function F(Z,H,*): R n+m'

+ R

as follows

[ VE(X) + Vg(X)u + H(x-f().1
uy gy () + g, (0T (x-%))
(3.1) F(?,H,z) = .

.

~ =T =
| (98 + Vo, (007 (x-R))

where z = (x,u). If H is symmetric then the equalities F(Z,H,2z) = 0
are satisfied by a z-solution to the quadratic program Q(X,H)., Let
z* = {(x*,u*) be a Kuhn-Tucker pair of Problem P; the Jacobian matrix
of the function F(z*,H,z) with respect to z evaluatéd at z* is denoted

by



3 H Vg (x*) T
ungl(x*)T R
(3.2) Dy = vzr(z',a.z)]z;*- . .
. diag(g; (x*))
i=1l,...m
T .
1 gt Ve (x*) )

When H = V__L(z*) the nonsingularity of Dy is essential for establish~
ing our convergence theorems. To ensure this we use the following
condition which was first studigd by Fiacco and McCormick [10] and
has been called "the Jacobian uniqueness condition" [19]. It should
be noted that.any condition which implies the nonsingularity of D

) H
with H = V__L(z*) will work equally well.

Definition 3.2: A Kuhn-Tucker pair (x*,u*) of Problem P satisfies
the Jacobian uniqueness condition if the following conditions are

simultaneously satisfied

(1) u; > 0 if 1'6 I(x*) = (3§ : gj(x’) = 0}
(ii) {Vgi(x’) : i € I(x*)} are linearly independent

(iii) For any y € R®, y # 0, such that Vgi(x*)Ty =0

i € I(x*), it follows that y'V_ L(x*,u*)y > 0. O

In the following discussion £ € LC?[x] will mean that the
function £ has a second derivative which is Lipschitz continuous
at X. Now we state a lemma which will be used later. This leémma
can be estabiished by using the mean value theorem (21, p. 78] and.its

proof can be found in [16].
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Lemma 3.3: If £ and 9 (i=1,...m) € LC2[x], then there exists a
neighborhood N{x*,e) and two positive numbers R and X such that

- -~ . ~ :
for any x and X in N(x*,e) and any u in Rm, we have

HV,L(X,0) - 7, L(%,0) = 9 L(x*u*) (%=%)|]
(3.3)

¢ (K max{|[%=x*]|, | [%=x*| |} + K| |[G-u*| D [{%-%]]. O

Next we provide an estimate of the distance between a z-solu-
tion of the gquadratic program Q(X,H) and a Kuhn-Tucker pair

2* = (x*,u*) of Problem P.

+ .

Lemma 3.4: Let z* = (x*,u*) € R*'" and £ and g; (i=1,...m) have
continuous second derivatives. If K is an nxn matrix such that DH
is nonsingular and F(z*,H,z*) = 0, then there exists a neighborhcod

N{z*,€) such that for any % in N(z*,€) the function

= > -p~ Y re3
TE,H(Z) =z DH F(Z,H,2)

is a contraction in N(z*,g). Furthermore if llD;li! <t and 2 is
close enough to z* such that ||F(Z,H,z*)|| < 75” , then Ty .
= 27 JE

has a unique fixed point z in N(z*,€) and |[Z-2*|] g 2t]|F(Z,K,z%) ||,

1

-l|| ¢ T; we choose & such that 1é<3 and € such that

H
for all z and % in N(z*,g) we have

Proof: Let ||D



~ 0 . g (X) - Vg(x*)
uIVQI(i)TtulVgl(x*)T °

1A
o

diag(gi(§2+zgi(i)T(x-i)-qi(x*))
i=1l,v..m

. .

sy T * T
ungm(x) ungm(x )

L

Hence

117,73 gtz ] = |11 - DRtV F(z,H,2) ||

A

< DG fip, - v, 5,8,z || £ 76 < 5.

Therefore Ti " is a contraction in N(z*,£). If z is close enough to
;!

z* such that ||F(Z,H,z*)|| < 7% , then
-1 ~ -
lTy a2 = 2#l < Lol Ir@m2n]] 5 a-p <.

By the contradiction mapping principle [18, p. 28] there exists

a unique fixed point Z of Tz . in N(z*,€) and
1z - 21| ¢ 2t ||F(Z, 10,201, O

Now we are ready to prove the following key theorem which
establishes a general condition for the local convergence of our

algorithm,

Theorem 3,5: let £ and gi(i=l,...m) € LCZ[x*]. 1f a Kuhn-Tucker
pair z* = (x*,u*) of Problem P satisfies the Jacobian uniqueness
condition then for any r € (0,1) there exist two positive numbers

¢(r) and &(r) such that if |[% - z*|| g c(r) and |[N-V  L(z*)|] g 6(r)

then a closest z-solution 72 = (Q,G) of Q(%,11) to Z exists and



Hz = 2*]| g zl]2 = 2*]].

Proof:

equalities of the Kuhn-Tucker conditions evaluated at z*; that is,

Let r € (0,1) be given and D* be the Jacobian of the

~ B
DVl (z*) Vg (x*)
T
D* ungl(x*)
¢ diag(gi(x*))
: i=1,...m
T .
L u;ng(x*) .
-t

By the Jacobian uniqueness condition it follows that D* is non=-

singular [10, p. 80}. We set

(3.4) A o], 1= A/(1-x)

and choose € > 0 such that for all z and ¥ in N(z*,g) the

following conditions hold:

(3.5) (a)

Tg(R) =~ Vg(x*)

wy T * ‘ T .
ulVgl(x). ulVgl(x') .
 diaglg, (R)+9g, (3) T (x-X) =g, (x*))

T =1,...
ungm(x)T-u;ng(x*) i ! m

| .

and for i = 1,...m

(b) g (x*) <0 dimplies g, (%) + Vgi(i)T(x -%) <0

(c) ut > 0

1 implies uy > 0.
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Choose €(r) and §(r) to satisfy the following conditions,
vwhere for simplicity we write henceforth ¢ and 6§ for e(r)

and &(r) respectively

(3.6) (2) max{ZAG, 667} < ¢
(b) e < %
(c) For all z € N(z*,c) we have that

(1) |]vE(x) + Vg(x)u* - v Liz*) (x-x*) || g &][x = x*|]

1) ][ wltg 00 - gm0 + g 0 Txr - x0) ||

+

e ut(g_(x) = g (x*) + g (x)T(x* = x))

< 6)lx - x*]|

(iii) for any n*n matrix H with |[H|]| £ I}VXXL(z*)||‘+ ;

it follows ||F(z,H,z%) || < 2%

The gxistence of such § and e follows from the following
considerations. We can choose & <first to satisfy (3.6.a), then
choose ¢ small enough to satisfy (3.6.b) and (3.6.c). The
existence of ¢ satisfying (3.6.c) follows from Lemma 3.3 by
observing that V_ L(x*,u*) = 0. The last two conditions of (3.6.c)
are easily satisfied.

ret f = 2o + ¥T); 4f |6 -V, L(2#) || £ 6 then it is
obvious that |[}H ~ 9 _L(z*)|| ¢ 8. Thus we have

lIog - o*}| ¢ [IH - v, 0(z9]] g 6.

Hence by (3.4), (3.6.a) and the Bagach perturbation lemma [21, p. 45]

Dﬁ is nonsingular and

-1 A T
ozt s 2 =7 -
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From |[H - v, L(z*)|| ¢ ¢ and (3.6.a) we have

A

LR g izl +« [1E - 9,Lz0]]

N9+ 5

A

Hence it follows from (3.6.c) and Lemma 3.4 that the function
T. =(2) = z - DatF(%,H,2)
z,H H [

- ~
is a contraction in N(z*,c) and has a unigue fixed point z. Hence

we have F(E,E,Q) = 0 and
(3.7) [lz - 2*]| < 27| |F(%,H,2%) ],

Now since

VE(R) + Vg(X)u* + F.(x*-i:)-1 0 l
(3.8) uf (g, (%) + Vgl(i)T(x*-i)) utg, (x*)
[1F(Z,8,2%) ]| = . - .
] wnten ) + 7o Tee-50) | | uag, (<0

[19£(%) + Vg(Xyur + H(x*-%)|] +

S
‘ ui(gl(x) - gl(x*) + 91(X)T(x"X))1
* i
. |
!‘ uk(g (%) = g (x*) + Ug (%) T (x*-%))
g (28 + ||R - 9 Lz |]) |lx*-x!| (by 3.6.c)

RA

36 [x*-x{| g 38]]z*-Z{] ,
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hence by (3.7), (3.8) and (3.6.a) we have
(3.9) |z - z*|] < 66t |2 - 2*|| £ ||z - z*]] .

Since z is the unique fixed point of ’I‘i i in N(z*,€), hence
’

is the unique zero of F(3,H,*) in N(z*,§). From F(2,R,z) = 0 it

follows that

[}
o

u, (g, (B + Vg, (07 (x-5)) i=1,...m.

=)>
v

By (3.5.b) and (3.5.c) we have u > 0 and

-~

g(x) + 7g(R) (x - %) g 0.

.

Hence z is a z-solution of Q(X,H).
wWe now show that 2 is the closest z-solution of Q(X,H) to

2. Since any z-solution of Q(X,H) is a zero of F(z,H,*), it follows

from the unigueness of the zero of F(%,H,+) in N(z*,e) that z is

the nunique z-solution of Q(%,H) in N(z*,g). If z is another

z-solution of Q(%,H) then z € N(z*,€). Hence

Hz.- 211 2 112 = 2z*|| = |2 = z*|]
- 1 - 2 -
>e-F3e=xe (by 3.6.b).
But  |lz -Z|| < {1z - 2*|| + |]2z* - Z]|

Fi+zE=3i.

A

Hence 2 is the closest z-solution of Q(%,H) to %, which in con-

junction with (3.9) completes the proof. I

>
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Before we give the following corollary recall that a sequence

X converges to a point z* Q-linearly if there exists r € (0,1)

k+l-z*|| < rllzk-z*ll, and Q-superlinearly if

such that ||z

|]zk+l-z*|| = ekllzk-z*|| and 2im 8 =0,
k>0

Corollary 3.6: Let z* = (x*,u*) be a Xuhn-Tucker pair of Problem P
which satisfies the Jacobian uniqueness condition and £ and 94
(i=1,...m) & Lc?{x*] and let {jk} be a nondecreasing sequence

of nonnegative integers with j,_ < k. If zo is close enough to z*
Ix

and {*} is a sequence of nonnegative numbers and bounded above by
3

a sufficiently small positive number and if HHk - v L(z k)[l < 9y

then the sequence of points {zk} generated by the algorithm con-

verges Q-linearly to z*. Furthermore, if k * = implies that jk +>

and that o e then (zk} converges Q-superlinearly to z*.

Proof: The first part follows directly from Theorem 3.5. We only

need to prove the second part. Let r € (0,1). Since

A

J b
iy, = Tz ] g | - vxbiz 0+ oz Xy - 9, Lzn ||

Ik
op + 117,00z ) = v nzn ]

nA

and from the first part {zk) converges Q-linearly to z* , thus we

have that Hk - VXXL(z*) when oy

defined as in Theorem 3.5; then there exists k > 0 such that

+ 0., Let e(r) and &(r) be

for all k 2 k we have Hzk - z*|| < e(xr) and |in,_- v _ L(z%}]

k
< §(r). Therefore it follows from Theorem 3.5 that IIzk"'l - 2|
<r Ilzk - z*|| for all k > k. Since r is arbitrary, it follows that

; k+1 *
Lim 2 H =0

ST e
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which shows that {zk) converges Q-superlinearly to z*. O
,)_

If we let Hk = VxxL(;Dk) + akI then the resulting algorithm
is an extension of the Levenberg-Marquardt algorithm to the con-
strained optimization; the local convergence properties of this
algorithm follow immediateiy from the above corollary. When
jk = k and ey = 0 the algorithm becomes Wilson's algorithm [29]
for which Robinson has esééblished a quadratic rate of convergence
[261. ' '

In the theorem below. we give a sufficient condition on the
upéate which guarantees that our algorithm generates points that
coaverge to a Kuhn-Tuckeruﬁair of Problem P. The importance of

'Aéhis éonditipn lies in the;fact that some variable metric updates
satisfy this condition and hence can be used in our algorithm ﬁo

'solve constrained optimiz&?ion problems. This condition has been

studied for unconstrained éroblems by Broyden, Dennis and Moré [3].

Throughout this work ||+|{' denotes any fixed matrix norm which

may be different from |[-}].

Theorem 3,7: Let 2z* = (xf,u*) be a Kuhn-Tucker pair of Problem P

and £ and 95 (i=l,...m)v€ LCztx*]. If the Jacobian uniqueness

e

condition is satisfied at 2z* and there are two nonnegative con=

" stants ay and o, such phat

>

(3.200  |lH ;= 9, L1

A

A+ o2z [ DY In - 7Ll

+

a1z - 2* ],

then for any r € (0,1) we'have two positive numbers €(r) and.$ (r)

such that if ||z° - z*|| g elx) and |[|Hy - v Lz*) ] g 8(x),
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then the sequence {z"} generated by the algorithm is well defined

and converges Q-linearly to z*.

Proof: By the equivalence of matrix norms, there exist two positive

numbers 4@ and d' such that for any nxn matrix A we have
(3.11) allall* 2 [all , a'ifall 2 Hall* .

Let r € (0,1) be given. By Theorem 3.5 there exist two

positive numbers & and & such that if ||z - z*|} ¢ € and
[lB - v ,L(z*)|] £ & then the closest z-solution z of QlX,H)
exists and ||z - 2*]|| < xllz - 2zxi|.

We choose two positive numbers € and ¢ such that if

1z - z*|| ¢ € and [|H - V  L(z%)]]

na

3 then the closest z-solution

z of Q(x,H) exists and ||z - z*|]

na

rllz - z*[l.
We choose two positive numbers € and ¢ .such that the

following conditions are satisfied

(3.12) (a) ez ¢

(b) 2dd's§ <3

' E '
(c) (2(1l a' + mz) =% £ d's

If we can show that for each k we have

(3.13) 1125 - 2*]| < e
and
(3.14) |1gk - v, Lz ]| g 286,

then by (3.12.a) and (3.12.b) we have I]zk - 2*|| ¢ € and
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e, - 7L (z*)|] £ 2dd'6 ¢ 3; thus this theorem follows immediately
from Theorem 3. 5.

Now we establish (3.13) and (3.14) by induction. It is ob~ :
vious that these inequalities are true for k = 0. Assume that they
are true for j, 0 £j £ k:; then it follows from (3.10) that

IIHj+1 - v Ly - |IHj -~ v L] < Zuld'edrj + azerj.

By taking the sum from j =0 to j k , we get that

(3.15) [|:—!k"_1 - Tlzn ]

HA

ity = 7,17 + (201376 + a,) &

tA

a'sd + 4'sé (by 3.12.c, 3.11 and initial
< 2d's. . choice of HO)

Therefore (3.14) is established. MNext we show that (3.13) is true

for j = k+1. From (3.15), (3.11) and (3.12.b) we have
J

(3.16) M8y = TN £ 3.

By the induction hypothesis and (3.12.a) we have

(3.17) |[zk -z*] g rXe < E.
Thus it follews from (3.16), (3.17) and Thecorem 3.5 that zk+l exists
and |lzk+l - z*| < rl]zk - z*[] < 5*1 | Hence (3.13) is true for

3 = k+1 and the theorem is proven. Q3

we' conclude this section with a corollary of the above theoren,
which shows that if condition (3.10) is satisfied then the updated

matrices will remain close to 7  L{z*).
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Corollary 3.8: If all the assumptions of Theorem 3.7 hold, then
for any r € (0,1) and t > 0 there exist two positive numbers e(r,t)
and §(r,t) such that if l]z0 - z*|| ¢ e(xr,t) and |[H, - Vb2 <

§(r,t), then the sequence (zk} generated by the algorithm is well
k+1

A

defined and ||z - z*|| < r[|zk - z*||, and furthermore the sequence

of matrices {Hk} satisfy

(3.18) ]iﬂk

A
(o4

- V. Lzn ]|
for each k.

Proof: Since in the proof of Theorem 3,7 we have established
IIHk - V. L(z*) || £ 2d'§ for each k, hence (3.18) is obviously true
if we choose e(r,t) and é§(r,t) to satisfy the additional condition

2d*'$ < t. O

4. (Q-Suverlinear Rate of Convergence

This section is devoted to giving some sufficient conditions
which guarantee that our algorithm has a Q-superlinear rate of conver-
gence. In the next section we will discuss some specific updates
which satisfy this condition. Actually Q-superlinear convergence
conditions for a more general family of algorithms will be considered
in this scction; this family includes not only the algorithm considered
in this paper but also the algorithms which iteratively solve opti-
mization subproblems with linearized constraints. We define this

family of algorithms in the following definition.

Definition 4.1: An algorithm for solving Problem P is called a

lincarized constraint alaorithm if{ it gencerates (n+m)-vectors

2= (xk,uk) which satisfy
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. o g ) 4 vgi'(xk) (**! - %)y =0 i=1,...m O

Besides our algorithm, some other examples of the linearized
constraint algorithm are Wilson's algorithm [29], Robinson's algo-
rithm [25) and dual variable metric algorithms {16].

The next result is due to Mangasariaﬁ [20) and is closely

related to the work done by Dennis and Moré [9].

Lemma 4.2: Let 2z* be a Kuhn-Tucker pair of Problem P satisfying
the Jacobian uniqueness condition and let £ and 95 {i=1,...m)
have continuous second derivatives. A sequence {zk} converges

Q-superlinearly if (zk} converges to z* and

: E(zk+l)
Lim = 0
o sz+l _ zkH ,
where
v Lz} W
u;gl(x)
E(z) = .
L‘-‘mgin(x)

Proof: By the Jacobian. uniqueness condition it follows that
sziz') is nonsingular [10, p. 80). Therefore there exists

¢ > 0 such that for sufficiently large k we have

HEGE* Y] = [EGY) - B ] g el |2 - 2],
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Hence by the assumption of this lemma we obtain

2im [ Xt L ga =0
TP T
which implies
Lim Ilzk+l - z*|| -0

P T

and in turn implies

‘ kel _
pimo Jla—c 2l Lo, g

Hz® = z*]]
In the following theorem we establish a sufficient condition
for Q-superlinear rate of convergence of a linearized constraint

algorithm.

Theorem 4.3: Let z* be a Kuhn-Tucker pair of Problem P satisfyin
the Jacobian uniqueness condition and let £°® and 9; (i=l,...m)
have continuous second derivatives at x*. If a sequence {zk}

_ generated by a linearized constraint algorithm converges to z*

and

k+1)[l

(4.2) zim 1UEC2

NTEE

=0

then {zk)‘converges Q-superlinearly to z*.

Proof: By Lemma 4.2 we only need to prove that
gim _ple*hi|
k> k+ X1 .
[z - 27

Since zk + z* and {zk} is constructed by a linearized constraint

algorithm, we have
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m
I’B(zki'l)” < |lvxL(Xk+1.uk+l)H +_zll u);+lgi(xk+l)l
i=
£ 17,2 W h )]

K+l k+1

n .
T g, ) - g ) - vg ) M - Ky

it e o (115 - KD

Hence it follows from (4.2) that

. k+1
Zim [ E(z ) l
k+o x+1_ K =0. 0O

[z H

Next we introduce a theorem which will be very useful for
establishing Q-superlinear rates of convergence of our algorithms.

This theorem uses the following result of Dennis and Moré [9].

Lemma 4.4:  Let {ak) and {b,} be sequences of nonnegative numbers

and z, > 0, %, 2 0 such that

241 2 (1 + albk)ak + azbk

A

and

b, <,
i=1 *

then (ak} converges. O

Theorem 4.5: Let 2z* be a Kuhn-Tucker pair of Problem P satis-
fying the Jacobian unigueness condition and f and 95 (i=1,...m)
K LCZIg'}. Assume further that (z°) is constructed by a linearized
constraint algorithm, If there exist two nonnegative constants

ay "and a, and two sequences of nonnegative numbers {ok} and

{z.} such that the following conditions are satisfied



21
o0
(1) £ |28 -2t} <=
x=1
(ii) 0 impli Hv"L(Zku)” 0
e, * mplies hd
k sz+l - zkll
i) IERACR ]
iii o *0 implies -0
k sz+l - zkll

. k ) 1k
(iv) 0y $ (1 -0 + alllz - z*|Doy + a,flz" - z*l],
then {zX} converges Q-superlinearly to z*,

Proof: From Lemma 4.4 and (iv) it follows that {pk} converges

to a nonnegative number, say p . If p =0 then by (ii) we have

that
2im v, 0z ]
w T kKL K
ke Rt LR

and the desired conclusion follows directly from Theorem 4;3.

Assume p # 0. Then (iv) implies that

(4.3) + ||zk - z*|] (0 0, + a,) .

%k £ Pk T Pxel
By taking sum of both sides of (4.3) over k = 0,1,... and taking

(i) and the boundedness of (pk) into account it follows that

Since + 5 and o # 0, it follows that O + 0, Hence by

°x
(iii) we also have that

k+1
pim 17,2z )|

—_— =0 .
Kovw k+1 K
[f2"70 - 27|
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Theorem 4.3 now implies the desired result.O

We conciude this section with the following theorem which
establishes a sufficient condition for the Q-superlinear rate
of convergence of our algorithm. This theorem is closely related
to a result due to Dennis and Moré [9]; a similar result was studied

by Garcia and Mangasarian [13].

Theorem 4.6: Let 2* be a Kuhn-Tucker pair of Problem P satisfying
the Jacobian uniqueness condition and f and 9; (i=1,...m) €
chlx']. Suppose {zk} is a sequence of points generated by the
algorithm with respect to a sequence of matrices {Hk). Then the
sequence (=%} converges Q-superlinearly to z* if {2} converges

to 2z* and

(4.4) 2im ”(% (H, + Hi) - V. L{z*) (xX*1

- 5]
ke X+1 X =
* R

Proof: This theorem follows directly from Theorem 4.3 and the

following lemma. O
Lemma 4.7: If all the assumptions of Theorem 4.6 hold then

(4.5) b NTEED]
) kow TTRAT k0 0
[z z' ||

Proof: Since {zk} is generated by the ‘algorithm with respect to

{Hk), we have

kX k+1l

v, 008,05+ Do+ mD oF

- X =0 .



23

Hence

P9, L (<H sk

k+l'uk+l k+1

' x 1 T k+1 .k
|19, L(x ) = TLxT,uT ) = S(H 4 HD) (T - x ) !

uA

7 L, a ) g ek, at - v Lz 5 - W)+

G, + 1D = 7 (20 5 - XKL

XX

Thus (4.5) follows from (4.4) and Lemma 3.3. O

5. Updates

We have developed some theorems for the local convergence
and the superlinear rate of convergence of the algorithm. 1In this
section we show that some concrete updates for the algorithm satisfy
the hyéothesis of these results and hence converge locally with
‘superlinear rates. The updates to be discussed are extensions of
some well known updates for unconstrained optimization problems;
in this context the superlinear convergence of these u;datés has
been established by Broyden, Dennis and Moré [3] and Dennis and
Moré [9]. Some techniques of their proof are employed here.

For economy of notation let bared variables (such as #)
represent the (k+1l)-st variables (Hk+l) and unadorned variables
(H) represent the k-th variables (Hk). The updates to be considered

can be written as

H - T - T Ty - 1 T
(5.1) HeHa+ Ly - Hs)or +cly - Hs) . sl - ug)cc
c's (cTs)
where s =% - x , y = V,L(x,u) - v L(x,1) and c is any vector with

cTs # 0. A particular algorithm is determined once ¢ is specified
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in formuia (5.1). When formula (5.1) is used to update matrices
in the algorithm +he resulting algorithm will be called Algorithm
Al when ¢ = s, Algorithm A2 when ¢ = y and Algorithm A3 when ¢ = Dos
and Do is any fixed positive definite matrix. Thus we have the
following updates:

(5.2) By e (y-Hs)sT * s(y-Hs)T - sT (y-Hs)ss”
) N 2

= (Algorithm Al)
s”s (s*s) :

(Unconstrained case: Powell [23,24]),

m
4

- sTemns)vy”

(y-:—!s)y’r + y{y=-Hs)

{5.3) H=H+ = - (Algorithm A2)
. ¥Y's (y's)
(Unconstrained case: Davidon-Fletcher-Powell [7,11])'_
7. T T T T.T
(5.4) fo=n+ {ysHe)s DO+ DS(yeils) - s {y-#s)BsS D0 (algorithm Al
s Dos (s Dos)

In this section for any nonsingular nxn matrix matrix M we

define the matrix norm [l-!iM in such a way that for any n%n
matrix A
(5.5) . Hajl, = trace [ (MAM) * (MAM) ).

I

we next introduce the following lemma which is duc to Broyden,

Dennis and Moré [3].

o

Lerma 5.1: Let H e any nxn symmetric matrix and s, ¢ and ¥ be

n

vectors in P with ¢'s # 0 and define 3 by formula (5.2). IfM

is a nonsinjular syrmetric nrn matrix with

-1

(5.6) e - wls)] < s ts]

for some 8 © ([0, %] , then for any symmetric nrn matrix A with
3

A ¥ H we have
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P
ooyl
(5.7 18- ally g (1 - 2097+ J-i%’f—ﬁﬂ)lln-zsll“
h S ’
~ As
+ A
2 sl

where A~€ (0,1), andé Al and Az are constants which only depend

on M and n , and

(5.8) 8 = | |M(g=-A)s]]
[ 1B=A] ], Tl

if H# A and 8 = 0 otherwise, O

In the following theorem a sufficient condition is given to
guarantee Q-superlinear convergence of the algorithm with an update

of form (5.1).

Theorem 5.2: Let z* = (x*,u*) be a Kuhn-Tucker pair of Problem P
satisfying the Jacobian uniqueness condition and £ and 93 (i=1l,...
LCZ[x*l. Suppose that in the algorithm the sequence of matrices {Hk)

are generated by the update (5.1) with any ®  such that Ask £0,

mc® - MLeX||

LM st

(5.0) < omax(]]2® - 241, 1 - 2D

for a constant u and an arbitrary but fixed nonsingular symmetric

matrix M. If z0 and Ho are sufficiently close to 2* and
7..L(z*) respectively then the sequence {z"} generated by the

algorithm is well defined and cenverges Q-superlinearly to z*.

Proof: For any r € (0,1) let e(r) and §(r) be cefined as in

Theorem 3.7 with matrix norm ||+j|' as !I-\IM , and let

(5.10)

[}
>
—
=
2
3
>
>
+
=
-

1
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where ¥ and K are consténts defined in Lerma 3,3 and Al and

12 are defined in Lemma 5.1. We further require e€(r) to satisfy
(5.11)  €(r) £ —— .
=T£-

First we show by induction that if [Izo.- z*]] < elx) and
-9 L(z*)|| < 6(r) then the gererated sequence {zj) exists
xx =

and converges to 2z* Q-linearly; that is,
(5.12) ||2J+l - z*|| ¢ erj - z*]].

When j = 0 the existence of zj+l and (5.12) follows directly

£rom the choice of e(r) and &(r) and Theorem 3.5. Assume that for

all j ¢k, zj+l exists and (5.12) holds; we now show that zk+2

exists and (5.12) is also true for j = k+l.

Assume that sk # 0 , since if sk = 0 then zk+l is a Kuhn=-
Tucker pair of Problem P and on the other hand by the Jacobian
unigueness condition 2* is the unique Kuhn-Tucker pair of Problem P
in N(z'{t(r)). Hente in case sk = 0 we have zk+1 = 2* and the

sequence {z*) converges to 2z* in a finite number of steps. When

sX # 0 it follows from (5.9) and (5.11) that

[[Mck- el

TX < wmax{|2F - 2*[], |12 - 2x )
TRl

<upelr) g % .
Thus by (5.1) of Lerma 5.1 we have that
(5.14)
1By = Val(z®) Hy ((1-xe§) + x1u||zk - 2 D[ 1H - U, L(z%) ]y
19k = 9Ltz 8%

[ Isk]]

1
7
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where
k
I

o M(H - 7, L(2")s

(5.15) 8y =

w1 K
[TH, = 0, Lzn) [, 1 7sT]]
Lemma 3.3 shows that

HyS - v, Lz0s5l] < ®+ R ][ - 2¢]] [1s5]],
and therefore

X K
s.16) 1Y = T Lzn)sTl]

sl

8y (5.14) and (5.16) in conjunction with (5.10) we obtain

< R+ R[] - 2*].

(5.17)
H .y - v Lizn) |1, < (L-2eD)2 + a [12% = z¢| ) ][5, - v, L(z0)]]
k+1 XX M = )3 1 H X X X Py
k
+0.2]|Z -.Z*H'
Hence the existence of z'2 and the inequality !{zk+2 - z¢|| <
r||zk+l - z*|| follows from (5.17) an@ Theorem 3.7 immediately.

So far we have proved that {zk} converges to z* Q-lirearly.
:Now we are going to use Theorem 4.5 to prove that the sequence
(zk} converges to z* with a Q-superlinear rate. Let

o = 1B, = 7, L(z%)]

, and o, = 167 where 8, is defined in (5.15).
Condition (i) of Theorem 4.5 is satisfied because {2z} converges
]

‘Q-linearly to z*. It is obvious that Py 0 implies

(1, = 9, Lz s%] ]
(5.18) Rim - n =0
ke [s™]]

and so does o > 0. Hence it follows from (5.18). Lemna 4.7
and theisymmetry of H that conditions (ii) and (iii) of
Theorem 4.5 are satisfied. By taking the ineguality
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1

1
a-aehtc1-5e?

into account, it follows from (5.17) that
bray § (1= 0y +ayll25 = 2% )o, + ayl2F = z*]
k+l = k 1 k 2 ¢

Therefore all conditions of Theorem 4.5 are satisfied and hence

{25} converges Q-superlinearly to z*. O

In the above theorem we can see that inequality (5.9) is a
ey condition for updates of form (5.1) to possess local Q-super-
linear convergence properties. We shall show in the following
corollaries that inequality (5.9) can be established for Algorithms
Al, A2 and A3 by a suitable choice of a matrix M and hence these
algorithms generate Q-superlinearly convergent sequences when used

.

to solve Problenm P,

Corollary 5.3: Let 2* = (x*,u*) be a Kuhn-Tucker pair of Problem

P satisfying the Jacobian uniqueness condition and f and

g3 (i=1,...m) € LCz[x*]. If the starting point z0 and the starting
Tatriz HO are sufficiently close to z* and VXXL(z*) respectively,

then Algorithm Al and A3 generate sequences of points which converge

Q-superlinearly to z*.

Proof: Algorithm Al is actually a special case of Algorithm A3
with D0 = I, The corollary follows because inequality (5.9) is

1
obviously ¢rue for Algorithm A3 by sctting M = (Dal)z . O
Corollary 5.4: Lot tl.e assumptions of Corollary 5.3 be satisfied,
Assume further that 7 _L(z*) is positive definite. Then the

conclusion of Cerollary 5.3 is also truc for Algorithm A2,

Proof: Since 7 _L{z*) is positive definite, wr can define



29

1
(5.19) M= (v, nznHZ

In Algorithm A2 we have ck = yk. Hence it follows from (5.19)

and lLemma 3.3 that

[Mc® - m2sX]| X1

A

Hal] [1y* - v, L(z%)s

PR + B maxd |25 = 2211, 11250 - 22 13 11s00,

fia

and therefore
k -1 _k -~

Hee o eP 1l o piuf 2R + &) maxt]]2% - 22,1125 = (10
[s™]

Thus inequality (5.9) is satisfied with u = IlM][z (K + X), and

hence the desired result follows., O

By a similar argument we also can establish the local Q-super-

linear convergence for the following updates [16]:

(y-HS)sT + s(y-HS)T
STS

mi

(5.20) = H 4+

.
’

(5.21) He=H+ (Y*Hs)yz + y(v-Hs)T
Yy s

We also note here that the local Q-linear convergence can be
established for the nonsymmetric Broyden's update [2] and Pearson's

update. [22] which are respectively

T
(5.22) i =H+ _sy_;ITi_s_Ls__

5 8
and
T
(5.23) H=H+ _(-Y‘—‘l’E’lX—
y s

Hlowever, we have not succeeded in establishing the Q-superlinear
rate for them because of the nonsymmetry. When.we apply the Powell's
symmetrization procedure to updates (5.22) and (5.23) we obtain

updates (5.2) and (5.3) respectively [8,23]; updates (5.20) and (5.21)



30

are the resulting updates by taking only one step of such a pro-

cedure,

6. Comments and Computational Experiences

Some comments are stated below:

(1) Our algorithms are in a sense a natural extension of var-
iable metric algorithms to general nonlinear programming; this ex-
tension offers us a fruitful field of future research. A lot of
results in the extensive literature of variable metric algorithms
need to be investigated and developed for nonlinear programming
and the whole theory can be treated in a unified way in both con-

strained and unconstrained optimization.

(2) Oug convergence theorems still hold if the updated matrices
are perturbed by suitably small amounts. This flexibility suggests
that the use of difference approximations to derivatives could be
used in the updates, We note here that variable metric algorithms
have been so modified by Stewart [27] in unconstrained optimization

and his modification appears to work well in practice.

(3) All the results in this paper'are local. One approach
studied by this author to achieving the global convergence is to
determine a stepsize in each iteration to maintain the monotonic
decrease of an exact penalty function or an augmented Lagrangian;

some global convergence theorems have already been established [16].

Computational tests of the algorithm on this paper have been
performed and are still going on. A report on the test results is
expected to be published in the near future. However, it would be

unfair to finish without at least giving some idea of the power of
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these methods in practice., We state in the table below the test
results of Algorithm A2 (DFP) for Colville's test Problems 1 and 2.
The computa;ions.were done on the UNIVAC 1110 system at the Univer-
sity of Wisconsin, Madison. The principal pivoting method [5.6]

was used in solving the quadratic programming subproblems.

Table 1
— :
Prob. Obj. Fct Value Standard Time Patio
1 -32.3487 .00541 1
2 2) -32.3488 577
33 -32.3488 .039

1) This result is better than any one reported in the Colville's

report {4].
2. Ifeasible starting point.

3. Feasible starting point.
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