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Chapter 1

Introduction

1.1 Purpose of SuperLU

This document describes a collection of three related ANSI C subroutine libraries for solving sparse

linear systems of equations AX = B: Here A is a square, nonsingular, n x n sparse matrix,

and X and B are dense n x nrhs matrices, where nrhs is the number of right-hand sides and

solution vectors. Matrix A need not be symmetric or definite; indeed, SuperLU is particularly

appropriate for matrices with very unsymmetric structure. All three libraries use variations of

Gaussian elimination optimized to take advantage both of sparsity and the computer architecture,

in particular memory hierarchies (caches) and parallelism.

Ii-I this introduction we refer to all three libraries collectively as SuperLU. The three libraries

within SuperLU are as follows. Detailed references are also given (see also [19]).

●

●

●

Sequential SuperLU is designed for sequential processors with one or more layers of memory

hierarchy (caches) [5].

Multit breaded SuperLU (SuperLU_MT) is designed for shared memory multiprocessors

(SMPS),and can effectively use up to 16 or 32 parallel processors on sufficiently large matrices

in order to speed up the computation [6].

Distributed SuperLU (SuperLU.DIST) is designed for distributed memory parallel pro-

cessors, using MPI [26] for interprocess communication. It can effectively use hundreds of

parallel processors on sufficiently large matrices in order to speed up the computation [20].

The rest of the Introduction is organized as follows. Section 1.2 describes the high-level algo-

rithm used by all three libraries, pointing out some common features and differences. Section 1.3

describes the detailed algorithms, data structures, and interface issues common to all three routines.

Section 1.4 describes how the three routines differ, emphasizing the differences that most affect the

user. Section 1.6 describes the soft ware stat us, including planned developments, bug report ing, and

licensing. Section 1.7 describes the organization of the

1.2 Overall Algorithm

A simple description of sparse Gaussian elimination is

1. Compute a triangular factorization P.AP. = LU

Premultiplying by P, reorders the rows of A, and

rest of the document.

as follows:

Here P, and Pc are permutation matrices.

postmultiplying by Pc reorders the columns

1



2.

of A. Pr and Pc are chosen to enhance sparsity, numerical stability, and parallelism. L is a

lower triangular matrix and U is an upper triangular matrix. Typically L is a unit triangular

matrix, i.e. Lii = 1.

Solve AX = B by evaluating X = A-lB = (PC-lLUPr-l)-lB = PC(U-l(L-l(P,B))). This

is done efficiently by multiplying from right to left in the last expression: Multiplying Pr B

means permuting the rows of 11. Multiplying L–l (PTB) means solving nrhs triangular sys-

tems of equations with matrix L by substitution. Similarly, multiplying U-l(L-1(.P7B))

means. solving triangular systems wit h U. Finally, multiplying Pc( U–l (L–l (P~B)) ) is again

permutation.

The simplest implementation, used by the “simple driver routines” within SuperLU and Su-

perLU_MT, is as follows:

Simple Driver Algorithm

1. Choose P. to order the columns of A to increase the sparsity of the computed L and U factors,

and hopefully increase parallelism (for SuperLU_MT).

2. Compute the L U factorization of APC. SuperLU and SuperLU-MT can perform dynamic

pivoting of the rows during factorization for numerical stability, computing P,, L and U at

the. same time.

3. Solve the system using P,, PC, L and U as described above.

The simple driver subroutines for double precision real data are called dgssv and pdgssv for

SuperLU and SuperLU_MT, respectively. The letter d in the subroutine names means double

precision real; other options are s for single precision real, c for single precision complex, and z for

double precision complex. The subroutine naming scheme is analogous to the one used in LAPACK

[1].

SuperLU_DIST does not include this simple driver.

There is also an “expert driver subroutine” that can provide more accurate solutions, compute

error bounds, and solve a sequence of related linear systems more economically. It is available in

all three libraries.

Expert Driver Algorithm

1.

2.

3

4.

Equilibrate the matrix A, i.e. compute diagonal matrices Dv and Bc so that A = D, AD. is

“better conditioned” than A, i.e. ~-1 is less sensitive to perturbations in A than A-l is to

perturbations in A.

Preorder the rows of ~ (SuperL U._DIST only), i.e. replace A by P.~ where PT is a permut ation

matrix. We call this step ‘{static pivoting”, and it is only done in the distributed memory

algorithm.

Order the columns ofA to increase the sparsity of the computed L and U factors, and

hopefully increase parallelism (for SuperLU.MT and SuperLU.-DIST). In other words, replace

A by AP~ in SuperLU and SuperLU-MT, or replace A by PcAP~ in SuperLU_DIST, where

PC is a permutation matrix.

Compute the L Ufactorzkztion of A. SuperLU and SuperLU._MT can perform dynamic pivot-

ing of the rows during factorization for numerical stability. In contrast, SuperLU-DIST uses

2



the order computed by the preordering step but replaces tiny pivots by larger numbers for

stability.

5. Solve the system using the computed triangular factors.

6. Iteratively refine the solution, again using the computed triangular factors. This is equivalent

to Newton’s method.

7. Compute error bounds. Both forward and backward error bounds are computed, as described

below.

The expert driver subroutines for double precision real data are called dgssvx, pdgssvx and

pdgssvxABglobal for SuperLU, SuperLU_MT and SuperLU.DIST, respectively. Sequential Su-

perLU also provides single precision real (s), single precision complex (c), and double precision

complex (z) versions. SuperLU-MT only provides double precision real (d). SuperLU_DIST pro-

vides both double precision real (d) and complex (z).

The driver routines are composed of several lower level computational routines for computing

permutations, computing LU factorization, solving triangular systems, and so on. The LU factor-

ization routine for all three libraries also handles nonsquare matrices. For large matrices, the LU

factorization steps takes most of the time, although choosing Pc to order the columns can also be

time-consuming.

1.3 What the three libraries have in common

1.3.1 Input and Output Data Formats

All three libraries accept A and B as double precision real. (Sequential SuperLU additionally

accepts single precision real and both single and double precision complex. SuperLU_DIST also

accepts double precision complex.)

A is stored in a sparse data structure according to the struct SuperMatrix, which is described in

section 3.2. In particular, A may be supplied in either column-compressed format ( “Harwell-Boeing

format” ), or row-compressed format (i.e. AT stored in column-compressed, format). l?, which is

overwritten by the solution X, is stored as a dense matrix in column-major order. (In the current

version of SuperLU_DIST, A and 1? are replicated across all processors; in a future version they

will be distributed.)

(The storage of L and U differs among the three libraries, asdiscussed in section 1.4.)

1.3.2 Tuning Parameters forBLAS

All three libraries depend on having high performance BLAS (Basic Linear Algebra Subroutine)

libraries [18, 7, 8] in order to get high performance. In particular, they depend on matrix-vector

multiplication or matrix-matrix multiplication of relatively small dense mat rices. The sizes of t hese

small dense matrices can be tuned to match the “sweet spot” of the BLAS by setting certain

tuning parameters described in section 2.8.3 for SuperLU, in section 3.4.2 for SuperLU-MT, and

in section 4.7.2 for SuperLU-DIST.

(In addition, SuperLU-MT and SuperLU_DIST let one control the number of parallel processes

to be used, as described in section 1.4.)
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1.3.3 Performance Statistics

The expert driver in all three libraries returns a struct, with certain kinds of performance data,

namely the time and number of floating point operations in each phase of the computation, and

data about the sizes of the matrices L and U. These statistics are collected in the course of the

computation. A variable SuperLUSt at is declared with the following type:

typedef struct {

int *pmel_histo; /* histogram of panel size distribution */

double *ut ime; /* time spent in various phases */

float *ops ; /* floating-point operation count in various phases */

} SuperLUStat-t;

For both SuperLU and SuperLU_MT, there is only one copy of these statistics variable. But

for SuperLU-DIST, each process keeps alocalcopy ofthis variable, and records its local statistics.

We need to use MPI reduction routines to find any global information, such as the sum of the

floating-point operation count on all processes.

Before the computation, routine StatInit should be called to malloc storage and perform

initialization forthefields panelfiisto, utime, andops. Thephases aredefined by the enumeration

type PhaseType in SRC/ut il. h. In the end, routine St atFree should be called to free storage of the

above statistics fields. After deallocation, the statistics are no longer accessible. Therefore, users

should extract the information they need before calling StatFree, which can be accomplished by

calling St atPrint.

An inquiry function dQuerySpace is provided to compute memory usage statistics. This routine

should be called after the LU factorization. It calculates the storage requirement based on the size

of the L and U data structures and working arrays.

1.3.4 Error Handling

InvalidArguments and XERBLA

Similar to LAPACK, for all the SuperLU routines, we check the validity of the input arguments

to each routine.. If an illegal value is supplied to one of the input arguments, the error handler

XERBLA is called, and a message is written to the standard output, indicating which argument

has an illegal value. The program returns immediately from the routine, with a negative value of

INFO.

Computational failureswith INFO >0

A positive value of INFO on return from a routine indicates a failure in the course of the computa-

tion, such as a matrix being singular, or the amount of memory (in bytes) already allocated when

malloc fails.

ABORT on unrecoverable errors

A macro ABORTis defined in SRC/ut il. h to handle unrecoverable errors that occur in the middle

of the computation, such as malloc failure. The default action of ABORTis to call

superlu_abort_and_exit (char *msg)

which prints an error message, the line number and the file name at which the error occurs, and

calls the exit function to terminate the program.
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If this type of termination is not appropriate in some environment, users can alter

of the abort function. When compiling the SuperLU library, users may choose the C

definition

-DUSERABORT = my.abort

At the same time, users would supply the following my.abort function

my-abort (char *msg)

which overrides the behavior of superlu_abort -.and.exit.

the behavior

preprocessor

1.3.5 Ordering the Columns of A for Sparse Factors

There is a choice of orderings for the columns of A either in the simple or expert driver, in section 1.2:

● Natural ordering,

● Multiple Minimum Degree (M MD) [22] applied to the structure of ATA,

● Multiple Minimum Degree (MMD) [22] applied to the structure of AT + A,

. Column Approximate Minimum Degree (C OLAMD) [4], and

● Use a PC supplied by the user as input.

COLAMD is designed particularly for unsymmetric matrices, and does not require explicit

formation of ATA. It usually gives comparable orderings as MMD on ATA, and is faster.

The orderings based on graph partitioning heuristics are also popular, as exemplified in the

METIS package [17]. The user can simply input this ordering in the permutation vector for PC.

Note that many graph partitioning algorithms are designed for symmetric matrices. The user may

still apply them to the structures of ATA or A + AT. Our routines getata and a-plus-at in the

file get-perm-c. c can be used to form ATA or A + AT.

1.3.6 IterativeRefinement

Step 6 of the expert driver algorithm, iterative refinement, serves to increase accuracy of the

computed solution. Given the initial approximate e solution z from step 5, the algorithm for step 6

is as follows (where z and b are single columns of X and B, respectively):

Compute, residual r = A% – b

While residual too large

Solve Ad= r for correction d

Update solution z = z – d

Update residual r = Ax – b

end while

If r and then d were computed exactly, the updated solution x – d would be the exact solution.

Roundoff prevents immediate convergence.

The criterion “residual too large” in the iterative refinement algorithm above is essentially that

5



exceeds the machine roundoff level, or is continuing to decrease quickly enough. Here s; is the scale

factor

Si = (lA[ “ Izl + Ibl)i = ~lA;jl “ kjl t Ibil

j

In this expression IAI is the n-by-n matrix with entries lAl;j = IA;i 1, lb] and Izl are similarly

column vectors of absolute entries of b and z, respectively, and IA\ . I~ [ is conventional matrix-

vector multiplication.

The purpose of this stopping criterion is explained in the next section.

1.3.7 Error Bounds

Step 7 of the expert driver algorithm computes error bounds.

It is shown in [2, 23] that BERR defined in Equation 1.1 measures the componentwise relative

backward error of the computed solution. This means that the computed z satisfies a slightly

perturbed linear system of equations (A + E)r = b + f, where lEij] < BERR o lAij I and l~il <

BERR . Ibil for all i and j. It is shown in [2, 25] that one step of iterative refinement usually

reduces BERR to near machine epsilon. For example, if BERR is 4 times machine epsilon, then

the computed solution z is identical to the solution one would get by changing each nonzero entry

of A and b by at most 4 units in their last places, and then solving this perturbed system ezactly.

If the nonzero entries of A and b are uncertain in their bottom 2 bits, then one should generally not

expect a more accurate solution. Thus BERR is a measure of backward error specifically suited

to solving sparse linear systems of equations. Despite roundoff, BERR itself is always computed

to within about +n times machine epsilon (and usually much more accurately) and so BERR is

quite. accurate.

In addition to backward error, the expert driver computes a ~orward error bound

FER&! > Ilztme – rll@/l\$/lm

Here I[z[lm s max; lq 1. Thus, if FEM = 10-6 then each component of z has an error bounded

by about 10-6 times the largest component of z. The algorithm used to compute FERR is an

approximation; see [2, 16] for a discussion. Generally FERR is accurate to within a factor of 10

or better, which is adequate to say how many digits of the large entries of z are correct.

(SuperLU.DIST’s algorithm for FERR is slightly less reliable [20].)

1.3.8 Solving a Sequence of Related Linear Systems

R is very common to solve a sequence of related linear systems AtlJX(lj = B(l), A(2)X(2) = B(2), ...

rather than just one. When A(l) and A(2) are similar enough in sparsity pattern and/or numerical

entries, it is possible to save some of the work done when solving with A(l) to solve with A(2).

This can. result in significant savings. Here are the options, in increasing order of “reuse of prior

information”:

1.

2.

Factor from scratch. No previous information is used. If one were solving just one linear

system, or a sequence of unrelated linear systems, this is the option to use.

Reuse PC, the column permutation. The user may save the column permutation and reuse

it. This is most useful when A(z) has the same sparsit y structure as A(l), but not necessarily

the same (or similar) numerical entries. Reusing P. saves the sometimes quite expensive

operation of computing it.
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3

4.

Reuse PC, P, and data structures allocated for L and U. If P, and PC do not change, then the

work of building the data structures associated with L and U (including the elimination tree

[13]) can be avoided. This is most useful when A(2J has the same sparsity structure and similar

numerical entries as A(l). When the numerical entries are not similar, one can still use this

option, but at a higher risk of numerical instability (-B-EBB will always report whether or not

the solution was computed stably, so one cannot get an unstable answer without warning).

Reuse PC, P,, L and U. In other words, we reuse essentially everything. This is most—

commonly used when A(z) = A(l), but B(2J + l?(l), i.e. when only the right-hand sides differ.

It could also be used when A(2) and A(l) differed just slightly in numerical values, in the

hopes that iterative refinement converges (using A(2) to compute residuals but the triangular

factorization of A(l) to solve).

Because of the different ways L and U are computed and stored in the three libraries, these 4

options are specified slightly differently; see Chapters 2 through 4 for details.

1.3.9 Interfacing to other languages

All three drivers, and their computational routines, may be called by C or Fortran.

1.4 How the three libraries differ

1.4.1 Input and Output Data Formats

All Sequential SuperLU routines are available in single and double precision (real or complex), but

SuperLU-MT routines are only available in double precision real, and SuperLUDIST routines are

available in double precision (real or complex).

L and U are stored in different formats in the three libraries:

●

●

●

L and U in Sequential SuperL U. L is a “column-supernodal” matrix, in storage type SCf ormat.

This means it is stored sparsely, with supernodes (consecutive columns with identical struc-

tures) stored as dense blocks. U is stored in column-compressed format NCformat. See

section 2.3 for details.

L and U in SuperL U_iWT. Because’ of parallelism, the columns of L and U may not be

computed in consecutive order, so they may be allocated and stored out of order. This means

we use the “column-supernodal-permuted” format scPf ormat for L and “column-permut ed”

format NCPf ormat for U. See section 3.2 for details.

L and U in SuperL U.DIST. Now L and U are distributed across multiple processors. As

described in detaiI in section 4.3, we use a 2-D bIock-cycIic format, which has been used

for dense matrices in libraries like ScaLAPACK [3]. But for sparse matrices, the blocks are

no longer identical in size, and vary depending on the sparsit y structure of L and U. The

detailed storage format is discussed in section 4.4 and illustrated in Figure 4.1.

1.4.2 Parallelism

Sequential SuperLU has no explicit parallelism. Some parallelism may still be exploited on an

SMP by using a multit hreaded BLAS library if available. But it is likely to be more effective to

use SuperLU_MT on an SMP, described next.
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SuperLU.MT lets the user choose the number of parallel threads to use. The mechanism varies

from platform to platform and is described in section 3.6.

SuperLUDIST not only lets the user specify the ~number of processors, but how they are

arranged into a 2-D grid. Furthermore, MPI permits any subset of the processors allocated to the

user may be used for SuperLU_DIST, not just consecutively numbered processors (say O through

P-l). See section 4.3 for details.

1.4.3 Pivoting Strategiesfor Stability

Sequential SuperLU and SuperLU-MT use the same pivoting strategy, called threshold pivoting, to

determine the row permutation P.. Suppose we have factored the first i – 1 columns of A, and are

seeking the pivot for column i. Let a~; be a largest entry in magnitude on or below the diagonal

of the partially factored A: la~; I = maxj>; laj~1. Depending on a threshold O < u s 1 input by the

user, the code will use the diagonal entry a;i as the pivot in column i as long as Iaii [ z u. Iami 1, and

otherwise use a~i. So if the user sets u = 1, a~; (or an equally large entry) will be selected as the

pivot; this corresponds to the classical ~artial pivoting strategy. If the user has ordered the matrix

so that choosing diagonal pivots is particularly good for sparsity or parallelism, then smaller values

of u will tend to choose those diagonal pivots, at the risk of less numerical stability. Using u = O

guarantees that the pivots on the diagonal will be chosen, unless they are zero. The error bound

BERR measure how much stability is actually lost.

Threshold pivoting turns out to be hard to parallelize on distributed memory machines, because

of the fine-grain communication and dynamic data structures required. So SuperLU_DIST uses a

new scheme called static pivoting instead. In static pivoting the pivot order (Pr ) is chosen before

numerical factorization, using a weighted perfect matching algorithm [9], and kept fixed during

factorization. Since both row and column orders (l?l and F’c) are fixed before numerical factoriza-

tion, we can extensively optimize the data layout, load balance, and communication schedule. The

price is a higher risk of numeric instability, which is mitigated by diagonal scaling, setting very

tiny pivots to larger values, and iterative refinement [20]. Again, error bound BERR measure how

much stability is actually lost.

1.4.4 Memory Management

Because of fill-in of entries during Gaussian elimination, L and U typically have many more nonzero

entries than A. If Pr and PC are not already known, we cannot determine the number and locations

of these nonzeros before performing the numerical factorization, This means that some kind of

dynamic memory allocation is needed.

Sequential SuperLU lets the user either supply a preallocated space work [1 of length lwork, or

depend on malloc/free. The variable FILL can be used to help the code predict the amount of fill,

which can reduce both fragmentation and the number of calls to malloc/free. If the initial estimate

of the size of L and U from FILL is too small, the routine allocates more space and copies the

current L and U factors to the new space and frees the old space. If the routine cannot allocate

enough space, it calls a user-specifiable routine ABORT. See sections 1.3.4 for details.

SuperLU_MT is similar, except that the current alpha version cannot reallocate more space for

L and U if the initial size estimate from FILL is too small. Instead, the program calls ABORT and

the user must start over with a larger value of FILL. See section 3.4.2.

SuperLU_DIST actually has a simpler memory management chore, because once P, and P. are

determined, the structures of L and U can be determined efficiently and just the right amount of



memory allocated using malloc and later free.

enough memory available to solve the problem.

1.4.5 Interfacing to other languages

So it will call ABORT only if there is really not

Sequential SuperLU has a Matlab interface to the driver via a MEX file. See section 2.7 for details.

1.5 Performance

SuperLU library incorporates a number of novel algorithmic ideas developed recently. These al-

gorit hms also exploit the features of modern computer architectures, in particular, the multilevel

cache organization and parallelism. We have conducted extensive experiments on various plat-

forms, with a large collection of test matrices. The Sequential SuperLU achieved up to 40% of the

theoretical floating-point rate on a number of processors, see [5, 19]. The megaflop rate usually

increases wit h increasing ratio of floating-point operations count over the number of nonzeros in the

L and U factors. The parallel LU factorization in SuperLU_MT demonstrated 5–10 fold speedups

on a range of commercially popular SMPS, and up to 2.5 Gigaflops factorization rate, see [6, 19].

The parallel LU factorization in SuperLU_DIST achieved up to 100 fold speedup on a 512-processor

Cray T3E, and 10.2 Gigaflops factorization rate, see [20, 21].

1.6 Software Stat us and Availability

All three libraries are freely available for all uses, commercial or noncommercial, subject

following caveats. No warranty is expressed or implied by the authors, although we will

answer questions and try to fix all reported bugs. We ask that proper credit be given

authors and that a notice be included if any modifications are made.

1. Some subroutines carry the following notice:

Copyright (c) 1994 by Xerox Corporation. All rights reserved.

to the

gladly

to the

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY

EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program for any purpose, provided

the above notices are retained on all copies. Permission to modify the code and to

distribute modified code is granted, provided the above notices are retained, and a

notice that the code was modified is included with the above copyright notice.

2. The MC64 package carries the following notice:

COPYRIGHT (c) 1999 Council for the Central Laboratory of the Research Coun-

cils. All rights reserved. PACKAGE MC64A/AD AUTHORS Iain Duff (i.duff@rLac.uk)

and Jacko Koster (jakfilii.uib.no) LAST UPDATE 20/09/99

*** Conditions on external use ***

The user shall acknowledge the contribution of thk package in any publication of

mat erial dependent upon the use of the package. The user shall use reasonable

endeavors to notify the authors of the package of this publication.

The user can modify this code but, at no time shall the right or title to all or any

part of this package pass to the user. The user shall make available free of charge
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to the authors for any purpose all information relating to any alteration or addition

made to this package for the purposes of extending the capabilities or enhancing

the performance of this package.

The user shall not pass this code directly to a third party without the express prior

consent of the authors. Users wanting to licence their own copy of these routines

should send email to hsl@laeat .co.uk

None of the comments from the Copyright notice up to and including this one shall

be removed or altered in any way.

All three libraries can be obtained from Netlib through the URL address:

http: //www .netlib. org/scalapack/prototype/

They are also available on the FTP server at UC Berkeley:

ftp ftp. cs .berkeley. edu

login: anonymous

ftp> cd /pub/src/lapack/SuperLU

ftp> binary

ftp> get superlu.2.0 .tar. gz

In the future, we will add more functionality in the software, such as sequential and parallel in-

complete LU factorization, as well as parallel symbolic and ordering algorithms for SuperLU.DIST;

these latter routines would replace MC64 and have no restrictions on external use.

All bugs reports and other queries should be e-mailed to xiaoyethersc. gov and

demmel@cs. berkeley. edu.

1.7 Document organization

The rest of this document is organized as follows. Chapter 2 describes Sequential SuperLU. Chap-

ter 3 describes SuperLU-MT. Chapter 4 describes SuperLU-DIST. Finally, the calling sequence and

the leading comment of the user-callable routines for all three libraries are listed in the appendices.
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Chapter Z

Sequential SuperLU

2.1 About SuperLU

In this chapter, SuperLU will always mean Sequential SuperLU. The SuperLU package contains a

set of subroutines to solve sparse linear systems AX = B. Here A is a square, nonsingular, n x n

sparse matrix, and X and B are dense n x nrhs matrices, where nrhs is the number of right-

hand sides and solution vectors. Matrix A need not be symmetric or definite; indeed, SuperLU is

particularly appropriate for matrices with very unsymmetric structure.

The package uses LU decomposition with partial (or threshold) pivoting, and forward/back

substitutions. The columns of A may be preordered before factorization (either by the user or by

SuperLU ); this preordering for sparsit y is completely separate from the factorization. To improve

backward stability, we provide working precision iterative refinement subroutines [2]. Routines

are also available to equilibrate the system, estimate the condition number, calculate the relative

backward error, and estimate error bounds for the refined solutions. We also include a Matlab

MEX-file interface, so that our factor and solve routines can be called as alternatives to those built

into Matlab. The LU factorization routines can handle non-square matrices, but the triangular

solves are performed only for square mat rices.

The factorization algorithm uses a graph reduction technique to reduce graph traversal time in

the symbolic analysis. We exploit dense submatrices in the numerical kernel, and organize compu-

t ational loops in a way that reduces data movement between levels of the memory hierarchy. The

resulting algorithm is highly eilicient on modern architectures. The performance gains are particu-

larly evident for large problems. There are “tuning parameters” to optimize the peak performance

as a function of cache size. For a detailed description of the algorithm, see reference [5].

SuperLU is implemented in ANSI C, and must be compiled with a standard ANSI C! compiler.

It includes versions for both real and complex matrices, in both single and double precision. The

file names for the single-precision real version start with letter “s” (such as sgstrf. c); the file

names for the double-precision real version start with letter “d” (such as dgstrf. c); the file names

for the single-precision complex version start with letter “c” (such as cgstrf. c); the file names for

the double-precision complex version start with letter “z” (such as zgstrf. c).

2.2 How to call a SuperLU routine

As a simple example, let us consider how to solve a 5 x 5 sparse linear system AX = B, by calling

a driver routine dgssv. Figure 2.1 shows matrix A, and its L and U factors. This sample. program
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[1
s Uu 19.00 21.00 21.00

lu 0,63 21.00 –13.26 –13.26

ip 0.57 23.58 7.58

eu 5.00 21.00

11 r 0.63 0.57 –0.24 –0.77 34.20

Original matrix A

S=lg,u=zl,p=lc,e=s,r= 18,1=12

Factors F= L+U– I

Figure 2.1: A 5 x 5 matrix and its L and U factors.

is located in SuperLU/EXAMPLE/ superlu. c.

The program first initializes the three arrays, a [] , asub [1 and xa [], which store the nonzero

coefficients of matrix A, theirrow indices, and the indices indicating the beginning of each column in

the coefficient and row index arrays. This storage format is called compressed column format, also

known as Harwell-Boeing format [10]. Next, the two utility routines dCreate_CompCol-Matrix and

dGreateDense-Matrix are called to set up matrices A and B, respectively, in the data structures

internally used by SuperLU. The routine get -perm-c is called to generate a column permutation

vector, stored in perm-c []. A good column permutation should make the L and U factors as sparse

as possible. The user can supply perm-c [] instead of using the one provided by SuperLU. After

calling the SuperLU routine dgssv, the B matrix is overwritten by the solution matrix -X. In

the end, all the dynamically allocated data structures are de-allocated by calling various utility

routines.

SuperLU can perform more general tasks, which will be explained later.

#include

#include

main ( int

{

“dsp_defs. h”

“util .h”

argc, char *argv [1 )

SuperIlatri.x A, L, U, B;

double *a, *rhs;

double s, u, p, e, r, 1;

int *asub, *xa;

int *pe~_r; /* row permutations from partial pivoting */

int *perm_c; /* column permutation vector */

int nrhs, info, i, m, n,

/* Ini,ti.alize matrix A. */

m =n= 5;

nnz = 12;

if ( !(a = double~alloc (nnz) )

if ( ! (asub = intMalloc(nnz) )

if ( ! (xa = intMalloc(n+l) ) )

s = 19.0; U = 21.0; p = 16.0;

a[O] = s; a[ll = 1; a[2] = 1;

nnz, permc_spec;

) ABORT(’’Mallow fails for a [1 .”) ;

) l@OFiT(’’lfalloc fails for asub [1 .”) ;

ABORT(’’Mallow fails for xa[] .”) ;

e = 5.0; r = 18.0; 1 = 12.0;

a[31 = u; a[41 = 1; a[51 = 1;
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a[6] = u; a[7] = p; a[8] = u; a[9] = e; a[lO]= u; a[ll]= r;

asub [01 = O; asub[l] = 1; asub[2] = 4; asub[3] = 1;

asub [4] = 2; asub[5] = 4; asub[6] = O; asub[7] = 2;

asub [8] = O; asub [9] = 3; asub[lO]= 3; asub[ll]= 4;

xa [01 = O; xa[l] = 3; xa[2] = 6; xa[3] = 8; xa[4] = 10; xa[5] = 12;

/* Creaternatrix A inthe format expectedly SuperLU. */

dCreate_CompCol_Matrix(&A, m,-n, nnz, a, asub, xa, NC, _D, GE);

/* create right-hand side matrix B. */

nrhs = 1;

if ( !(rhs = double~alloc(m * nrhs)) ) ABORT(’’Malloc fails for rhs[] .”);

for (i = O; i < m; ++i) rhs[i] = 1.0;

dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, DN, _D, GE);

if ( !(perm_r = intMalloc(m)) ) ABORT(’’Malloc fails for perm-r[] .”);

if ( !(perm.c = intMalloc{n)) ) ABORT(’’Malloc fails for perm-c[] .”);

/*

* Get column permutation vector perm_c[], according to permc_spec:

* permc_spec = O: use the natural ordering

* permc_spec = 1: use minimum degree ordering on structure of A’*A

* permc_spec = 2: use minimum degree ordering on structure of A’+A

*1

permc.spec = O;

get_perm_c(permc_spec, &A, perm_c);

dgssv(&A, perm_c, perm_r, &L, &U, &B, &info);

dPrint_CompCol_Matrix(”A”, &A);

dPrint_CompCol_Matrix(”U” , &U);

dPrint_SuperNode_Matrix(”L”, &L);

PrintIntlO(’’\nperm-r”, m, perm_r);

/* De-allocate storage */

SUPERLU_FREE (rhs);

SUPERLU_FREE (perm_r);

SUPERLU_FREE (perm_c);

Destroy_CompCol_~atrix(&A) ;

DestroyJ5uperMatri.xStore(&B);

Destroy_SuperNode_Matrix(&L) ;

Destroy_CompCol_Matrix(&U) ;

1-
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typedef struct {

Stype_t Stype; /* Storage type: indicates the storage format of *Store. */

Dtype_t Dtype; /* Data type. */

Mtype_t Mtype; /* Mathematical type */ ~

int nrow; /* nuber of rows */

int ncol; /* number of columns *./

void *Store; /* pointer to the actual storage of the matrix */

} SuperMatrix;

typedef enum {

NC, /* col~-wise, not supernodal */

NR, /* row-wise, not supernodal */

Sc , /* column-wise, supernodal */

SR , /* row-wise, supernodal */

NCP, /* column-wise, not supernodal, permuted by columns

(After column permutation, the consecutive columns of

nonzeros may not be stored contiguously. */

DN /* Fortran style column-wise storage for dense matrix */

] Stypeit;

typedef enum {

_s , /* single */

_D, I* double */

-c, /* single-complex

.Z /* double-complex

*/

*/

} Dtype_t;

typedef enum {

GE, /*

TRLU, /*

TRUU, /*

TRL, /*

TRU, /*

SYL; /*

SYU, /*

HEL, /*

HEU /*

} Mtype_t;

general */

lower triangular, unit diagonal */

upper triangular, unit diagonal */

lower triangular */

upper triangular */

symmetric, store lower half */

symmetric, store upper half */

Hermitian, .store lower half */

Hermitian, store upper half */

Figure 2.2: SuperMatrix data structure.
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2.3 Matrix data structures

SuperLU uses a principal data structure SuperMatrix (defined in SRC/supermatrix. h) to repre-

sent a general matrix, sparse or dense. Figure2.2 presents the specification of the SuperMatrix

structure. The SuperMatrix structure contains two levels of fields. The first level defines all the

properties of a matrix which are independent of how it is stored in memory. In particular, it speci-

fies the following three orthogonal properties: storage type (St ype) indicates the type of the storage

scheme in *Store; data, type (Dtype) encodes the four precision; mathematical type (Mtype) spec-

ifies some mathematical properties. The second level (*Store) points to the actual storage used

to store the matrix. We associate with each %ype XX a storage format called XXformat, such as

NCforxnat, SCf ormat, etc.

The SuperMatrix type so defined can accommodate various types of matrix structures and

appropriate operations to be applied on them, although currently SuperLU implements only a

subset of this collection. Specifically, matrices A, L, U, 1?, and X can have the following types:

A L u B x

St ype NC or NR Sc NC DN DN

Dtypel any any any any any

Mtype GE TRLU TRU GE GE

In what follows, we illustrate the storage schemes defined by St ype. Following C’s convention,

all array indices and locations below are zero-based.

● A may have storage type NC or NR. The NC format is the same as the Harwell- Boeing sparse

matrix format [10], that is, the compressed column storage.

typedef struct {

int nnz; /*

void *nzval; /*

int *ro~ind; /*

int *colptr; /*

} NCformat;

number of nonzeros in the matrix */

array of nonzero values packed by column */

array of row indices of the nonzeros */

colptr [j] stores the location in nzval [1 and rewind [1

which starts column j. It has ncol+l entries,

and colptr [ncol] = nnz. */

The NR format is the compressed row storage defined below

typedef struct {

int nnz; /*

void *nzval; /*

int *colind; /*

int *rowptr; /*

} NRformat;

number of nonzeros in the matrix */

array of nonzero values packed by row */

array of column indices of the nonzeros */

rowptr [j ] stores the location in nzval [1 and colind [1

which starts row j . It has nrow+ 1 entries,

and rowptr [nrow] = nnz. */

lDtype can be one of -S, D, -Cor .Z.
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The factorization and solve routines in SuperLU are designed to handle column-wise storage

only. If the input matrix A is in row-oriented storage, i.e., in NR format, then the driver

routines (dgssv and dgssvx) actually perform the AU decomposition on AT, which is column-

wise, and solve the system using the LT and UT factors. The data structures holding L and U

on output are different (swapped) from the data structures you get from column-wise input.

For more detailed descriptions about this process, please refer to the leading comments of

routines dgssv and dgssvx in Appendix A.

Alternatively, the users may call a utility routine dCompRow-to-CompCol to convert the input

matrix in NR format to another matrix in NC format, before calling SuperLU. The definition

of this routine is

void sCompRow. to. CompCol (int m, int n, int nnz,

f lost *a, int *colind, int *rowptr,

float **at, int **rewind, int **colptr) ;

This conversion takes time proportional to the number of nonzeros in A. However, it requires

storage for a separate copy of matrix A.

● L is a supernodal matrix with the storage type SC. Due to the supernodal structure, L is in

fact stored as a sparse block lower triangular matrix [5].

typedef struct {

int nnz; /*

int nsuper; /*

void *nzval; /*

int *nzval_colptr; /*

int *rewind; /*

int *rowind_colptr; /*

int *col_to_sup; I*

int *sup_ to_col ; /*

3 SCformat;

number of nonzeros in the matrix */

index of “the last supernode */

array of nonzero values packed by column */

n.zval_colptr [j] stores the location in

nzval [] which starts column j */

array of compressed row indices of

rectangular supernodes */

rewind.colptr[j] stores the location in

rowind[] which starts column j */

col.to_sup[j] is the supernode number to

which column j belongs */

sup_to_col[s] points to the starting column

of the s-th supernode */

● Bothl? and X are stored as conventional two-dimensional arraysin column-major order, with

the storage type DN.

typedef struct {

int lda; 1*

void *nzval; /*

} DNformat;

leading dimension */

array of size lda-by-ncol to represent

a dense matrix */

Figure 2.3 shows the data structures for the example matrices in Figure 2.1.

For a description of NCPformat, see section 2.4.1.
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● A= {

3

● u ={

)

Figure 2.3:

Stype = NC; Dtype = .D; Mtype = GE; nrow = 5; ncol = 5;

*store = { nnz = 12;

nzval = [ 19.00, 12.00, 12.00, 21.00, 12.00, 12.00, 21.00,

16.00, 21.00, 5.00, 21.00, 18.00];

rewind = [ 0,1,4,1,2,4,0,2,0,3,3,4 1;

colptr = [0,3,6,8, 10, 12];

3

Stype = NC; Dtype = _D; Mtype = TRU; nrow = 5; ncol = 5;

*Store= {nnz = 11;

nzval = [ 21.00, -13.26, 7.58, 21.00 1;

rewind = [0,1,2,01;

colptr = [0,0,0,1,4,41;

Stype = SC; Dtype = _D; Mtype = TRLU; nrow = 5; ncol = 5;

*Store = {nnz = 11;

nsuper = 2;

nzval = [ 19.00, 0.63, 0.63, 21.00, 0.57, 0.57, -13.26,

23.58, -0.24, 5.00, -0.77, 21.00, 34.20];

nzval.colptr = [03,6,9,11,13];

rewind= [ O, 1, 4, 1, 2, 4, 3, 4];

rowind_colptr = [ O, 3, 6, 6, 8, 8 ];

col_to_sup = [0,1,1,2,21;

sup_to_col = [0,1,3,51;

3

The data structures for a 5 x 5 matrix and its LU factors, as represented in the

SuperMatrix data structure. Zero-based indexing is used.
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2.4 Permutations

Two permutation matrices are involved in the solution process. In fact, the actual factorization we

perform is P,AF’$ = LU, where P, is determined from partial pivoting (with a threshold pivoting

option), and P. is a column permutation chosen either by the user or SuperLU, usually to make the

L and U factors as sparse as possible. P, and .PCare represented by two integer vectors perm~ []

and perm.c [], which are the permutations of the integers (O : m – 1) and (O : n – 1), respectively.

2.4.1 Ordering for sparsity

Column reordering for sparsity is completely separate from the LU factorization. The column

permutation F’Cshould be applied before calling the factorization routine dgstrf. In principle, any

ordering heuristic used for symmetric matrices can be applied to ATA (or A + AT if the matrix is

nearly structurally symmetric) to obtain PC. Currently, we provide the following ordering options

through subroutine get-perm-c.

void get -perm-c ( int ispec, SuperMatrix *A, int *perm-c) ;

I spec specifies the ordering to be returned in *perm_c, the integer vector representing the

permutation matrix PC:

ispec = O:

= 1:

= 2;

= 3:

natural ordering (i.e., PC = 1)

MMD applied to the structure of A.TA

MMD applied to the structure of A + AT

CO LAMD, approximate minimum degree column ordering

Alternatively, the users can provide their own column permutation vector. For example, it

may be an ordering suitable for the underlying physical problem. Both driver routines dgs sv and

dgssvx take perm.c [1 as an input argument.

After permutation Pc is applied to A, we use NCPformat to represent the permuted matrix AP$,

in which the consecutive columns of nonzeros may not be stored contiguously in memory. Therefore,

we need two separate arrays of pointers, colbeg [1 and colend [1, to indicate the beginning and

end of each column in nzval [1 and rewind [1.

typedef struct {

int nnz; /* number of nonzeros in the matrix */

void *nzval; /* array of nonzero values, packed by column */

int *roWind; /* array of row indices of the nonzeros */

int *colbeg; /* colbeg [j] points to the location in nzval [] and rewind [1

which starts column j */

int *colend; /* colend[j] points to one past the location in nzval [1

and rowind[] which ends column j */

} NCPf ormat;

2.4.2 Partial pivoting with threshold

We have included a threshold pivoting parameter u 6 [0,1] to control numerical stability. The

user can choose to use a row permutation obtained from a previous factorization. (The argument

*refact = ‘Y‘ should be passed to the factorization routine dgstrf.) The pivoting subroutine

dpivotL checks whether this choice of pivot satisfies the threshold; if not, it will try the diagonal
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element. If neither of the above satisfies the threshold, the maximum magnitude element in the

column will be used as the pivot. The pseudo-code of the pivoting policy for column j is given

below.

(1)

(2)

compute thresh = u Iamj 1, where la~j I = maxi~j \aij I;

if user specifies pivot row k and la~j j > thresh and a~j # O then

pivot row = k;

else if [ujjI~ thresh and ajj# O then

pivot row = j;

else

pivot row = m;

endi~

Two special values of u result in the following two strategies:

● a ==0.0: either use user-specified pivot order if available, or else use diagonal pivot;

● u ==1.0: classical partial pivoting.

2.5 Memory management for L and V

In the sparse LU algorithm, the amount of space needed to hold the data structures of L and U

cannot be accurately predicted prior to the factorization. The dynamically growing arrays include

those for the nonzero values (nzval) and the compressed row indices (rewind) of L, and for the

nonzero values (nzval) and the row indices (rewind) of U.

Two alternative memory models are presented to the user:

● system-level – based on C’s dynamic allocation capability (malloc/free);

● user-level – based on a user-supplied work [] array of size lwork (in bytes). This is similar

to I’ortran-style handling of work space. Work [] is organized as a two-ended stack, one end

holding the L and U data structures, the other end holding the auxiliary arrays of known

size.

Except for the different ways to allocate/deaUocate space, the logical view of the memory

organization is the same for both schemes. Now we describe the policies in the memory module.

At the outset of the factorization, we guess there will be FILL*nnz (A) fills in the factors and

allocate corresponding storage for the above four arrays, where nnz (A) is the number of nonzeros

in original matrix A, and FILL is an integer, say 20. (The value of FILL can be set in an inquiry

function sp.ienv ( ), see section 2.8.3.) If this initial request exceeds the physical memory constraint,

the FILL factor is repeatedly reduced, and attempts are made to allocate smaller arrays, until the

initial allocation succeeds.

During the factorization, if any array size exceeds the allocated bound, we expand it as follows.

We first allocate a chunk of new memory of size EXPANDtimes the old size, then copy the existing

data into the new memory, and then free the old storage. The extra copying is necessary, because the

factorization algorithm requires that each oft he aforementioned four data structures be contiguous

in memory. The values of FILL and EXPANDare normally set to 20 and 1.5, respectively. See

xmemory. c for details.
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After factorization, we do not garbage-collect the extra space that may have been allocated.

Thus, there will be external fragmentation in the L and U data structures. The settings of FILL and

EXPANDshould take into account the trade-off between the number of expansions and the amount

of fragmentation.

Arrays of known size, such as various column pointers and working arrays, are allocated just

once. All dynamically-allocated working arrays are freed aft er factorization.

2.6 User-callable routines

The naming conventions, calling sequences and functionality of these routines mimic the corre-

sponding LAPACK software [1]. In the routine names, such as dgstrf, we use the two letters GS to

denote general sparse matrices. The leading letterx stands for S, D, C, or Z, specifying the data

type. Appendix A cent ains, for each individual routine, the leading comments and the complete

specification of the calling sequence and arguments.

2.6.1 Driver routines

We provide two types of driver routines for solving systems of linear equations. The driver routines

can handle both column- and row-orient ed storage schemes,

● A simple driver dgs sv, which solves the system AX = B by factorizing A and overwriting B

with the solution X.

● An expert driver dgssvx, which, in addition to the above, also performs the following functions

(some of them optionally):

— solve ATX = B;

— equilibrate the system

scaled;

(scale A’s rows and columns to have unit norm) if A is poorly

— estimate the condition number of A, check for near-singularity, and check for pivot

growth;

— refine the solution and compute forward and backward error bounds.

These driver routines cover all the functionality of the computational routines. We expect that

most users can simply use these driver routines to fulfill their tasks with no need to bother with

the computational routines.

2.6.2 Computational routines

The users can invoke the following computational routines, instead of the driver routines, to directly

cent rol the behavior of SuperLU. The computational routines can only handle column-oriented

storage.

● dgstrf: Factorize.

This implements the first-time factorization, or later re-factorization with the same nonzero

pattern. In re-factorizations, the code has the ability to use the same column permutation

P, and row permutation P, obtained from a previous factorization. Several scalar arguments

control how the LU decomposition and the numerical pivoting should be performed. dgstrf

can handle non-square matrices.
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●

●

●

●

2.7

dgstrs: Triangular solve.

This takes the L and U triangular factors, the row and column permutation vectors, and the

right-hand side to compute a solution matrix X of AX = B or A*X = B.

dgscon: Estimate condition number.

Given the matrix A and its factors L and U, this estimates the condition number in the

one-norm or infinity-norm, The algorithm is due to Hager and Higham [15], and is the same

as CONDESTin sparse Matlab.

dgsequ/xlaqgs: Equilibrate.

dgsequ first computes the row and column scalings Dr and D. which would make each row

and each column of the scaled matrix D7 AD. have equal norm. dlaqgs then applies them to

the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original

A.

dgsrfs: Refine solution.

Given A, its factors L and U, and an initial solution X, this does iterative refinement, using

the same precision as the input data. It also computes forward and backward error bounds

for the refined solution.

Matlab interface

In the SuperLU/MATLAB subdirectory, we have developed a set of MEX-files interface to Matlab.

Typing make in this directory produces execut ables to be invoked in Matlab. The current Makef ile

is set up so that the MEX-files are compatible with Matlab Version 5. The user should edit Makef ile

for Matlab Version 4 compatibility. Right now, only the factor routine dgstrf and the simple driver

routine dgssv are callable by invoking superlu and lus olve in Matlab, respectively. Superlu and

lusolve correspond to the two Matlab built-in functions lU and \ . In Matlab, when you type

help superlu

you will find the following description about superlu’s functionality and how to use it.

SUPERLU : Supernodal LU f actorizat ion

Executive summary:

[L,U,P] = superlu (A) is like [L, U,P] = lu(A) , but faster.

[L, U,prow,pcol] = superlu (A) preorders the columns of A by min degree,

yielding A(prow ,pcol) = L*U.

Details and options:

With one input and two or three outputs, SUPERLU has the same effect as LU,

except that the pivot ing permut at ion is returned as a vector, not a matrix:

[L,U,P] = superlu (A) returns unit lower triangular L, upper triangular U,

and permutation vector p with A(p, : ) = L*U.

[L ,ul = superlu(A) returns permuted triangular L and upper triangular U
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with A = L*U.

With a second input, the columns of A are permuted before factoring:

[L,U,prowl = superlu(A,psparse) returns triangular L and U and permutation

prow with A(prow,psparse) = L*U.

[L,u]”= superlu(A,psparse) returns permuted triangular L and triangular

with A(:,psparse) = L*U.

Here psparse will normally be a user-supplied permutation matrix or vector

to be applied to the columns of A for sparsity. COLMMDis one way to get

such a permutation; see below to make SUPERLU compute it automatically.

(If psparse is a permutation matrix, the matrix factored is A*psparse’.)

With a fourth output, a column permutation is computed and applied:

[L,U,prow,pcol] = superlu(A,psparse) returns triangular L and U and

permutations prow and pcol with A(prow,pcol) = L*U.

Here psparse is a user-supplied column permutation for sparsity,

and the matrix factored is A(:,psparse) (or A*psparse’ i.f the

input is a permutation matrix). Output pcol 1s a permutation

that first performs psparse, then postorders the etree of the

column intersection graph of A. The postorder does not affect

sparsity, but makes supernodes in L consecutive.

[L,U,proW,pcoll = superlu(A,O) is the same as . . . = superlu(A,I); it does

not permute for sparsity but it does postorder the etree.

[L,U,prow,pcol] = superlu(A) is the same as . . . = superlu(A,colmmd(A)) ;

it uses column minimum degree to permute columns for sparsity,

then postorders the etree and factors.

For a description about lusolve’s functionality and howtouseit, you can type

help lusolve

LUSOLVE : Solve linear systems by supernodal LU factorization.

x = lusolve(A, b) returns the solution to the linear system A*x = b,

using a supernodal LU factorization that is faster than Matlab’s

builtin LU. This m-file just calls a mex routine to do the work.

By default, A is preordered by column minimum degree before factorization.

Optionally, the user can supply a desired column ordering:

x= lusolve(A, b, pcol) uses pcol as a column pefiutation.

It still returns x = A\b, but it factors A(:,pcol) (if pcol is a

permutation vector) or A*Pco1 (if Pcol is a permutation matrix).

x = lusolve(A, b, O) suppresses the default minimum degree ordering;

that is, it forces the identity permutation on columns.
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Two M-files trysuperlu. m and trylusolve .m are written to test the correctness of superlu

and lusolve. In addition to testing the residual norms, they also test the function invocations

with various number of input/output arguments.

2.8 Installation

2.8.1 Filestructure

The top level SuperLU/ directory is structured as follows:

SuperLU/README

SuperLU/CBLAS/

SuperLU/EXAMPLE/

SuperLU/INSTALL/

SuperLU/MATLAB/

SuperLU/SRC/

SuperLU/TESTING/

SuperLU/Makef i.le

SuperLU/make. inc

instructions on installation

needed BLAS routines in C, not necessarily fast

example programs

test machine dependent parameters; this Users’ Guide

Matlab mex-file interface

C source code, to be compiled into the superlu.a library

driver routines to test correctness

top level Makefile that does installation and testing

compiler, compile flags, library definitions and C

preprocessor definitions, included in all Makefiles.

Before installing thepackage, you mayneedtoeditSuperLU/make .incfor your system. This

make include file is referenced inside each of the Makefiles in the various subdirectories. As a

result, there isnoneed to edit the Makefiles in the subdirectories. All information that is machine

specific has been defined in make.inc.

Sample machine-specific make.inc areprovided inthetop-levelSuperLU/ directory forseveral

systems, including IBM RS/6000,DECAlpha, SunOS 4.x, SunOS 5.x (Polaris), HP-PA andSGI

Iris 4.x. When you have selected the machine on which you wish to install SuperLU, you may copy

the appropriate sample include file (if oneis present) into make.inc. For example, ifyou wishto

run SuperLU on an IBM RS/6000,you can do:

cp make.rs6k make.inc

For systems other than those listed above, slight modifications to the make.inc file will need

to be made. In particular, the following three items should reexamined:

1. The BLAS library.

IfthereisaBLAS library available onyourmachine, youmaydefinethe followinginmake .inc:

BLASDEF = -DUSE.VENDORBLAS

BLASLIB = <BIAS library you wish to link with>

TheCBLAS/subdirectory contains the part ofthe CBLAS needed bythe SuperLU package.

However, these codes are intended for use only if there is no faster implementation of the

BLASalready atiilable on your machine. In this case, you should do the following:

1) In make. inc, undefine (comment out) BLASDEF, define:

BLASLIB = ../blas$(PLAT).a

2) IntheSuperLU/directory,type:

make blaslib

tomakethe BLAS library from the routinesfn theCBLAS/subdirectory.
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2. C preprocessor definition CDEFS.

In the header file SRC/Cnames. h, we use macros to determine how C routines should be named

so that they are callable by Fort ran. 2 The possible options for CDEFS are:

● -DAdd.: Fortran expects a C routine to have an underscore postfixed to the name;

● -DI’JoChange: Fortran expects a C routine name to be identical to that compiled by C;

● -DUpCase: Fortran expects a C routine name to be all uppercase.

3. The Matlab MEX-file interface.

The MATLAB/subdirectory includes Matlab C MEX-files, so that our factor and solve routines

can be called as alternatives to those built into Matlab. In the file SuperLU/make. inc, define

MATLAB to be the directory in which Matlab is installed on your system, for example:

MATLAB= /usr/local/matlab

At the SuperLU/ directory, type:

make mat labmex

to build the MEX-file interface. After you have built the interface, you may go to the MATLAB/

subdirectory to test the correctness by typing (in Matlab):

trysuperlu

trylusolve

A Makef ile is provided in each subdirectory. The installation can be done completely auto-

matically by simply typing make at the top level.

2.8.2 Testing

The test programs in SuperLU/INSTALL subdirectory test two routines:

● slamch/dlamch determines properties oft he floating-point arithmetic at run-time (bet h single

and double precision), such as the machine epsilon, underflow threshold, overflow threshold,

and related parameters;

● SuperLU_t imer.( ) returns the time in seconds used by the process. This function may need

to be modified to run on your machine.

The test programs in the SuperLU/TESTING subdirectory are designed to test all the functions of

the driver routines, especially the expert drivers. The Unix shell script files xtest. csh are used to

invoke tests with varying parameter settings. The input matrices include an actual sparse matrix

SuperLU/EXAMPLE /g10 of dimension 100 x 100,3 and numerous matrices with special properties

from the LAPACK test suite. Table 2.1 describes the properties of the test matrices.

For each command line option specified in dtest. csh, the test program ddrive reads in or

generates an appropriate matrix, calls the driver routines, and computes a number of test ratios

to verify that each operation has performed correctly. If the test ratio is smaller than a preset

threshold, the operation is considered to be correct. Each test matrix is subject to the tests listed

in Table 2.2.

2Some vendor-supplied BLAS libraries do not have C interfaces. So the re-naming is needed in order for the

SuperLU BLAS calls (in C) to interface with the J?ortran-style BLAS.
3Matrix g 10 is first generated with the itructure of the 10-by-10 five-point grid, and random numerical values.

The columns are then permuted by COLMMD ordering from Matlab.
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Matrix type Description

o sparse matrix g10

1 diagonal

2 upper triangular

3 lower triangular

4 random, ~ = 2

5 first column zero

6 last column zero

7 last n/2 columns zero

8 random, ~ = ~~

9 random, K = 0.1/.s

10 scaled near underflow

11 scaled near overflow

Table 2.1: Properties of the test matrices E is

Test Type Test ratio Routines

o [ILU - A1l/(nllAlls) dgstrf

1 [lb- Azll/(llAll [[ZIIE) dgssv, dgssvx

2 IIx - X*ll/(llZ*llKE) dgssvx

3 11x– x*ll/(llx*ll FERR) dgssvx

4 BERR/E dgssvx

Table 2.2: Types of tests. Z* is the true solution,

FERR is the error bound, and BERR is the

backward error.

the machine epsilon and ~ is the condition num-

ber of matrix A. Matrix types with one or more

columns set to zero are used to test the error

ret urn codes.

Let r be the residual r =

the componentwise backward

b – Az, and let m; be the number of nonzeros in row i of A. Then

error BERl? and forward error FERR [1] are calculated by:

BERR = max
lrl~

i (\Al IzI + Ibl), “

FERR= II IA-ll f IICO
ltzllm “

Here, f isa nonnegative vector whose components are computed as fi= ITI;+ w & (\A[ Izl +,lbl);,

and the norm in the numerator is estimated using the same subroutine used for estimating the

condition number. BE.RR measures the smallest relative perturbation one can make to each entry

of A and of b so that the computed solution is an exact solution of the perturbed problem. FERR

is an estimated bound on the error IIz* – Z(lW/llZllm, where z * is the true solution. For further

details on error analysis and error bounds estimation, see [1, Chapter 4] and [2].

2.8.3 Performance-tuning parameters

SuperLU chooses such machine-dependent parameters as block size by calling an inquiry function

sp-i env ( ), which may be set to return different values on different machines. The declaration of

this function is

int sp_ienv(int ispec) ;

Ispec specifies the parameter to be returned, (See reference [5] for their definitions.)

ispec = 1: the panel size (w)

= 2: the relaxation parameter to control supernode amalgamation (~elaz)

= 3: the maximum allowable size for a supernode (n-zazsap)
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On-chip External

Machine Cache Cache w , maxsup rowblk colblk

RS/6000-590 256 KB — 8 100 200 40

MIPS R8000 16 KB 4 MB 20 100 800 100

Alpha 21064 8 KB 512 KB 8 100 400 40

Alpha 21164 8 KB-L1 4 MB 16 50 100 40

96 KB-L2

Spare 20 16 KB lMB 8 100 400 50

UltraSparc-I 16 KB 512 KB 8 100 400 40

Cray J90 — — 1 100 1000 1001
Table 2.3: Typical blocking parameter values for several machines.

= 4: the minimum row dimension for 2-D blocking to be used (rowblk)

= 5: the minimum column dimension for 2-D blocking to be used (colblk)

= 6: the estimated fills factor for L and U, compared with A

Users are encouraged to modify this subroutine to set the tuning parameters for their own local

environment. The optimal values depend mainly on the cache size and the B LAS speed. If your

system has a very small cache, or if you want to efficiently utilize the closest cache in a multilevel

cache organization, you should pay special attention to these parameter settings. In our technical

paper [5], we described a detailed methodology for setting these parameters for high performance.

The relaz parameter is usually set between 4 and 8. The other parameter values which give

good performance on several machines are listed in Table 2.3. In a supernode-panel update, if the

updating supernode is too large to fit in cache, then a 2-D block partitioning of the supernode is

used, in which rowblk and colblk determine that a block of size rowblk x co!blk is used to update

current panel.

If colbtk is set greater than rnazswp, then the program will never use 2-D blocking. For example,

for the Cray J90 (which does not have cache), w = 1 and 1-D blocking give good performance;

more levels of blocking only increase overhead.

2.9 Example programs

In the SuperLU/EXAMPLE/ subdirectory, we present a few sample programs, such as xLINSOL and

xLINSOLX, to illustrate the complete calling sequences used to solve systems of equations. These

include how to set up the matrix structures, how to obtain a fill-reducing ordering, and how to call

driver routines. A Makef ile is provided to generate the executable. A READMEfile in this directory

shows how to run these examples.

Based on these sample programs, we now illustrate how we may use SuperLU in some other

ways.

2.9.1 Repeated factorization ~

In many iterative processes, matrices with the same sparsit y pattern but different numerical values

must be factored repeatedly. Thus, computing a fill-reducing ordering and performing column

permutation are needed only once. In addition, the memory for L and U can be allocated only

once, and reused in the subsequent factorization. If there is not enough space for L and U from the
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maino
.
-1

/* Declare variables */

SuperMatrix A; /* original matrix */

SuperMatrix AC; /* A postmultiplied by a permutation matrix Q */

char refact[l] ;

. . . . . . /* declarations of other variables */

/* Initialization*/

{

StatInit(panel_size, relax);

. . . . . .

3

/* First-time factorization */

*refact = ‘Ny;

/* Obtain and apply column permutation */

get-perm_c(l, &A, perm-c);

sp_preorder(refact, &A, perm_c, etree, &AC);

/* Factorization */

dgstrf(refact, &AG, 1.0, 0.0, relax, panel_size,

etree, NULL, O, perm-r, &L, &U, &info);

. . . . . . /* solve first systein*/

/* Subsequent factorization */

*refact = ~y~;

for(i= 1; i <= niter; ++i ) {

dgstrf(refact, &AC, 1.0, 0.0, relax, panel_size,

etree, NULL, O,

Numerical values of

The factors L and U

. . . . . . /* solve

StatFree{);

3

Code

perm-r, &L, &U, &info);

matrix AC may change across iterations.

are overwritten in each iteration. */

later system */

segment to perform
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previous factorization (due to different pivoting), the factor routines xGSTRF

memory as needed. Figure 2.4 shows the code segment for this purpose.

2.9.2 calling from Fortran

General rules for mixing Fortran and C programs are as follows.

automatically expand

Arguments in C are passed by wdue, while in Fortran are passed by reference. So we always

pass the address (as a pointer) in the C calling routine. (You cannot make a call with numbers

directly in the parameters.)

Fortran uses l-based array addressing, while C uses O-based. Therefore, the row indices

(rewind) and integer pointers to arrays (colptr) should be adjusted before they are passed

into a C routine.

Because of the above language differences, in order to embed SuperLU in a Fortran environment,

users are required to supply “bridge” routines (in C) for all the SuperLU subroutines that will be

called from Fort ran programs. Figure 2.5 is an example showing how a bridge program should be

written. See the files f 77-main. f and c_bridge-dgssv. c for complete descriptions.

In the future, we may provide complete Fortran interfaces to the user-callable routines in

SuperLUi
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Fortran program (f77_main. f)
.. ””---.” .“..,..-.”.”

program f77.main

integer maxn, maxnz

parameter ( maxn = 10000, maxnz = 100000 )

integer rowind(maxnz), colptr(maxn)

real*8 values(maxnz), b(maxn)

. . . . . .

call c_bridge_dgssv( n, nnz, nrhs, values, rewind, colptr, b, ldb, info )

. . . . . .

stop

end

The bridge program in C (c_bridge.dgssv.c)
.---..,e...-- .“.”-”--...”- “-”...-

int c-bridge-dgssv(int *n, int *nnz, int *nrhs, double *values, int *rewind,

int *colptr, double *b, int *ldb, int *info)

{

SuperMatrix A, B, L, U;

int *perm_cj *perm-r;

. . . . . .

/* Adjust to ()-based indexing*/

for (i = O; i < *mz; ++i) --rowind[i];

for (i = O; i <= *n; ++i) --colptr[i] ;

/* Construct Matrix structures A and B */

dCreate_CompCol.Matrix(&Ai *n, *n, *nnz, values, rewind, colptr,

NC, _D, GE);

dGreate-Dense-Matrix(kB, *n, *nrhs, b, *ldb, DN, -D, GE);

. . . . . .

/* B is overwri,ttenby the solution vector */

dgssv(&A, perm_c, perm-r, &L, &U, &B, info);

. . . . . .

>

Figure 2.5: Interface with Fortran
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Chapter 3

Multithreaded SuperLU

3.1 About SuperLU.MT

Among the various steps of the solution process in the sequential SuperLU, the LU factorization

dominates the computation; it usually takes more than 95% of the sequential runtime for large

sparse linear systems. We have designed and implemented an algorithm to perform the factorization

in parallel on machines with a shared address space and multit breading. The parallel algorithm

is based on the efficient sequential algorithm implemented in SuperLU. Although we attempted

to minimize the amount of changes to the sequential code, there are still a number of non-trivial

modifications to the serial SuperLU, mostly related to the matrix data structures and memory

organization. All these changes are summarized in Table 3.1 and their impacts on performance are

studied thoroughly in [6, 19]. In this part of the Users’ Guide, we describe only the changes that

the user should be aware of. Other than these differences, most of the material in chapter 2 is still

applicable.

Construct Parallel algorithm

panel restricted so it does not contain branching in the elimination tree

supernode restricted to be a fundamental supernode in the elimination tree

supernode storage use either static or dynamic upper bound (section 3.4.2)

pruning & DFS use both G(LT) and pruned G(LT) to avoid locking

Table 3.1: The differences between the parallel and the sequential algorithms.

3.2 Storage types for L and U

As in the sequential code, the type for the factored matrices L and U is SuperMatrix (Figure 2.2),

however, their storage formats (stored in *Store) are changed. In the parallel algorithm, the

adjacent panels of the columns may be assigned to different processes, and they may be finished

and put in global memory out of order. That is! the consecutive columns or supernodes may not be

stored contiguously in memory. Thus, in addition to the pointers to the

or supernode, we need pointers to the end of the column or supernode.

type for L is SCP (Supernode, Column-wise and Permuted), defined as:

beginning of each column

In particular, the storage

typedef struct {
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int nnz; /*

int nsuper; /*

void *nzval; /*

int *nzval.colbeg; /*

int *nZval.colend; /*

int *rewind; /*

int *rewind.colbeg;/*

ht *roWind-colend;/*

int *col-to_sup; /*

int *sup_to_colbeg;/*

int *sup_to_colend;/*

3 SCPformat;

number of nonzeros in the matrix */

number of supernodes */

pointer to array of nonzero values,

packed by column */

nzval-colbeg[j] points to beginning of column j

in nzval[l */

nzval_colend[j] points to one past the last

element of column j in nzval[l */

pointer to array of compressed row indices of

the supernodes */

rewind-colbeg[j] points to beginning of column j

in rowind[] */

rewind-colend[j] points to one past the last

element of column j in rowind[] */

col-to_sup[j] is the supernode

column j belongs */

sup_to_colbeg[s] points to the

of the s-th supernode /

sup_to_colend[s] points to one

column of the s-th supernode */

number to which

first column

past the last

The storage type for Uis

typedef struct {

int nnz; /*

void *nzval; /*

int *roWind; /*

int *colbeg; /*

int *colend; /*

3 ~CPformat;

NCP, defined as:

number of nonzeros in the matrix */

pointer to array of nonzero values, packed by column */

pointer to array of row indices of the nonzeros */

colbeg[j] points to the location in nzval[] and rowi.nd[]

which starts column j */

colend[j] points to one past the location in nzval[]

and rowind[] which ends column j */

The table below summarizes the data and storage types of all the matrices involvedin

parallel routines:

A L u B x

Stype NC or NR SCP NCP DN DN

Dtype D D D D D

Mtype GE TRLU TRU GE GE

3.3 User-callable routines

As in the sequential SuperLU, we provide both computational routines and driver routines.

name those routines that involve parallelization in the call-graph, we prepend a letter.p to

the

To

the

names of their sequential counterparts, for example pdgstrf. For the purely sequential routines,

we use the same names as before. Appendix B contains, for each individual routine, the leading
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comments and the complete specification of the calling sequence and arguments. Here, we only list

the routines that are different from the sequential ones.

3.3.1 Driver routines

We provide two types of driver routines for soIving systems of linear equations. The driver routines

can handle both column- and row-oriented storage schemes.

● A simple driver pdgssv, which solves the system AX = 1? by factorizing A and overwriting

B with the solution X.

● An expert driver pdgssvx, which, in addition to

tions (some of them optionally):

– solve A~X = B;

— equilibrate the system (scale A’s rows and

scaled;

.

the above, also performs the following func-

columns to have unit norm) if A is poorly

– estimate the condition number of A, check for near-singularity, and

growth;

— refine the solution and compute forward and backward error bounds.

3.3.2 Computational routines

The user can invoke the following computational routines to directly control the

check for pivot

behavior of Su-

perLU. The computational routines can only handle column-oriented storage. Except for the par-

allel factorization routine pdgstrf, all the other routines are identical to those appeared in the

sequential superlu.

●

●

●

●

pdgstrf: Factorize (in paralleI).

This implements the first-time factorization, or later re-factorization with the same nonzero

pattern. In re-factorizations, the code has the ability to use the same column permutation

PC and row permutation P, obtained from a previous factorization. Several scalar arguments

cent rol how the LU decomposition and the numerical pivoting should be performed. pdgst rf

can handle non-square mat rices.

dgstrs: Triangular solve.

This takes the L and U triangular factors, the row and column permutation vectors, and the

right-hand side to compute a solution matrix X of AX = B or A*X = B.

dgscon: Estimate condition number.

Given the matrix A and its factors L and U, this estimates the condition number in the

one-norm or infinity-norm. The algorithm is due to Hager and Higham [15], and is the same

as condest in sparse Matlab.

dgsequ/dlaqgs: Equilibrate.

dgsequ first computes the row and column scalings D, and DC which would make each row

and each column of the scaled matrix DTADC have equal norm. dlaqgs then applies them to

the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original

A.
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●

3.4

3.4.1

igsrfs: Refine solution.

Given A, its factors L and U, and an initial solution X, this does iterative refinement, usiing

the same precision as the input data. It also computes forward and backward error bounds

for the refined solution.

Installation

Filestructure

The top level SuperLU-MT/ directory is structured as follows:

SuperLU.MT/README

SuperLU_MT/CBLAS/

SuperLU_MT/EXA!4PLE/

SuperLU.MT/INSTALL /

SuperLU-MT/SRC/

SuperLU.MT/TESTING/

SuperLU-MT/Makef ile

SuperLU-MT/make. inc

instructions on installation

needed BLAS routines in C, not necessarily fast

example programs

test machine dependent parameters; the Users’ Guide

G source code, to be compiled into superlu-mt.a library

driver routines to test correctness

top level Makefile that does installation and testing

compiler, compile flags, library definitions and C

preprocessor definitions, included in all Makefiles.

We have ported the parallel programs to anumber ofplatforms ,which are reflected in themake

include files provided in the top level directory, for example, make.sun, make.sgi, make.tray

and make.pthreads. Ifyou are using one ofthese machines, such as a Sun, you can simply copy

make .sunintomake.inc before compiling. If you are not using any of the machines to which we

have ported, you will need toread section 3.6 about the porting instructions.

The rest of the installation and testing procedure is similar to that described in section 2.8 for

the serial SuperLU. Then, you can type nmkeat the top level directory to finish installation. In

theSuperLUllT/TESTING subdirectory, you cantypepdtest .csh to perform testings.

3.4.2 Performance issues

Memory management forLand U

In the sequential SuperLU, four data arrays associated with the LandU factors can be expanded

dynamically, as described infection 2.5. In the parallel code, the expansion is hard and costlyto

implement, because when aprocess detects that an array bound is exceeded, it has tosend asignal

to and suspend the execution of the other processes. Then the detecting process can proceed with

the array expansion. After the expansion, this process must wake up all the suspended processes.

Inthisreleaseof theparallelcode ,wehavenotyet implemented the aboveexpansion mechanism.

For now, the user must pre-determine an estimated size foreach of the four arrays through the

inquiry function sp_ienvo. There are two interpretations for each integer value FILL returned

by calling this function with ispec = 6, 7, or 8. Anegative number is interpreted as the fills

growth factor, that is, the program will allocate (-FILL) *~z(A) elements for the corresponding

array. A positive number is interpreted as the true amount the user wants to allocate, that is, the

program will allocate FILL elements for the corresponding array. In both cases, if the initial request

exceeds the physical memory constraint, the sizes of the arrays are repeatedly reduced until the

initial allocation succeeds.
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int sp-ienv(int ispec);

Ispec specifies the parameter to be returned:

ispec = . . .

=6: size of thearray tostore thevalues of the L supernodes (nzval)

= 7: size of the array to store the columns in U (nzval/rewind)

= 8: size of the array to store the subscripts of the L supernodes (rewind);

If the actual fill exceeds any array size, the program will abort with a message showing the

current column when failure occurs, and indicating how many elements are needed up to the

current column. The user may reset a larger fill parameter for this array and then restart the

program.

To make the storage allocation more efficient for the supernodes in L, we devised a special

storage scheme. The need for this special t rest ment and how we implement it are fully explained

and studied in [6, 19]. Here, we only sketch the main idea. Recall that the parallel algorithm assigns

one panel of columns to one process. Two consecutive panels may be assigned to two different

processes, even though they may belong to the same supernode discovered later. Moreover, a third

panel may be finished by a third process and put in memory between these two panels, resulting

in the columns of a supernode being noncontiguous in memory. This is undesirable, because then

we cannot directly call BLAS routines using this supernode unless we pay the cost of copying the

columns into contiguous memory first. To overcome this problem, we exploited the observation that

the nonzero structure for L is contained in that of the Householder matrix I/ from the Householder

sparse ~li! transformation [11, 12]. Furthermore, it can be shown that a fundamental supernode of

L is always cent ained in a fundament al supernode of H. This containment property is true for for

any row permutation Pr in PTA = LU. Therefore, we can pre-allocate storage for the L supernodes

based on the size of H supernodes. Fortunately, there exists a fast algorithm (almost linear in the

number of nonzeros of A) to compute the size of H and the supernodes partition in H [14].

In practice, the above static prediction is fairly tight for most problems. However, for some

others, the number of nonzeros in H greatly exceeds the number of nonzeros in L. To handle

this situation, we implemented an algorithm that still uses the supernodes partition in H, but

dynamically searches the supernodal graph of L to obtain a much tighter bound for the storage.

Table 6 in [6] demonstrates the storage efficiency achieved by both static and dynamic approach.

In summary, our program tries to use the static prediction first for the L supernodes. In this

case, we ignore the integer value given in the function sp.ienv (6), and simply use the nonzero

count of H. If the user finds that the size of H is too large, he can invoke the dynamic algorithm

at runtime by setting the following UNIX shell environment variable:

setenv SuperLUDYNAMIC3 NODE5TORE 1

The dynamic algorithm incurs runtime overhead. For example, this overhead is usually between

270 and 15% on a single processor RS/6000-590 for a range of test matrices.

Symmetric structurepruning

In both serial and parallel algorithms, we have implemented Eisenstat and Liu’s symmetric pruning

idea of representing the graph G(LT) by a reduced graph G’, and thereby reducing the DFS traversal

time. A subtle difficulty arises in the parallel implementation.

When the owning process of a panel starts DFS (depth-first search) on G’ built so far, it

only sees the partial graph, because the part of G’ corresponding to the busy panels down the

34



elimination tree is not yet complete. So the structural prediction at this stage can miss some

nonzeros. After performing the updates from the finished supernodes, the process will wait for

all the busy descendant panels to finish and perform more updates from them. Now, we make

a conservative assumption that all these busy panels will update the current panel so that their

nonzero structures are included in the current panel.

This approximate scheme works fine for most problems. However, we found that this conser-

vatism may sometimes cause a large number of structural zeros (they are related to the supernode

amalgamation performed at the bottom of the elimination tree) to be included and they in turn

are propagated through the rest of the factorization.

We have implemented an exact structural prediction scheme to overcome this problem. In this

scheme, when each numerical nonzero is scattered into the sparse accumulator array, we set the

occupied flag as well. Later when we accumulate the updates from the busy descendant panels, we

check the occupied flags to determine the exact nonzero structure. This scheme avoids unnecessary

zero propagation at the expense of runtime overhead, because setting the occupied flags must be

done in the inner loop oft he numeric updates.

We recommend that the user use the approximate scheme (by default) first. If the user finds

that the amount of fill from the parallel factorization is substantially greater than that from the

sequential factorization, he can then use the accurate scheme. To invoke the second scheme, the

user should recompile the code by defining the macro:

-D SCATTER_FOUND

for the C preprocessor.

The inquiry function sp.ienv ( )

For some user controllable constants, such as the blocking parameters and the size of the global

storage for L and U, SuperLU_MT calls the inquiry function sp–ienv ( ) to retrieve their values.

The declaration of this function is

int sp-ienv(int ispec) ,

The full meanings of the returned values are as follows:

ispec = 1: the panel size w

= 2: the relaxation parameter to control supernode amalgamation (relax)

= 3: the maximum allowable size for a supernode (mazsup)

= 4: the minimum row dimension for 2-D blocking to be used (rowblk)

= 5: the minimum column dimension for 2-D blocking to be used (colldk)

= 6: size of the array to store the values of the L supernodes (Tz2val)

= 7: size of the array to store the columns in U (nzval/~owind)

= 8: size of the array to store the subscripts of the L supernodes (~owind)

We should take into account the trade-off between cache reuse and amount of parallelism in order

to set the appropriate w and maxsup. Since the parallel algorithm assigns one panel factorization to

one process, large values may constrain concurrency, even though they may be good for uniprocessor

performance. We recommend that w and maxsap be set a bit smaller than the best values used in

the sequential code.

The settings for parameters 2, 4 and 5 are the same as those described in section 2.8.3. The

settings for parameters 6, 7 and 8 are discussed in section 3.4.2.

In the file SRC/sp_ienv. c, we provide sample settings of these parameters for several machines.
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Programming Environment

make.inc Platforms Model Variable

make. pthreads Machines with POSIX threads pthreads

make. sun Sun Ultra Enterprise Solaris threads

make. alpha DEC Alpha Servers DECthreads

make.sgi SGI Power Challenge parallel C MPCJKJKTHREADS

make origin SGI/Cray 0rigin2000 parallel C MP_SET-NUMTHREADS

make.tray Cray C90/J90 microt asking NCPUS

Tab~e 3.2: Platforms on which SuperLU.MT was tested.

3.5 Example programs

In the SuperLU_MT/EXAMPLE/ subdirectory, we present a few sample programs to illustrate the

complete calling sequences to use the simple and expert drivers to solve systems of equations. Ex-

amples are also given to illustrate how to perform a sequence of factorization for the matrices with

the same sparsity pattern, and how SuperLU.MT can be integrated into the other multithreaded

application such that threads are created only once. A Makef ile is provided to generate the exe-

cut ables. A READMEfile in this directory shows how to run these examples. The leading comment

in each routine describes the functionalist y oft he example.

3.6 Porting to other platforms

W-e have provided the parallel interfaces for a number of shared memory machines. Table 3.2 lists

the platforms on which we have tested the library, and the respective make. inc files. The most

port able interface for shared memory programming is PO SIX threads (24], since nowadays many

commercial UNIX operating systems have support for it. We call our POSIX threads interface the

Pthreads interface. To use this interface, you can copy make. pthreads into make. inc and then

compile the library. In the last column of Table 3.2, we list the runtime environment variable to

be set in order to use multiple CPUS. For example, to use 4 CPUS on the 0rigin2000, you need to

setthefollowing before running the program:

setenv MP_SETIUMTHREADS4

In the source code, all the platform specific constructs are enclosed in the C #ifdef preprocessor

stat ement. If your platform is different from any one listed in Table 3.2, you need to go to these

places and create the parallel constructs suit able for your machine. The two constructs, concurrency

and synchronization, are explained in the following two subsections, respectively.

3.6.1 Creating multiplethreads

Rightnow, only the factorization routine pdgstrf is parallelized, since this is the most time-

consuming part in the whole solution process. There is one single thread of control on entering and

exiting pdgstrf. Inside this routine, more than one thread may be created. All the newly created

threads begin by calling the thread function pdgstrf _thread and they are concurrently executed

on multiple processors. The thread function pdgstrf -thread expects a single argument of type

void*,which is a pointer to the structure containing all the shared data objects.
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Mutex

ULOCK

LLQCK

LULOCK

IWUPERLOCK

SCHEDLOCK

Critical region

allocate storage for a column ,of matrix /7

allocate storage for row subscripts of matrix L

allocate storage for the values of the supernodes

increment supernode number nsuper

invoke Scheduler ( ) which may update global task queue

Table 3.3: Five mutex variables.

3.6.2 Use of mutexes

Althoughthe threads pdgstrf.thread execute independently of each other, they share the same

address space and can communicate efficiently through shared variables. Problems may arise if

two threads try to access (at least one is to modify) the shared data at the same time. Therefore,

we must ensure that all memory accesses to the same data are mutually exclusive. There are five

critical regions in the program that must be protected by mutual exclusion. Since we want to allow

different processors to enter different critical regions simultaneously, we use five mutex variables as

listed in Table 3.3. The user should properly initialize them in routine Paralleling.t, and destroy

them in routine ParallelFinalize. Both these routines are in file pxgstrf _synch. c.
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Chapter 4

Distributed SuperLU with MPI

4.1 About SuperLU_DIST

In this part, we describe the SuperLU_DIST library designed for distributed memory parallel com-

puters. The parallel programming model is SPMD. The library is implemented in ANSI C, using

MPI [26] for communication, and so is highly portable. We have tested the code on a number

of platforms, including Cray T3E, IBM SP, and Berkeley NOW. The library includes routines to

handle both real and complex matrices in double precision. The parallel routine names for the

double-precision real version start with letters “pal” (such as pdgstrf ); the parallel routine names

for double-precision complex version start with letters “pz” (such as pzgstrf ).

4.2 Basic steps to solve a linear system

In this section, we use a complete sample program to illustrate the basic steps required to use

the MPI version of the SuperLU library. This program is Iisted below, and is also available as

EXAMPLE/pddrive. c in the source code distribution. All the routines must include the header file

superlu-ddefs. h (or superlu~defs. h, the complex counterpart) which contains the definitions

of the data types, the macros and the

#include <math. h>

#include “superlu_ddefs. h“

main( int argc, char *argv [1 )

function prototypes.

/*

*

*

*

*

*

*

*

*

*

*

*

Purpose
--------------

The driver program PDDRIVE.

This example illustrates how

(default) options to solve a

to use pdgssvx_ABglobalwith the full

linear system.

Five

1.

2.

basic steps are required:

Initializethe MPI environmentand the SuperLUprocessgrid

Set up the inputmatrix and the right-handside
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* 3. Set the options argument

* 4. Call pdgssvx.ABglobal

* 5. Releasethe process grid

*

and terminatethe MPI environment

* On the Cray T3E, the programmay be run by typing

* mpprun -n <procs>pddrive -r <proc rows> -c <proc columns><input_file>

*

*/

{

superlu_options-toptions;

SuperLUStat-tstat;

SuperMatrixA;

ScalePermstruct_tScalePermstruct;

LUstruct-tLUstruct;

gridinfo_tgrid;

double *berr;

double *a, *b, *xtrue;

int_t *asub, *xa;

int_t i, m, n, nnz;

int-t nprow, npcol;

int iam, info, ldb, ldx, nrhs;

char trans[l];

char **cpp, c;

FILE *fp, *fopeno;

nprow = 1; /*

npcol = 1; /*

nrhs = 1; /*

Default processrows. */

Defaultprocess columns. */

Number of right-handside. */

/* Parsecommand line argv[].*/

for (cpp = argv+l; *cpp; ++cpp) {

if ( **cpp == ‘-} ) {

c = *(*cpp+l);

++cpp ;

switch (c) {

case ‘h’:

printf(’’Options :\n”);

printf(’’\t-r <int>: process rows (default Xd)\n”, nprow) ;

printf(’’\t-c <int>: process columns (default %d)\n”, npcol);

exit(0);

break;

case ‘r’: nprow = atoi(*cpp);

break;

case ‘c’: npcol = atoi(*cpp);

break;

3
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} else -(/* Last arg is considereda filename*/

if ( !(fp = fopen(*cpp,“r”)) ) {

fprintf(stderr,llFiledoes not eXiSt.”
);

exit(-l);

}

break;

“3

}

/* ------------------------------------------------------------

INITIALIZE MPI ENVIRONMENT.

------------------------------------------------------------*/

MPI_Init( &argc, &argv );

/* :-----------------------------------------------------------

INITIALIZETHE SUPERLUPROCESSGRID.

------------------------------------------------------------*/

superlu-gridinit(MPI_COMM-WORLD,nprow, npcol, &grid);

/* Bail out if I do not belong in the grid. */

iam = grid.iam;

if

/*

if

( iam >= nprow * npcol ) goto out;

--- - ------------ - ------------ ------ - ---- ------ --------------

PROCESS O READS THE MATRIX A, AND THEN BROADCASTSIT TO ALL

THE OTHER PROCESSES.
------------------------------------------------------------*/

(!iam){

/* Read the matrix stored on disk in Harwell-Boeingformat.*/

dreadhb(iam,fp, &m, &n, &nnz, &a, &asub, &xa);

# nonzeros %d\n”, m, n, nnz);

Zd\n”, grid.nprow, grid.npcol);

other pEs. */

printf(’’\tDimension\t%dx~d\t

printf(’’\tProcessgrid\t~dX

/* Broadcastmatrix A to the

MPI-Bcast(&m, 1, mpi_int_t, O, grid.comm);

MP1_Bcast(&n, 1, mpi_int_t, O, grid.comm);

MPI-Bcast(&nnz, 1, mpi_int-t, O, grid.comm);

MP1_Bcast(a, nnz, MPI_DOUBLE,O, grid.comm);

MPI-Bcast(asub, nnz, mpi_int_t, O, grid.comm);

MPI_Bcast(xa, n+l, mpi_int_t, O, grid.comm);

3 else {

/* Receivematrix A fromPE O. */

MPI_Bcast(&m, 1, mpi_int_t, O, grid.comm);

MPI-Bcast(&n, 1, mpi_int_t, O, grid.comm);

MPI_Bcast(&nnz, 1, mpi_int-t, O, grid.comm);
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/* Allocate storagefor compressedcolumn representation.*/

dallocateA(n,nnz, &a, &asub, &xa);

MPI_Bcast(a,

MPI_Bcast(asub,

MPI_Bcast(xa,
.
-t

/* Create compressed

nnz, MPI.DOUBLE,O, grid.comm);

nnz, mpi_int-t, O, grid.comm);

n+l, mpi.int_t, O, grid.comm);

column matrix for A. */

dCreate_CompCol-Matrix(&A,m, n, nnz, a, asub, xa, NC, _D, GE);

/* Generatethe exact solutionmd computethe right-handside. */

if ( !(b = doubleMalloc(m* nrhs)) ) ABORT(’’Mallocfails for b[]”);

if ( !(xtrue= doubleMalloc(n* nrhs)) ) ABORT(’’Mallocfails for xtrue[]”);

*trans = ‘N>;

ldx = n;

ldb = m;

dGenXtrue(n,nrhs, xtrue, ldx);

dFillRHS(trans,nrhs, xtrue, ldx, &A, b, ldb);

if

/*

/*

( !(berr = doubleMalloc(nrhs))) ABORT(’’Mallocfails for berr[].”);

------.---_------_____________------------------------------

NOW WE SOLVE THE LINEAR SYSTEM.

------------------------------------------------------------*/

Set the default input options.*~

set_default_options(&options);

/* InitializeScalePermstructand LUstruct.*/

ScalePermstructInit(m,n, &ScalePermstruct);

LUstructInit(m,n, &LUstruct);

/* Initializethe statisticsvariables.*/

PStatInit(&stat);

/* Call the linear equationsolver. */

pdgssvx_ABglobal(&options,&A, &ScalePermstruct,b, ldb, nrhs, &grid,

&LUstruct,berr, &stat, &info);

/* Check the accuracy of the solution. */

if ( !iam ) dinf_norm_error(n, nrhs, b, ldb, xtrue, ldx);

/* print the statistics.*/

PStatPrint(&stat,&grid);

/* ------------------------------------------------------------
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DEALLOCATESTORAGE.

------------------------------------------------------------*/

PStatFree(&stat);

Destroy_CompCol_Matrix(&A);

Destroy_LU(n,&grid, &LUstruct);

ScalePermstructFree(&ScalePermstruct);

LUstructFree(&LUstruct);

SUPERLU_FREE(b);

SUPERLU_FREE(xtrue);

SUPERLU_FREE(berr);

/* ------------------------------------------------------------

RELEASETHE SUPERLUPROCESS GRID.

------------------------------------------------------------*/

out:

superlu_gridexit(&grid);

/* ------------------------------------------------------------

TERMINATESTHE MPI EXECUTIONENVIRONMENT.

------------------------------------------------------------*/

MPI_Finalizeo;

3

Five basic steps are required to call aSuperLU routine:

1.

2.

3.

Initialize theMPI environment and the SuperLU process grid.

This is achieved by thecalls to the MPIroutine MP12nit andthe SuperLU routine

superlu~ri.dinit. In this example, the communication domain for SuperLU is built upon

the MPI default communicator MPI_COMM_WORLD.In general, it can be built upon anyMPI

communicator. Section 4.3 contains the details about this step.

Set up the input matrix and the right-hand side.

In this example, process Oreads the input matrix stored on disk in Harwell-Boeing format [10],

and broadcastsit toall the other processes. The right-hand side matrixis generated so that

the exact solution matrix consists ofall ones. Currently the library requires the input matrix

and the right-hand side are available on every process. In the future, we will allow these two

matrices being distributed on input.

Initialize the input arguments: options, Astruct, LUstruct, stat.

The input argument options controls how the linear system would besolved—use equilibra-

tionor not, how to order the rows and the columns of the matrix, use iterative refinement

or not. The subroutine set-default.options sets the options argument so that the solver

performs all the functionality. You can also set it up according to your own needs, see sec-

tion 4.6.1 for the fields of this structure. Astruct is the data structure in which matrix A

ofthe linear system and several vectors describing the transformations done to A are stored.

LUstructis the data structurein which the distributed Land Ufactors are stored. Statis

a structure collecting the statistics about runtime and flop count.

4. Call the SuperLU routine pdgssvxABglobal.
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5.

4.3

Release the process grid and terminate the MPI environment.

After the computation on a process grid has been completed, the process grid should be

released by a call to the SuperLU routine superlu~ridexit. When dl computations have

been completed, the MPI routine FIPI-Fiinalize should be called.

Process grid and MPI communicator

AU MPI applications begin with a defauIt communication domain that includes all processes, say

NP, of this parallel job. The default communicator MPI-COMM.WORLDrepresents this communication

domain. The iVP processes are identified as a linear array of process IDs in the range O . . . IVP– 1.

4.3.1 SuperLU 2-D grid

For SuperLU library, we create a new process group derived from an existing group using N~

processes. There is a good reason to use a new group rather than MPI_COM14_WORLD,that is, the

message passing calls of the SuperLU library will be isolated from those in other libraries or in the

user’s code. For bet ter scalability y of the L U fact orization, we map the 1-D array of lVg processes

into a logical 2-D process grid. This grid will have nprow process rows and npcol process columns,

such that nprow * npcol = lV~. A process can be referenced either by its rank in the new group or

by its coordinates within the grid. The routine superlu-gridinit maps already-existing processes

to a 2-D process grid.

superlu.gridinit(MPI_CommBcomm, int nprow, int npcol, gridinfo_t*grid);

This process grid will use the first nprow * npcol processes from the base MPI communicator

Bconm, and assign them to the grid in a row-major ordering. The input argument Bcomu is an MPI

communicator representing the existing base group upon which the new group will be formed. For

example, it can be MPI-COMM-WORLD.The output argument grid represents the derived group to be

used in the routines of SuperLU library. Grid is a structure cent aining the following fields:

struct -(

MPI_Coram COIUIU; /*

int iam; 1*

int nprow; /*

int npcol; /*

superlu_scope_t rscp; /*

superlu_scope_t cscp; /*

} grid;

MPI communicatorfor this group */

my process rank in this group */

number of process rows */

number of process columns +/

processrow scope */

process column scope */

In the LU factorization, some communications occur only among the processes in a row (col-

umn), not among all processes. For this purpose, we introduce two process subgroups, namely rscp

(row scope) and cscp (column scope). For rscp (cscp) subgroup, all processes in a row (column)

participate in the communication.

The macros MYROW( i em, grid) and MYCOL( i em, grid) give the row and column coordinates

in the 2-D grid of the process who has rank iam.

NOTE: All processes in the base group, including those not in the new group, must call this grid

creation routine. This is required by the MPI routine MPI_Comm-createto create a new communic-

ator.
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4.3.2 Arbitrary grouping of processes

It is sometimesdesirabletodivideup theprocessesinto,severalsubgroups,eachofwhichperforms

independentworkofa singleapplication.Sowe cannotsimplyusethefirstnprow*npcolprocesses

to definethegrid.A more sophisticatedprocess-to-gridmapping routinesuperlu~ridmapis

designedtocreatea gridwithprocessesofarbitraryranks.

superlu.gridmap(MPI.COmmBcomm, int nprow, int npcol,

int usermap[], int ldumap,gridinfo.t*grid);

The array usermap [1 contains the processes to be used in the newly created grid. usermap [1 is

indexed like a Fort ran-st yle 2-D array with ldumap as t he leading dimension. So us ermap [i +j *ldumap]

(i.e., usermap(i, j ) in Fortran notation) holds the process rank to be placed in {i, j} position

of the 2-D process grid. After grid creation, thk subset of processes is logically numbered in

a consistent manner with the initial set of processes; that is, they have the ranks in the range

o ...nprow*npcol– 1 inthenew grid.Forexample,ifwe wanttomap 6 processeswithranks

11 ... 16intoa 2 x 3 grid,we defineusermap= {11,14,12,15,13,16}and ldumap= 2. Sucha

mappingisshownbelow

012

0 11 12 13

1 14 15 16

NOTE: All processes in the base group, including those not in the new group, must call this

routine.

Superlu-gri,dinitsimplycallssuperlu_grichnapwithusermap[]holdingthefirstnprow*

npcolprocessranks.

4.4 Matrix distribution and distributed data structures for L and

u

We distribute both L and U matrices in a two-dimensional block-cyclic fashion. We first identify

the supernode boundary based on the nonzero structure of L. This supernode partition is then

used as the block partition in both row and column dimensions for both L and U. The size of each

block is matrix dependent. It should be clear that all the diagonal blocks are square and full (we

store zeros from U intheuppertriangleofthediagonalblock),whereastheoff-diagonalblocksmay

berectangularandmay notbefull.paragraphThe matrixinFigure4.1illustratessucha partition.

By block-cyclicmappingwe mean block(1,J) (O<1, J < AJ– 1)ismapped intotheprocessat

coordinate{1mod nprow,J mod npcol} of the nprow x npcol process grid. Using this mapping, a

block L(I, J) inthefactorizationisonlyneededby therow ofprocessesthatown blocksinrow 1.

Similarly,a block/7(1,J) isonly needed by the column of processes that own blocks in column J.

Inthis 2-D mapping, each block column of L resides on more than one process, namely, a column

of processes. For example in Figure 4.1, the k-th block column of L resides on the column processes

{O, 3}. Process 3 only owns two nonzero blocks, which are not contiguous in the global matrix.

The schema on the right of Figure 4.1 depicts the data structure to store the nonzero blocks on

a process. Besides the numerical values stored in a Fortran-style array nzval [1 in column major

order, we need the information to interpret the location and row subscript of each nonzero. This

is stored in an integer array index [] , which includes the information for the whole block column
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Figure 4.1: The 2-D block-cyclic layout and the data structure to store a local block column of L.

and for each individual block in it. Note that many off-diagonal blocks are zero and hence not

stored. Neither do we store the zeros in a nonzero block. Both lower and upper triangles of the

diagonal block are stored in the L data structure. A process owns ~lV/npcoll block columns of L,

so itneeds[N/nprow~pairsofindex/nzvalarrays.

ForU, we usea row oriented storage for the block rows owned by a process, although for the

numerical values within each block we still use column major order. Similarly to L, we alSOuse
a pairofindex/nzvalarraystostorea blockrow ofU. Due toasymmetry,eachnonzeroblock

inU hasthe skyline structure as shown in Figure 4.1 (see [5] for details. on the skyline structure).

Therefore, the organization of the index [] array is different from that for L, which we omit showing

inthefigure.

Sincecurrentlysome stepsofthealgorithm(steps(1)to(3)inFigure4.2)arenotyetparallel,

we startwitha copyoftheentirematrixA oneachprocess.The routinesymbfactdeterminesthe

nonzeropatternsof L and U as well as the block partition. The routine distribute uses this

information to sets up the L and U data structures and load the initial values of A intoL and U.

4.5 Algorithmic background

Although partial pivoting is used in both sequential and shared-memory parallel factorization al-

gorithms, it is not used in the distributed-memory parallel algorithm, because it requires dynamic

adaptation of data structure and load balancing, and so is hard to parallelize. We use alternative

techniques to stabilize the algorithm, suas as statically pivot large elements to the diagonal, half-

precision diagonal adjustment to avoid small pivots, and iterative refinement. Figure 4,2 sketches

our GESP algorithm (Gaussian elimination with static pivoting). Numerical experiments show that

for a wide range of problems, GESP is as stable as GEPP [20].

We have parallelized the two most time-consuming steps in this algorithm, which are Step (4)

and Step (5). Currently, process O in the logical process grid computes Dr and DC and broadcasts

them to all the other processes, which in turn just apply them to A. Step (2) is accomplished by
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(1) 130w/column equilibration: A e D, - A . DC

D, and DC are diagonal matrices chosen so that the largest entry of each row and

column is i 1.

(2) Row permutation: A - Pr . A

P, is a row permutation chosen to make the diagomd large compared to the off-diagonal.

(3) Find a column permutation Pc to preserve sparsity: A - PC . A. P:

(4) Factorize A = L . U withcontrolofdiagonalmagnitude

if(Iaii[< fi.]lA\[ ) then

seta~~to@. IIAII

endif

(5)SolveA . x = b usingthe L and U factors, with the following iterative refinement

iterate:

r= b–A. z

Solve A - dz = r

. . . sparsematrix-vectormultiply

...triangularsolution

...componentwisebackwarderror

?j-iastben’ ) then

z=z+dz

~astbeTT = bevr

goto iterate

endif

Figure 4.2: The outline of the GESP algorithm.

a weighted bipartite mat thing algorithm due to Duff and Koster [9]. Again, process O computes

P, and then broadcasts it to all the other processes. For Step (3), we provide several ordering

options, such as multiple minimum degree ordering [22] on the graphs of A + AT orAT A, and the

approximateminimum degreecolumnordering[4].The usercanuseanyotherorderinginplaceof

these,suchasan orderingbasedon graphpartitioning.(Note,sincewe willpivoton thediagonal

inStep(4),an orderingbasedon thestructureofA + AT tends to yieldsparserfactorsthanthat

basedon thestructureofATA. This is different from SuperLU and SuperLU_MT, where we can

pivot off-diagonal.) In this step, every process runs the same algorithm independently. After the

above sequential setup, we perform parallel factorization, parallel triangular solutions and parallel

iterative refinement.

4.6 User-callable routines

Appendix C contains the complete specifications of the routines in SuperLUDIST.

4.6.1 Driver routine

There is one driver routine to solve systems of linear equations, which is named pdgssvxABglobal.

We recommend that the general users, especially the beginners, use this driver routine rather

than the computational routines, because correctly using this routine does not require thorough

understanding of the underlying data structures. Although the interface of this routine is simple,

we expect its rich functionalist y can meet the requirements of most applications. PdgssvxABglobal

performs the following functions:
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Equilibrate the system (scale A’s rowsand columns to have unit norm) if A is poorly scaled;

Find a row permutation that makes diagonal of A large relative to the off-diagonal;

Find a column permutation that preserves the sparsity of the L and U factors;

Solve the system AX = B for X by factoring A followedbyforwardandbacksubstitutions;

RefinethesolutionX.

Options argument

One import ant input argument to pdgssvxABglobal is options, which controls how the linear

system will be solved. Although the algorithm presented in Figure 4.2 consists of five steps, for

some mat rices not all five steps are needed to get accurate solution. For example, for diagonally

dominant matrices, choosing the diagonal pivots ensures the stability; there is no need for row

pivoting in Step (2). In another situation where a sequence of matrices with the same sparsit y

pattern need be factorized, the column permutation P. (and also the row permutation Z’,, if the

numerical values are similar) need be computed only once, and reused thereafter. (F’r and PC are

implemented as permutation vectors permm and perm.c.) For the above examples, performing all

five steps does more work than necessary. Opt ions is used to accommodate the various requirements

of applications; it cent ains the following fields:

s Fact

This option specifies whether or not the factored form of the matrix A issupplied on entry,

and if not, how the matrix A willbe factored base on some assumptions of the previous

history. fact can be one of

– DOFACT:thematrixA will be factorized from scratch. ‘

– Sam.ePatt em: the matrix A will be factorized assuming that a factorization of a ma-

trix with the same sparsity pattern was performed prior to this one. Therefore, this

factorization will reuse column permutation vector perm_c.

— SampPatt ernSmeRowPerm: the matrix A willbe factorized assuming that a factoriza-

tion of a matrix with the same sparsity pattern and similar numerical values was per-

formed prior to this one. Therefore, this factorization will reuse both row and column

permutation vectors pex-mx and perm-c, both row and column scaling factors D, and

DC, and the distributed data structure set up from the previous symbolic factorization.

— FACTORED:the factored form of A is input.

● Equil

This option specifies whether to equilibrate the system.

s RowPerm

Thisoptionspecifieshow topermuterowsoftheoriginalmatrix.

— NATURAL:usethenaturalordering.

— LargeDiag:usea weightedbipartitematchingalgorithmtopermutetherowstomake

thediagonallargerelativetotheoff-diagonal.

— MYIERMR:usetheorderinggiveninperm_rinputby theuser.
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●

●

●

ColPerm

Thisoption specifies the column ordering method for fil! reduction.

– NATURAL:naturalordering.

. MMDATILUSA: minimum degreeorderingon thestructureofAT + A.

— MMDATA:minimum degreeorderingon thestructureofAT A.

— COLAHD:approximateminimum degreecolumnordering.

— MYIERMC:usetheorderinggiveninperm.cinputby theuser.

ReplaceTinyPivot

Thisoptionspecifieswhethertoreplacethetinydiagonalsby W. IIAI Iduring LU factorization.

It erRef ine

This option specifies how to perform iterative refinement.

. NO: no iterative refinement.

— DOUBLE:accumulate residual in double precision.

— EXTRA:accumulate residual in extra precision. (not yet implemented.)

There is a routine named set.default.options that sets the default values of these options,

which are:

fact = DOFACT

equil = YES

rowperm = LargeDiag

colperm = lfMD.AT_PLUS_A

ReplaceTinyPivot = YES

It erRef ine = DOUBLE

4.6.2 Computational routines

The experienceduserscan invokethefollowingcomputationalroutinesto directlycontrolthe

behaviorofSuperLUinordertomeettheirrequirements.

●

●

pdgstrf:Factorizeinparallel.

ThisroutinefactorizestheinputmatrixA (orthe scaled and permuted A). It assumesthat

thedistributeddatastructuresforL and U factors are already set up, and the initial values

of A areloaded into the data structures. If not, the routine symbfact should be called to

determine the nonzero patterns of the factors, and the routine ddistri-but e should be called

to distribute the matrix. Pdgstrf can factor non-square matrices.

Currently, A must be globallyavailableon allprocesses.

pdgstrsBglobal:Triangularsolveinparallel.

Thisroutinesolvesthesystemby forwardand backsubstitutionsusingthetheL and U

factors computed by pdgstrf.

Currently, 1? must be globally available on all processes.
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●

4.7

pdgsrfsABXglobal:

GivenA, itsfactors

refinement.

Currently, A, B, and

Installation

4.7.1 Filestructure

The top level SuperLU_DIST/

SuperLU_DIST/README

SuperLU_DIST/CBLAS/

SuperLU_DIST/EXAMPLE/

SuperLU_DIST/INSTALL/

SuperLU_DIST/SRC/

SuperLU_DIST/Makefile

SuperLU.DIST/make .inc

Refine solutionin parallel.

L and U, and an initial solution X, this routine performs iterative

X mustbegloballyavailableon allprocesses.

directory is structured as follows:

instructionson installation

needed BLAS routinesin C, not necessarilyfast

exampleprograms

test machine dependentparameters;the Users’ Guide.

C source code, to be compiledinto a library

top level Makefilethat does installationand testing

compiler,compileflags, librarydefinitionsand C

preprocessordefinitions,includedin all Makefiles.

(Youmay need to edit it to be suitablefor your

systembefore compilingthe whole package.)

Before installing thepackage, you mayneed toedit SuperLUDIST/make.incforyour system.

This make include file is referenced inside each ofthe Makeiilesin the various subdirectories. Asa

result, thereis no need to edit the Makefiles in the subdirectories. All information thatis machine

specific has been defined in this include file.

Sample machine-specific make.inc are provided in the top-level SuperLUDIST directory for

several systems, suchas Cray T3Eand IBM SP. When you have selected the machine to which you

wish to install SuperLU_DIST, youmay copy the appropriate sample include file (ifone is present)

into make.inc. For example, ifyou wishto runon aCray T3E, you can do:

cp make.t3e make.inc

For the systems other than those listed above, slight modifications to the make.inc file will

need to be made. In particular, the following items should reexamined:

1. The BLAS library,

IfthereisaBLAS library available onyourmachine ,youmaydefine thefollowingin make.inc:

BLASDEF= -DUSE-VENDORBLAS

BLASLIB= <BLAS lj.braryyou wish to link With>

TheCBLAS/ subdirectorycontainsthepartoftheBLAS (in(3)neededby SuperLUDIST

package.However,theseroutinesareintendedforuseonlyifthereisnofasterimplementation

oftheBLAS alreadyavailableon yourmachine.Inthk case,youshoulddo thefollowing:

1) In make.inc, undefine (comment out) BLASDEF, define:

BLASLIB = ../blas$(PLAT).a

2) At the top level SuperLU_DIST directory, type:

make blasli,b

tocreatetheBLAS libraryfromtheroutinesinCBLAS/subdirectory.

49



2. C preprocessor definition CDEFS.

In the header file SRC/Cnames. h, we use macros to determine how C routines should be named

so that they are callable by Fortran .1 The possible options for CDEFS are:

● -DAdd-:Fortranexpectsa C routinetohavean underscorepostfixedtothename;

● -DNoChange: Fortran expects a C routine name to be identical to that compiled by C;

● -DUpCase:Fortranexpectsa C routinename tobe alluppercase.

A Makefileisprovidedineachsubdirectory.The installationcanbe donecompletelyauto-

maticallyby simplytypingmake atthetoplevel.

4.7.2 Performance-tuning parameters

Similar to sequential SuperLU, several performance related parameters are set in the inquiry func-

tion sp-ienv ( ). The declaration of this function is

int sp-ienv(intispec);

Ispec specifies the parameter to be returned2:

ispec = 2: the relaxation parameter to control supernode amalgamation

= 3: the maximum allowable size for a block

= 6: the estimated fills factor for the adjacency structures of L and U

The vahestobereturnedmaybe setdifferentlyondifferentmachines.The settingofmaximum

blocksize(parameter3)shouldtakeintoaccountthelocalLevel3BLAS speed,theloadbalanceand

thedegreeofparallelism.Smallblocksizemay resultinbetterloadbalanceandmore parallelism,

butpoorindividualnodeperformance,and viceversaforlargeblocksize.

4.8 Example programs

IntheSuperLUDIST/EXAMPLE/subdirectory,we presenta fewsampleprograms,suchaspddrive,

toillustratethecompletecallingsequencestousetheexpertdrivertosolvesystemsofequations.

Theseincludehow tosetup theprocessgridandthetheinputmatrix,how toobtainafill-reducing

ordering.A Makefileisprovidedtogeneratetheexecutable.A READMEfileinthisdirectoryshows

how toruntheseexamples.The leadingcomment ineachroutinedescribesthefunctionalityofthe

example.

1Some vendor-supplied BLAS libraries do not have C interfaces. So the re-naming is needed

SuperLU BLAS calls (in C) to interface with the Fortran-style BLAS.

2The numbering of 2, 3 and 6 is consistent with that usedinSuperLUandSuperLU-MT.
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Appendix A

Specifications of routines in sequential

SuperLU

A.1 dgsequ

void

dgsequ(SuperMatrix*A, double *r, double *c, double *rowcnd,

double *colcnd,double *amax, int *info)

Purpose
--------------

DGSEQU computesrow and column scalingsintendedto equilibratean

M-by-N sparsematrix A and reduce its conditionnumber.R returnsthe row

scale factors and C the column scale factors,chosento try to make

the largestelement in each row and column of the matrix B with

elementsB(i,j)=R(i)*A(i,j)*C(j)have absolutevalue 1.

R(i) and C(j) are restrictedto be betweenSMLNUM = smallestsafe

number and BIGNUM = largest safe number. Use of these scaling

factors is not guaranteedto reducethe conditionnumber of A but

works well in practice.

See supermatrix.hfor the definitionof ‘SuperMatrix’structure.

Arguments
--------—------—--

A (input)SuperMatrix*

The matrix of dimension (A->nrow,A->ncol)whose equilibration

factors are to be computed.The type of A can be:

Stype = NC; Dtype = .D; Mtype = GE.

R (output)double*,size A->nrow

If INFO = O or INFO > M, R containsthe row scale factors
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.

c

rowcnd

colcnd

amax

info

for A.

(output)double*,size A->ncol

If INFO = O, C containsthe column scale factorsfor A.

(output)double*

If INFO = O or INFO > M, ROWCND containsthe ratio of the

smallestR(i) to the largestR(i). If ROWCND >= 0.1 and

AMAX is neither too

scalingby R.

(output)double*

If INFO = O, COLCND

C(i) to the largest

worth scalingby C.

(output)double*

large nor too small, it is not worth

containsthe ratio of the smallest

C(i). If COLCND >= 0.1, i.tis not

Absolutevalue of largest

close to overflowor very

shouldbe scaled.

(output)int*

= o: successfulexit

matrix element. If AMAX is very

close to underflow,the matrix

< 0: if info = -i, the i-th argumenthad an illegalvalue

> 0: if info = i, and i is

<= A->nrow: the i-th row of A is exactlyzero

> A->ncol: the (i-M)-thcolumn of A is exactlyzero

A.2 dgscon

void

dgscon(char*norm,SuperMatrix*L, SuperMatrix*U,

double anorm, double *rcond, int *info)

Purpose
---—--.-------

DGSCON estimates the reciprocal of the condition number of a general

real matrix A, in either the l-norm or the infinity-norm, using

the LU factorizationcomputedby DGETRF.

An estimateis obtainedfor norm(inv(A)),and the reciprocalof the

conditionnumber is computedas

RCOND = 1 / ( norm(A) * norm(inv(A))).

See supermatri.x.hfor the definitionof ‘SuperMatrix’structure.

54



Arguments
------------------

norm

L

,

u

anorm

rcond

info

(input)char*

Specifieswhetherthe l-normconditionnumber or the

infinity-normconditionnumber is required:

= ‘1’ or ‘O’: l-norm;
~1>:= Infinity-norm.

(input)SuperMatrix*

The factor L from the factorizationPr*A*Pc=L*Uas computedby

dgstrfo. Use compressedrow subscriptsstoragefor supernodes,

i.e., L has types: Stype = SC, Dtype = _D, Mtype = TRLU.

(input)SuperMatrix*

The factor U from the factorizationPr*A*Pc=L*Uas computedby

dgstrfo. Use column-wisestoragescheme, i.e.,U has types:

Stype = NC, Dtype = _D, Mtype = TRU.

(input)double

If NORM = ‘1’ or ‘O’,the l-normof the originalmatrix A.

If NORM = ‘I’,the infinity-normof the originalmatrix A.

(output.)double*

The reciprocalof

computedas RCOND

(output)int*

the conditionnumber of the matrix A,

= l/(norm(A)* norm(inv(A))).

= o: successfulexit

< 0: if INFO = -i, the i-th argumenthad en illegalvalue

A.3 dgsrfs

void

dgsrfs(char*trans,SuperMatrix*A, SuperMatrix*L, SuperMatrix*U,

int *perm_r,i.nt*perm.c,char *equed,double *R, double *C,

SuperMatrix*B, SuperMatrix*X,

double *ferr, double *berr, int *info)

Purpose
--------------

DGSRFS improvesthe computed

equationsand provides error

the solution.

solutionto a system of linear

bounds and backward error estimatesfor
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If equilibrationwas performed,the systembecomes:

(diag(R)*A_original*ciiag(C))* X =’diag(R)*B.original.

See supermatri.x.hfor the definitionof ‘SuperMatrix’structure.

Arguments
------------------

trans (input)char*

Specifiesthe form of the systemof equations:

= ‘N’: A*X=B (No transpose)

= ‘T’: A**T * X = B (Transpose)

= ‘C’: A**H * X = B (Conjugatetranspose= Transpose)

A

L

u

(input)SuperMatrix*

The originalmatrix A in the system,or the scaledA if

equilibrationwas done. The type of A can be:

Stype = NC, Dtype = -D, Mtype = GE.

(input)SuperMatrix*

The factor L from the factorizationPr*A*Pc=L*U.Use

compressedrow subscriptsstoragefor supernodes,

i.e., L has types: Stype = SC, Dtype = -D, Mtype = TRLU.

(input)SuperMatrix*

The factorU from the factorizationPr*A*Pc=L*Uas computedby

dgstrfo. Use column-wisestoragescheme,

i.e., U has types: Stype = NC, Dtype = _D, Mtype = TRU.

perm_r (input)int*, dimension(A->nrow)

Row permutationvector,which definesthe permutationmatrix Pr;

perm_r[i]= j means row i of A is in positionj i.nPr*A.

perm_c (input)int*, dimension (A->ncol)

Columnpermutationvector,which definesthe

permutationmatrix Pc; perm.c[i]= j means column i of A is

in positionj in A*Pc.

equed (input)Specifiesthe form of equilibrationthat was done.

= ‘N’:No equilibration.
= >R>: Row equilibration,i.e.,A was premultipliedby diag(R).

= ‘C’:Column equilibration,i.e., A was postmultipliedby

diag(C).

= ‘B’:Both row and column equilibration,i.e., A was replaced

by diag(R)*A*diag(C).
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R

c

B

x

FERR

BERR

info

(input)double*,dimension (A->nrow)

The row scale factorsfor A.

If equed = ‘R’ or ‘B’,A is premultipliedby diag(R).

If equed = ‘N’ or ‘C’,R is not accessed.

(input)double*,dimension (A->ncol)

The column scale factors for A.

If equed = ‘C’ or ‘B’,A i,spostmultipliedby diag(C).

If equed = ‘N’ or ‘R’,C is not accessed.

(input)SuperMatrix*

B has types: Stype = DN, Dtype = _D, Mtype =

The right hand side matrix B.

if equed = ‘R’ or ‘B’, B is premultipli.edby

(input/output)SuperMatrix*

X has types: Stype = DN, Dtype = -D, Mtype =

On entry,the solutionmatrix X, as computed

On exit, the improvedsolutionmatrix X.

GE.

diag(R).

GE.

by dgstrso.

if *equed = ‘C’ or ‘B’,X shouldbe premultipli.edby diag(C)

in order to obtain the solutionto the originalsystem.

(output)double*,dimension (B->ncol)

The estimatedforward error bound for each solutionvector

X(j) (the j-th columnof the solutionmatrix X).

If XTRUE is the true solutioncorrespondingto X(j), FERR(j)

is an estimatedupper bound for the magnitudeof the largest

element in (X(j)- XTRUE) dividedby the magnitudeof the

largestelement in X(j). The estimateis as reliableas

the estimatefor RCOND, and is almost always a slight

overestimateof the true error.

(output)double*,dimension (B->ncol)

The componentwiserelativebackwarderror of each solution

vector X(j) (i.e.,the smallestrelativechange in

any elementof A or B that makes X(j) an exact solution).

(output)int*

= o: successfulexit

< 0: if INFO = -i, the i-th argumenthad an illegalvalue

A.4 dgssv

void

dgssv(SuperMatrix*A, int *perm_c,int *perm_r,SuperMatrix*L,

SuperMatrix*U, SuperMatrix*B, int *info )
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Purpose
--------------

DGSSV solvesthe systemof linear equationsA*X=B, using the

LU factorizationfrom DGSTRF. It performsthe followingsteps:

1. If A

1.1.

1.2.

1.3.

2. If A

is stored column-wise(A->Stype= NC):

Permutethe columnsof A, formingA*Pc, where Pc

is a permutationmatrix. For more detailsof this step,

see sp.preorder.c.

Factor A as Pr*A*Pc=L*Uwith the permutationPr determined

by Gaussianeliminationwith partialpivoting.

L is unit lower triangularwith offdi.agonalentries

boundedby 1 in magnitude,and U is upper triangular.

Solve the systemof equationsA*X=B using the factored

form of A.

is stored row-wise (A->Stype= NR), apply the

above algorithmto the transposeof A:

2.1.

2.2.

2.3.

Permute columnsof transpose(A)(rowsof A),

formingtranspose(A)*Pc,where Pc is a permutationmatrix.

For more detailsof this step, see sp_preorder.c.

Factor A as Pr*transpose(A)*Pc=L*Uwith the permutationPr

determinedby Gaussianeliminationwith partialpivoting.

L is unit lower triangularwith offdiagonalentries

boundedby 1 in magnitude,and U i.supper triangular.

Solve the systemof equationsA*X=B using the factored

form of A.

See supermatrix.hfor the definitionof ‘SuperMatrix’structure.

Arguments
------------------

A (input)SuperMatrix*

Matrix A in A*X=B, of dimension(A->nrow,A->ncol).The number

of linear equationsis A->nrow.Currently,the type of A can be:

Stype = NC or NR; Dtype = _D; Mtype = GE. In the future,more

generalA will be handled.
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perm.c

perm_r

L

u

B

info

(input/output)int*

If A->Stype= NC, columnpermutationvector of size A-yncol

which definesthe permutationmatrix,Pc;perm.c[i]= j means

column i of A is in positionj in A*Pc.

On exit, perm_c may be overwrittenby the product of the input

perm_c and a permutationthat postordersthe eliminationtree

of Pc’*A’*A*Pc;perm_c is not changed if the eliminationtree

is already in postorder.

If A->Stype= NR, columnpermutationvector of size A->nrow

which describespermutationof columnsof transpose(A)

(rowsof A) as describedabove.

(output)int*

If A->Stype= NC, row permutationvector of size A->nrow,

which definesthe permutationmatrix Pr, and is determined

by partial pivoting. perm-r[i]= j means row i of A is in

positionj in Pr*A.

If A->Stype= NR, permutationvector of size A->ncol,which

determinespermutationof rows of transpose(A)

(columnsof A) as describedabove.

(output)SuperMatrix*

The factor L from the factorization

pr*A*pc=L*IJ (if A->Stype= NC) or

pr*transpose(A)*Pc=L*U (if A->Stype=NR).

Uses compressedrow subscriptsstoragefor supernodes,i.e.,

L has types: Stype = SC, Dtype = -D, Mtype = TRLU.

(output)SuperMatrix*

The factor U from the factorization

pr*A*pc=L*U (if A->Stype=NC) or

Pr*transpose(A)*Pc=L*U (if A->Stype= NR).

Uses column-wisestoragescheme,i.e., U has types:

Stype = NC, Dtype = _D, Mtype = TRU.

(input/output)SuperMatrix*

B has types: Stype = DN, Dtype = _D, Mtype = GE.

On entry, the right hand side matrix.

On exit, the solutionmatrix if info = O;

(output)int*

= O: successfulexit

> 0: if info = i, and i is

<= A->ncol:U(i,i) is exactlyzero. The factorizationhas

been completed,but the factor U is exactlysingular,
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so the solutioncould not be computed.

> A->ncol:number of bytes allocatedwhen memory allocation

failure occurred,plus A->ncol.

A.5 dgssvx

void

dgssvx(char*fact, char *trans,char *refact,

SuperMatrix*A, factor_param-t*factor-params,int *perm.c,

int *perm.r,int *etree,char *equed,double *R, double *C,

SuperMatrix*L, SuperMatrix*U, void *work, int lwork,

SuperMatrix*B, SuperMatrix*X, double *recip_pivot-growth,

double *rcond, double *ferr, double *berr,

mem.usage.t*mem-usage,int *info )

Purpose
--------------

DGSSVX solves the systemof linear equationsA*X=B or A’*X=B,using

the.LU factorizationfrom dgstrfo. Error bounds on the solutionand

a conditionestimateare also provided.It performsthe followingsteps:

1. If A is stored column-wise(A->Stype= NC):

1.1. If fact = ‘E’, scalingfactors are computedto equilibratethe

system:

trans = ‘N’: diag(R)*A*diag(C) *inv(diag(C))*X= diag(R)*B

trans = ‘T’: (diag(R)*A*diag(C))**T*inv(diag(R))*X= diag(C)*B

trans = ‘C’: (diag(R)*A*diag(C))**H*inv(diag(R))*X= diag(C)*B

Whether or not the system will be equilibrateddependson the

scalingof the matrix A, but if equilibrationis used, A is

overwrittenby diag(R)*A*diag(C)and B by diag(R)*B(if trans=’N’)

or diag(C)*B(if trans = ‘T’ or ‘C’).

1.2.Permute columnsof A, formingA*Pc, where Pc is a permutation

matrix that usuallypreservessparsity.

For more detailsof this step, see sp_preorder.c.

1.3. If fact = ‘N’ or ‘E’,the LU decompositionis used to factor the

matrix A (afterequilibrationif fact = ‘E’)as Pr*A*Pc= L*U,

with Pr determinedby partialpivoting.

1.4. Computethe reciprocalpivot growth factor.

1.5. If some U(i,i) = O, so that U is exactlysingular,then the

routine returnswith info = i. Otherwise,the factoredform of
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1.6.

1.7.

1.8.

2. If A

A is used to estimatethe conditionnumber of the matrix A. If

the reciprocalof the conditionnumber is less than machine

precision,info = A->ncol+lis returned as a warning,but the

routine still goes on to solve for X and computeserror bounds

as describedbelow.

The system of ,equationsis solvedfor X using the factoredform

of A.

Iterativerefinementis appliedto improvethe computedsolution

matrix and calculateerrorbounds &d backwarderror estimates

for it.

If equilibrationwas used, the matrix X is premultipliedby

diag(C) (if trans = ‘N>) or diag(R) (if trans = ‘T’ or ‘C’) so

that it solvesthe originalsystembefore equilibration.

is stored row-wise (A->Stype= NR), apply the above algorithm

to the transposeof

2.1.

2.2.

2.3.

2.4.

2.5.

If fact = ‘E’,

system:

trans = ‘N’:

trans = ‘T’:

trans = ‘C’:

Whether or not

scaling of the

overwrittenby

(if trans=’N’)

A:

scalingfactors are computedto equilibratethe

diag(R)*A’*diag(C) *inv(diag(C))*X

(diag(R)*A’*diag(C))**T*inv(diag(R))*X

(diag(R)*A’*diag(C))**H*inv(diag(R))*X

the systemwill be equilibrateddepends

matrix A, but if equilibrationis used,

diag(R)*A’*diag(C)and B by diag(R)*B

or diag(C)*B(if trans = ‘T’ or ‘C’).

= diag(R)*B

= diag(C)*B

= diag(C)*B

on the
A} is

Permute columnsof transpose(A)(rowsof A),

forming transpose(A)*Pc,-where Pc is a permutationmatrix that

usually preservessparsity.

For more detailsof this step, see sp_preorder.c.

If fact = ‘N’ or ‘E’,the LU decompositionis used to factor the

transpose (afterequilibrationif fact = ‘E’) as

Pr*transpose(A)*Pc= L*U with the permutationPr determinedby

partial

Compute

If some

pivoting.

the reciprocalpivot growth factor.

U(i,i) = O, so that U is exactlysingular,then the

routine returnswith info = i. Otherwise,the factoredform

of transpose(A)is used to estimatethe conditionnumber of the

matrix A. If the reciprocalof the conditionnumber

is less than machineprecision,info = A->nrow+lis returnedas
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2.6.

2.7.

2.8.

a warning,but the routine still goes on to solve for X and

computeserrorbounds as describedbelow.

The system of equationsis solvedfor X using the factoredform

of transpose(A).

Iterativerefinementis appliedto improvethe computedsolution

matrix end calculateerror bounds and backwarderror estimates

for it.

If equilibrationwas used, the matrix X is premultipliedby

diag(C) (if trans = ‘N’) or diag(R) (if trans = ‘T’ or ‘C’) so

that it solvesthe originalsystembefore equilibration.

See supermatrix.hfor the definitionof ‘SuperMatrix’structure.

Arguments
---------------___

fact (input)char*

Specifieswhetheror not the factoredform of the matrix

A is suppliedon entry, and if not, whetherthe matrix A should

be equilibratedbefore it is factored.

On entry,L, U, perm.r and perm_c containthe factored

form of A. If equed is not ‘N’, the matrix A has been

equilibratedwith scalingfactorsR and C.

A, L, U, perm.r are not modified.

The matrix A will be factored,and the factorswill be

stored in L and U.

The matrix A will be equilibratedif necessary,then

factoredinto L and U.

trans (input)char*

Specifiesthe form of the systemof equations:

= ‘N’:A*X=B (No transpose)

=’T’:A**T*X=B (Transpose)

= ‘C’:A**H*X=B (Transpose)

refact (input)char*

Specifieswhetherwe want to re-factorthe matrix.

= ‘N’:Factor the matrix A.

= ‘Y’:Matrix A was factoredbefore,now we want to re-factor

matrix A with perm_r and etree as inputs.Use

the same storagefor the L\U factorspreviouslyallocated,

expand it if necessary.User should insureto use the same

memory model.

If fact = ‘F’,then refact is not accessed.
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A (input/output)SuperMatrix*

Matrix A in A*X=B, of dimension(A-2nrow,A->ncol).The number

of the linear equationsis A-~nrow.Currently,the type of A can be:

Stype = NC or NR, Dtype = .D, Mtype = GE. In the future,

more general A can be handled.

On entry, If fact = ‘F’ md equed is not ‘N’, then A must have

been equilibratedby the scalingfactors in R and/or C.

A is not modified if fact = ‘F’ or ‘N’, or if fact = ‘E’ and

equed = ‘N’ on exit.

On exit, if fact = ‘E’ and equed is not ‘N’, A is scaled as follows:

If A->Stype= NC:

equed = ‘R’: A := diag(R) * A

equed = ‘C>: A := A * diag(C)

equed = ‘B’: A := diag(R) * A * di.ag(C).

If A->Stype= NR:

equed = ‘R’: transpose(A):=

equed = ‘C’: transpose(A):=

equed = ‘B’: transpose(A):=

factor_params(input)factor.parem-t*

The structuredefinesthe input

the followingfields. If factor-

diag(R) * transpose(A)

transpose(A)* diag(C)

diag(R) * transpose(A)* diag(C).

scalar parameters,consistingof

params = NULL, the default

values are used for all the fields;otherwise,the values

are given by the user.

- panel-size (int):Panel size. A panel consistsof at most

panel-sizeconsecutivecolumns.If panel_size= -1, use

defaultvalue 8.

relax (int):To controldegree of relaxingsupernodes.If the

number of nodes (columns)in a subtreeof the elimination

tree is less than relax, this subtree is consideredas one

supernode,regardlessof the row structuresof those columhs.

If relax = -1, use defaultvalue 8.

- diag-pivot_thresh(double):Diagonalpivotingthreshold.

At step j of the Gaussianelimination,if

abs(A-jj)>= diag_pivot-thresh* (max-(i>=j)abs(A_ij)),

then use A-jj as pivot. O <= diag-pivot-thresh<= 1.

If diag_pivot_thresh= -1, use defaultvalue 1.0,

which correspondsto standardpartialpivoting.

- drop_tol (double):Drop tolerancethreshold.(NOT IMPLEMENTED)

At step j of the Gaussianelimination,if

abs(A-ij)/(max_iabs(A-ij))< drop-tol,

then drop entry A_ij. O <= drop_tol<= 1.

If drop_tol= -1, use defaultvalue 0.0, which correspondsto

standardGaussianelimination.
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perm.c (input/output)int*

If A->Stype= NC, Columnpermutationvector of size A->ncol,

which definesthe permutationmatrix Pc; perm_c[i]= j means

column i of A is in positionj in A*Pc.

On exit, perm_c may be overwrittenby the product of the input

perm_c and a permutationthat postordersthe eliminationtree

of Pc’*A’*A*Pc;perm-c is not changedif the eliminationtree

is already in postorder.

If A->Stype= NR, columnpermutationvector of size A->nrow,

which describespermutationof columnsof transpose(A)

(rowsof A) as describedabove.

perm.r (input/output)int*

If A->Stype= NC, row permutationvector of size A->nrow,

which definesthe permutationmatrix Pr, and is determined

by partialpivoting. perm_r[iI= j means row i of A is in

positionj in Pr*A.

If A->Stype= NR, permutationvector of size A->ncol,which

determinespermutationof rows of transpose(A)

(columnsof A) as describedabove.

If refact is not ‘Y’,perm-r is output argument;

If refact = ‘Y’,the pivotingroutinewill try to use the input

perm-r,unless a certainthresholdcriterionis violated.

In that case,perur is overwrittenby a new permutation

determinedby partialpivotingor diagonalthresholdpivoting.

etree (input/output)int*, dimension(A->ncol)

Eliminationtree of Pc’*A’*A*Pc.

If fact is not ‘F’ and refact = ‘Y’,etree is an input argument,

otherwiseit is an output argument.

Note: etree is a vector of parentpointersfor a forest whose

verticesare the integersO to A->ncol-l;etree[rootI==A->ncol.

equed (input/output)char*

Specifiesthe form of equilibrationthat was done.

= ‘N’:No equilibration.

= ‘R’:Row equilibration,i.e.,A was premultipliedby diag(R).
= )C):Column equilibration,i.e., A was postmultipliedby diag(C)

= ‘B’:Both row and column equilibration,i.e., A was replaced

by diag(R)*A*diag(C).

If fact = ‘F’, equed is an input argument,otherwiseit is

an output argument.
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c

L

u

work

lwork

(input/output)double*,dimension(A->nrow)

The row scale factors for A or transpose(A).

If equed = ‘R’ or ‘B’, A (if A->Stype= NC) or transpose(A)(if

A->Stype= NR) is multipliedon the left by diag(R).

If equed = ‘N’ or ‘C’,R is not accessed.

If fact = ‘F’,R is an input argument;otherwise,R is output.

If fact = $F$ ad equed = )R~ or ‘B> , each elementOf R must

be positive.

(input/output)double*,dimension(A-zncol)

The column scale factors for A or transpose(A).

If equed = ‘C’ or ‘B’,A (if A->Stype= NC) or transpose(A)(if

A->Stype= NR) is multipliedon the right by diag(C).

If equed = ‘N’ or ‘R’, C is not accessed.

If fact = ‘F’,C is an input argument;otherwise,C is output.

If fact = ‘F’ Wd equed = ‘C’ or ‘B’, each elementof C must

be positive.

(output)SuperMatrix*

The factor L from the factorization

pr*A*Pc=L*U (if A->Stype=NC) or

Pr*transpose(A)*Pc=L*U (if A->Stype=NR).

Uses compressedrow subscriptsstoragefor supernodes,i.e.,

L has types: Stype = SC, Dtype = _D, lltype= TRLU.

(output)SuperMatrix*

The factor U from the factorization

pr*A*pc=L*U (if A->Stype=NC) or

Pr*transpose(A)*Pc=L*U (if A-X3type=NR).

Uses column-wisestorage scheme,i.e., U has types:

Stype = NC, Dtype = _D, Mtype = TRU.

(workspace/output)void*, size (lwork) (in bytes)

User suppliedworkspace,shouldbe large enough

to hold data structuresfor factorsL and U.

On exit, if fact is not ‘F’,L and U point to this.array.

(input)int

Specifiesthe size of work array in bytes.

= o:

> ():

= -1:

allocatespace internallyby systemmalloc;

use user-suppliedwork array of length lwork in bytes,

returns error if space runs out.

the routineguesses the amount of spaceneeded without

performingthe factorization,and returns it in

mem_usage-Xotal-needed;no other side effects.

See argument ‘mem-usage’for memory usage statistics.
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(input/output)SuperMatrix*

B has types: Stype = DN, Dtype = _D, Mtype = GE.

On entry, the right hand side matrix.

On exit,

if equed = ‘N’,B is not modified;otherwise

if A->Stype= NC:

if trans = ‘N’ and equed = ‘R’ or ‘B’,B is overwrittenby

diag(R)*B;

if trans = ‘T’ or ‘C’ and equed = ‘C’ of ‘B’,B is

overwrittenby diag(C)*B;

if A->Stype= NR:

if tr~s = ‘N’ and equed = ‘C’ or ‘B>, B is overwrittenby

diag(C)*B;

if trans = ‘T’ or ‘C’ and equed = ‘R’ of ‘B’,B is

overwrittenby diag(R)*B.

(output)SuperMatrix*

X has types: Stype = DN, Dtype = _D, Mtype = GE.

If info = O or info = A->ncol+l,X containsthe solutionmatrix

to the originalsystemof equations.Note that A and B are modified

on exit if equed is not ‘N’, and the solutionto the equilibrated

system is inv(diag(C))*Xif trans = ‘N’ and equed = ‘C’ or ‘B’,

or inv(diag(R))*Xif trans = ‘T’ or ‘C’ and equed = ‘R’ or ‘B’.

recip.pivot-growth(output)double*

The reciprocalpivot growth factormax-j( norm(A_j)/norm(U.j)).

The infinitynorm is used. If recip_pivot_growthis much less

than 1, the stabilityof the LU factorizationcould be poor.

rcond (output)double*

The estimateof the reciprocalconditionnumber of the matrix A

after equilibration(if done). If rcond is less than the machine

precision (in particular,if rcond = O), the matrix is singular

to workingprecision.This conditionis indicatedby a return

code of info > 0.

FERR (output)double*,dimension (B->ncol)

The estimatedforwarderror bound for each solutionvector

X(j) (the j-th columnof the solutionmatrix X).

If XTRUE is the true solutioncorrespondingto X(j), FERR(j)

is en estimatedupper bound for the magnitudeof the largest

elementin (X(j)- XTRUE) dividedby the magnitudeof the

largestelementin X(j). The estimateis as reliableas

the estimatefor RCOND, and is”almost always a slight

overestimateof the true error.
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BERR (output)double*,dimension(B->ncol)

The componentwiserelativebackwarderror of each solution

vector X(j) (i.e.,the smallestrelativechange in

any element of A or B that makes X(j) an exact solution).

mem-usage (output)mem-usage-t*

Record the memory usage statistics,consistingof followingfields:

- for_lu (float)

The amount of space used in bytes for LIU data structures.

- total_needed(float)

The amount of space needed in bytes to

- expansions(int)

The number of memory expansionsduring

info (output)int*

= O: successfulexit

< 0: if info = -i, the i-th argumenthad

> 0: if info = i, and i is

<= A->ncol:U(i,i) is exactlyzero.

perform factorization.

the LU factorization.

an illegalvalue

The factorizationhas

been completed,but the factor U is exactly

singular,so the solutionand error bounds

could not be computed.

= A->ncol+l:U is nonsingular,but RCONDis less than machine

precision,meaning that the matrix is singularto

workingprecision.Nevertheless,the solutionand

error bounds are computedbecausethere are a number

of situationswhere the computedsolutioncan be more

accuratethan the value of RCOND would suggest.

> A->ncol+l:number of bytes allocatedwhen memory allocation

failureoccurred,plus A->ncol.

A.6 dgstrf

void

dgstrf(char*refact,SuperMatrix*A, double diag-pivot_thresh,

double drop_tol,int relax, int panel_size,int *etree,

void *work, int lwork, int *perm_r,int *perm-c,

SuperMatrix*L, SuperMatrix*U, int *info)

Purpose
--------------

DGSTRF computesan LU factorizationof a generalsparsem-by-n

matrix A using partial pivotingwith row interchanges.

The factorizationhas the form

Pr*A=L*U
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where Pr is a row permutationmatrix,L is lower triangularwith unit

diagonalelements (lowertrapezoidalif A->nrow > A->ncol),and U is upper

triangular(uppertrapezoidalif A->nrow <“A->ncol).

See supermatrix.hfor the definitionof ‘SuperMatrix’structure.

Arguments
---------------___

refact (input)char*

Specifieswhetherwe want to use perm_r from a previousfactor.

= ‘Y’:re-use perm.r;perm_r is input,unchangedon exit.

= ‘N’:perm_r is determinedby partialpivoting,and output.

A’ (input)SuperMatrix*

Originalmatrix A, permutedby columns,of dimension

(A-brow, A-hcol). The type of A can be:

Stype = NCP; Dtype = D; Mtype = GE.

diag_pivot-thresh(input)double

Diagonalpivotingthreshold.At step j of the Gaussianelimination,

if abs(A_jj)>= thresh * (max-(i>=j)abs(A_ij)),use A_jj as pivot.

O <= thresh <= 1. The defaultvalue of thresh is 1, corresponding

to partialpivoting.

drop_tol(input)double (NOT IMPLEMENTED)

Drop toleranceparameter.At step j of the Gaussianelimination,

if abs(A_ij)/(max-iabs(A_ij))< drop-tol,drop entry A_ij.

O <= drop_tol<= 1. The defaultvalue of drop_tolis O.

relax (input)int

To controldegree of relaxingsupernodes.If the number

of nodes (columns)in a subtreeof the eliminationtree is less

than relax, this subtreeis consideredas one supernode,

regardlessof the row structuresof those columns.

panel-size(input)int

A panel consistsof at most panel.sizeconsecutivecolumns.

etree (input)int*, dimension(A->ncol)

Eliminationtree of A’*A.

Note: etree is a vector of parent pointersfor a forest whose

verticesare the integersO to A->ncol-l;etree[rootl==A->ncol.

On input,the columnsof A shouldbe permutedso that the

etree is in a certainpostorder.

work (input/output)void*, size (lwork)(in bytes)
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1work

perm.r

perm_c

L

u

info

User-suppliedwork space and space for the output data structures.

Not referencedif lwork = O;

(input)int

Specifiesthe size of work array in bytes.

=zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo: allocatespace internallyby systemmalloc;

> (): use user-suppliedwork array of length lwork in bytes,

returns error if space runs out.

= -1: the routine guessesthe amount of space needed without

performingthe factorization,and returns it in

*info;no other side effects.

(input/output)int*, dimension(A->nrow)

Row permutationvector which definesthe permutationmatrix Pr,

perm-r[i]= j means row i of A is in positionj in Pr*A.

If refact is not ‘Y’~ pe~_r is output argument;

If refact = ‘Y’, the pivotingroutine will try to use the input

perm-r, unless a certainthresholdcriterionis violated.

In that case, perm.r is overwrittenby a new permutation

determinedby partialpivotingor diagonalthresholdpivoting.

(input)int*, dimension (A->ncol)

Column permutationvector,which definesthe

permutationmatrix Pc; perm-c[i]= j means column i of A is

in position j in A*Pc.

When searchingfor diagonal,perm-c[*]is appliedto the

row subscriptsof A, so that diagonalthresholdpivoting

can find the diagonalof A, rather than that of A*Pc.

(output)SuperMatrix*

The factor L from the factorizationPr*A=L*U;use compressedrow

subscriptsstoragefor supernodes,i.e., L has type:

Stype = SC, Dtype = .D, Mtype = TRLU.

(output)SuperMatrix*

The factor U from the factorizationPr*A*Pc=L*U.Use column-wise

storage scheme, i.e., U has types: Stype = NC,

Dtype = _D, Mtype = TRU.

(output)int*

= O: successfulexit

< 0: if info = -i, the i-th argumenthad an illegalvalue

> 0: if info = i, and i is

<= A->ncol:U(i,i) is exactlyzero. The factorizationhas

been completed,but the factor U is exactlysingular,

and divisionby zero will occur if it is used to solve a

system of equations.

69



> A->ncol:number of bytes allocatedwhen memory allocation

failureoccurred,plus A->ncol.If lwork = -1, it is

the estimatedamount of spaceneeded,plus A->ncol.

A.7 dgstrs

void

dgstrs(char*trans,SuperMatrix*L, SuperMatrix*U,

int *perm_r,int *perm_c,SuperMatrix*B, int *info)

Purpose
-------

DGSTRS solves a systemof linear equationsA*X=B or A’*X=B

with A sparse and B dense,using the LU factorizationcomputedby

DGSTRF.

See supermatrix.hfor the definitionof ‘SuperMatrix’structure.

Arguments
------------------

trans (input)char*

Specifiesthe form of the systemof equations:

= ‘N’: A*X= B (No transpose)
~T>:= A’* X = B (Transpose)

= JC?: A**H * X = B (Conjugatetranspose)

L

u

(input) SuperMatrix*

The factor L from the factorizationPr*A*Pc=L*Uas computedby

dgstrfo. Use compressedrow subscriptsstoragefor supernodes,

i.e.,L has types: Stype = SC, Dtype = _D, Mtype = TRLU.

(input)SuperMatrix*

The factor U from the factorizationPr*A*Pc=L*Uas computedby

dgstrfo. Use column-wisestoragescheme, i.e.,U has types:

Stype = NC, Dtype = -D, Mtype = TRU.

perm_r (input)int*, dimension (L->nrow)

Row permutationvector,which definesthe permutationmatrix Pr;

perm_r[i]= j means “rowi of A is in positionj in Pr*A.

perm_c (input)int*, dimension(L->ncol)

Columnpermutationvector,which definesthe

permutationmatrix Pc; perm_c[i]= j means column i of A is

in positionj in A*Pc.
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B (input/output)SuperMatrix*

B has types: Stype = DN, Dtype = .D, Mtype = GE.

On entry, the right hand side matrix.

On exit, the solutionmatrix if info = O;

info (output)int*

= O: successfulexit

< 0: if info = -i, the i-th argumenthad an illegalvalue

A.8 dlaqgs

void

dlaqgs(SuperMatrix*A, double *r, double *c,

double rowcnd, double colcnd,double amax, char *equed)

Purpose
--------------

DLAQGS equilibratesa general sparse

scalingfactors in the vectorsR and

See supermatrix.hfor the definition

Arguments
------------------

A (input/output)SuperMatrix*

M by N matrix A using the row and

c.

of ‘SuperMatrix’structure.

On exit, the equilibratedmatrix. See EQUED for the form of

the equilibratedmatrix. The type of A can be:

Stype = NC; Dtype = _D; Mtype = GE.

R (input)double*,dimension(A->nrow)

The row scale factorsfor A.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c (input)double*,dimension(A->ncol)

The column scale factorsfor A.

rowcnd (input)double

Ratio of the smallestR(i) to the largestR(i).

colcnd (input)double

Ratio of the smallestC(i) to the largestC(i).

amax (input)double

Absolutevalue of largestmatrix entry.
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equed (output)charx

Specifiesthe form of equilibrationthat was done.

= ‘N’: No equilibration

=“R’: Row equilibration,i.e., A has been premultipliedby

diag(R).

=zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘c’: Column equilibration,i.e., A has been postmultiplied

by diag(C).

= ‘B’: Both row and column equilibration,i.e., A has been

replacedby diag(R)* A * diag(C).
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Appendix B

Specifications

multithreaded

B.1 pdgssv

void

pdgssv(int nprocs, SuperMatrix

of routines in

SuperLU_MT

*A, int *perm_c,int *perm_r,

SuperMatrix*L, SuperMatrix*U, SuperMatrix*B, int *info )

Purpose
----------.---

pdgssvo solves the system of linear equationsA*X=B,using the parallel

LU factorizationroutinepdgstrfo. It performsthe followingsteps:

1. If A,

1.1.

1.2.

1.3.

2. If A

is stored column-wise(A->Stype= NC):

Permute the columns

permutationmatrix.

For more detailsof

of A, formingA*Pc, where Pc is a

this step, see sp-preorder.c.

Factor A as Pr*A*Pc=L*Uwith the permutationPr determined

by Gaussianeliminationwith partialpivoting.

L is unit lower triangularwith offdiagonalentries

bounded by 1 in magnitude,and U is

Solve the system of equationsA*X=B

form of A.

is stored row-wise (A->Stype= NR),

upper triangular.

using the factored

apply the above algorithm

to the transposeof A:

2.1. Permute columnsof transpose(A)(rowsof A),

forming transpose(A)*Pc, where Pc is a permutationmatrix.
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For more detailsof this step, see sp.preorder.c.

2.2. Factor A as Pr*transpose(A)*Pc=L*Uwith the permutationPr

determinedby Gaussianeliminationwith partialpivoting.

L is unit lower triangularwith offdiagonalentries

boundedby 1 in magnitude,and U is upper triangular.

2.3. Solve the systemof equationsA*X=B using the factored

See supermatrix.hfor the definitionof “SuperMatrix”structure.

Arguments
------------------

nprocs

A

perm.c

perm.r

(input)int

Number of processes (or threads)to be spawnedand used to perform

the LU factorizationby pdgstrfo. There is a single thread of

controlto call pdgstrfo, and all threads spawnedby pdgstrfo

are terminatedbefore returningfrom pdgstrfo.

(input)SuperMatrix*

Matrix A in A*X=B, of dimension(A->nrow,A->ncol),where

A->nrow= A->ncol.Currently,the type of A can be:

Stype = NC or NR; Dtype = _D; Mtype = GE. In the future,

more general A will be handled.

(input/output)int*

If A->Stype=NC,columnpermutationvector of size A->ncol,

which definesthe permutationmatrix Pc; perm_c[i]= j means

column i of A is in positionj in A*Pc,

On exit, perm_cmay be overwrittenby the productof the input

perm.c and a permutationthat postordersthe eliminationtree

of Pc’*A’*A*Pc;perm-c is not changedif the eliminationtree

is already in postorder.

If A->Stype=NR,columnpermutationvector

which describespermutationof columnsof

(rowsof Al as describedabove.

(output)int*,

If A->Stype=NR,row permutationvector of

of size A->nrow

transpose(A)

size A->nrow,

which definesthe permutationmatrix Pr, and is determined

by partialpivoting. perm_r[i]= j means row i of A is in

positionj in Pr*A.

If A->Stype=NR,permutationvector of size A->ncol,which
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L

u

B

info

determinespermutationof rows of transpose(A)

(columnsof A) as describedabove.

(output)SuperMatrix*

The factor L from the factorization

pr*A*Pc=L*U (if A->Stype=NC)or

pr*trmspose(A)*Pc=L*U (if A->Stype=NR).

Uses compressedrow subscriptsstoragefor supernodes,i.e.,

L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.

(output)SuperMatrix*

The factor U from the factorization

pr*A*Pc=L*U (if A->Stype=NC)or

pr*transpose(A)*Pc=L*U (if A->Stype=NR).

Use column-wisestorage scheme,i.e., U has types:

Stype = NCP, Dtype = -D, Mtype = TRU.

(input/output)SuperMatrix*

B has types: Stype = DN, Dtype = -D, Mtype = GE.

On entry, the right hand side matrix.

On exit, the solutionmatrix if info = O;

(output)int*

= O: successfulexit

> 0: if info = i, and i is

<= A->ncol:U(i,i) is exactlyzero. The factorizationhas

been completed,but the factor U is exactlysingular,

so the solutioncould not be computed.

> A->ncol:number of bytes allocatedwhen memory allocation

failure occurred,plus A->ncol.

B.2 pdgssvx

void

pdgssvx(intnprocs, pdgstrf_options_t*pdgstrf_options,SuperMatrix*A,

int *perm_c,int *perm-r,equed-t*equed,double *R, double *C,

SuperMatrix*L, SuperMatrix*U,

SuperMatrix*B, SuperMatrix*X, double *recip-pivot-growth,

double *rcond,double *ferr, double *berr,

superlu_memusage_t*superlu-memusage,int *info)

Purpose
-------

PDGSSVX solves the systemof linear

the LU factorizationfrom dgstrfo.

equationsA*X=B

Error bounds on
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a conditionestimateare also provided.It performsthe followingsteps:

1. If A is stored column-wise(A->Stype= NC):

1.1, If fact = EQUILIBRATE,scalingfactorsare computedto equilibrate

the system:

trans = NOTRANS:diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B

trans = TRANS: (diag(R)*A*diag(C))**T*inv(diag(R))*X= diag(C)*B

trans = COIUJ: (diag(R)*A*diag(C))**H*inv(diag(R))*X= diag(C)*B

Whether or not the system will be equilibrateddependson the

scalingof the matrix A, but if equilibrationis used, A is

overwrittenby diag(R)*A*diag(C)and B by diag(R)*B

(if trans = NOTRANS)or diag(C)*B(if trans = TRANS or CONJ).

1.2. Permute columnsof A, formingA*Pc, where Pc is a permutationmatrix

that usuallypreservessparsity.

For more detailsof this step, see sp_colorder.c.

1.3. If fact = DOFACT or EQUILIBRATE,the LU decompositionis used to

factor the matrix A (afterequilibrationif fact = EQUILIBRATE)as

pr*A*pc. L*U, with pr determinedby part’ialpivoting.

1.4. Computethe reciprocalpivot growth factor.

1.5. If some U(i,i) = O, so that U is exactlysingular,then the routine

returnswith info = i. Otherwise,the factoredform of A is used to

estimatethe conditionnumber of the matrix A. If the reciprocalof

the conditionnumber is less than machineprecision,

info = A->ncol+lis returnedas a warning,but the routine still

goes on to solve for X and computeserror bounds as describedbelow.

1.6. The system of equationsis solvedfor X using the factoredform

of A.

2.7. Iterativerefinementis appliedto improvethe computedsolution

matrix and calculateerror bounds and backwarderror estimates

for it.

1.8. If equilibrationwas used, the matrix X is premultipliedby

diag(C) (if trans = NOTRANS)or diag(R) (if trans = TRANS or CONJ)

so that it solvesthe originalsystembefore equilibration.

2. If A is stored row-wise (A->Stype= NR), apply the above algorithm

to the transposeof A:

2.1. If fact = EQUILIBRATE,scalingfactors are computedto equilibrate

the system:
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2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

trans = NOTRANS:diag(R)*A’*diag(C)*inv(diag(C))*X= diag(R)*B

trans = TRANS: (diag(R)*A’*diag(C))**T*inv(diag(R))*X= diag(C)*B

trans = CONJ: (diag(R)*A’*diag(C))**H*inv(diag(R))*X= diag(C)*B

Whether or not the system will be equilibrateddependson the

scaling of the matrix A, but if equilibrationis used, A’ is

overwrittenby diag(R)*A’*diag(C)and B by diag(R)*B

(if trans = NOTRANS)or diag(C)*B (if trans = TRANS or CONJ).

Permute columnsof transpose(A)(rowsof A),

forming transpose(A)*Pc,where Pc is a permutationmatrix that

usuallypreservessparsity.

For more details of this step, see sp.colorder.c.

If fact = DOFACT or EQUILIBRATE,the LU decompositionis used to

factor the matrix A (afterequilibrationif fact = EQUILIBRATE)as

Pr*transpose(A)*Pc = L*U, with the permutationPr determinedby

partial pivoting.

Compute the reciprocalpivot growth factor.

If some U(i,i) = O, so that U is exactly singular,then the routine

returns with info = i. Otherwise,the factoredform of transpose(A)

is used to estimatethe conditionnumber of the matrix A.

If the reciprocalof the conditionnumber is less than machine

precision,info = A->nrow+lis returnedas a warning,but the

routine still goes on to solve for X and computeserror bounds

as describedbelow.

The system of equationsis solvedfor X using the factoredform

of transpose(A).

Iterativerefinementis appliedto improvethe computedsolution

matrix and calculateerror bounds and backwarderror estimates

for it.

If equilibrationwas used, the matrix X is premultipliedby

diag(C) (if trans = NOTRANS)or diag(R) (if-trans=-TRANSor CONJ)

so that it solvesthe originalsystembefore equilibration.

See supermatrix.hfor the definitionof ‘SuperMatrix’structure.

Arguments
------------------

procs (input)int

Number of processes (or

the LU factorizationby

threads)to be spawnedand used to perform

pdgstrfo. There is a single thread of
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controlto call pdgstrfo, and all threadsspawnedby pdgstrfo

are terminatedbefore returningfrom pdgstrfo.

pdgstrf.options(input)pdgstrf.options_t*

The structuredefinesthe inputparametersand data structure

to controlhow the LU factorizationwill be performed.

The followingfields shouldbe definedfor this structure:

o fact (fact_t)

Specifieswhetheror not the factoredform of the matrix

A is suppliedon entry, and if not, whetherthe matrix A should

be equilibratedbefore it is factored.

FACTORED:On entry,L, U, perm_r and perm.c containthe

factoredform of A. If equed is not NOEQUIL,the matrix A has

been equilibratedwith scalingfactorsR and C,

A, L, U, perm_r are not modified.

DOFACT:The matrix A will be factored,and the factorswill be

stored in L and U.

EQUILIBRATE:The matrix A will be equilibratedif necessary,

then factoredinto L and U.

o trans (trans.t)

Specifiesthe form of the systemof equations:

= NOTRANS:A * X =B (No transpose)

= TRANS: A**T *

= CONJ: A**H *

o refact (yes_no-t)

SpecifieswhetherzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x =B (Transpose)

XB= (Transpose)

this is first time or subsequentfactorization.

= NO: this factorizationis treated as the first one;

= YES: it means that a factorizationwas performedprior to this

one. Therefore,this factorizationwill reuse some

existingdata structures,such as L and U storage,column

eliminationtree, and the symbolicinformationof the

Householdermatrix.

o panel_size(int)

A panel consistsof at most panel_sizeconsecutivecolumns.

o relax (int)

To controldegree of relaxingsupernodes.If the number

of nodes (columns)in a subtreeof the eliminationtree is less

than relax, this subtree is consideredas one supernode,

regardlessof the

o diag_pivot_thresh

Diagonalpivoting

row structuresof those columns.

(double)

threshold.At step j of the Gaussian
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o

0

0

0

elimination,if

abs(A_jj)>= diag_pivot_thresh* (max_(i>=j)abs(A_ij)),

use A_jj as pivot, else use A_ij with maximummagnitude.

O <= diag_pivot_thresh<= 1. The defaultvalue is 1,

correspondingto partialpivoting.

usepr (yes-no-t)

Whether the pivotingwill use perm-r specifiedby the user.

= YES: use perm-r;perm-r is input,unchangedon exit.

= No: perm.r is determinedby partialpivoting,and is output.

drop-tol (double)(NOT IMPLEMENTED)

Drop toleranceparameter.At step j of the Gaussianelimination,

if abs(A_ij)/(max_iabs(A-ij))< drop-tol,drop entry A-ij.

O <= drop-tol<= 1. The defaultvalue of drop_tolis O,

correspondingto not droppingany entry.

work (void*)of size lwork

User-suppliedwork space and space for the output data structures.

Not referencedif lwork = O;

lwork (int)

Specifiesthe length of work array.

= o:

> 0:

= -1:

allocatespace internallyby systemmalloc;

use user-suppliedwork array of length lwork in bytes,

returns error if space runs out.

the routineguessesthe amount of space needed without

performingthe factorization,and returns it in

superlu_memusage->total-needed;no other side effects.

A (input/output)SuperMatrix*

Matrix A in A*X=B, of dimension (A->nrow,A->ncol),where

A->nrow = A->ncol.Currently,the type of A can be:

Stype = NC or NR, Dtype = _D, Mtype = GE. In the future,

more general A will be handled.

On entry, If pdgstrf_options->fact= FACTOREDand equed is not

NOEQUIL,then A must have been equilibratedby the scalingfactors

in R and/or C. On exit, A is not modified

if pdgstrf-options->fact= FACTOREDor DOFACT, or

if pdgstrf-options->fact= EQUILIBRATEand equed = NOEQUIL.

On exit, if pdgstrf_options->fact= EQUILIBRATEand equed is not

NOEQUIL,A is scaled as follows:

If A->Stype= NC:

equed = ROW: A := diag(R) * A

equed = COL: A := A * diag(C)
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equed = BOTH: A := diag(R)* A * diag(C).

If A->Stype= NR:

equed = ROW: transpose(A):= diag(R) * transpose(A)

equed = COL: transpose(A):= transpose(A)* diag(C)

equed = BOTH: transpose(A):= diag(R) * transpose(A)* diag(C).

p=m.c (input/output)int*

If A->Stype= NC, Columnpermutationvector of size A->ncol,

which definesthe permutationmatrix Pc; perm_c[i]= j means

column i of A is in positionj in A*Pc.

On exit, perm-c may be overwrittenby the productof the input

perm_c and a permutationthat postordersthe eliminationtree

of Pc’*A’*A*Pc;perm_c is not changed if the eliminationtree

is already in postorder.

If A->Stype= NR, columnpermutationvector of size A->nrow,

which describespermutationof columnsof transpose(A)

(rowsof A) as describedabove.

perm_r (input/output)int*

If A->Stype= NC, row permutationvector of size A->nrow,

which definesthe permutationmatrix Pr, and is determined

by partialpivoting. perm_r[i]= j means row i of A is in

positionj in Pr*A.

If A->Stype= NR, permutationvector of size A->ncol,which

determinespermutationof rows of transpose(A)

(columnsof A) as describedabove.

If pdgstrf-options->usepr= NO, perm_r is output argument;

If pdgstrf.options->usepr= YES, the pivotingroutine will try

to use the inputperm_r,unless a certainthresholdcriterion

is violated.In that case,perm-r is overwrittenby a new

permutationdeterminedby partialpivotingor diagonal

thresholdpivoting.

equed (input/output)equed_t*

Specifiesthe form of equilibrationthat was done.

= NOEQUIL:No equilibration.

= ROW: Row equilibration,i.e., A was premultipliedby diag(R).

= COL: Column equilibration,i.e., A was postmultipliedby diag(C).

= BOTH: Both row and column equilibration,i.e., A was replaced

by diag(R)*A*diag(C).

If pdgstrf_options->fact= FACTORED,equed is an input argument,

otherwiseit is an output argument.

R (input/output)double*,dimension(A->nrow)
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c

The row scale factorsfor A or transpose(A).

If equed = ROW or BOTH, A (if A->Stype= NC) or transpose(A)

(if A->Stype= NR) is multipliedon the left by diag(R).

If equed = NOEQUILor COL, R is not accessed.

If fact = FACTORED,R is an input argument;otherwise,R is output.

If fact = FACTOREDand equed = ROW or BOTH, each elementof R must

be positive.

(input/output)double*,dimension(A->ncol)

The column scale factorsfor A or transpose(A).

If

If

If

If

equed = COL or BOTH, A (if A->Stype= NC) or transpose(A)

(if A->Stype= NR) is multipliedon the right by diag(C).

equed = NOEQUILor ROW, C is not accessed.

fact = FACTORED,C is an input argument;otherwise,C is output.

fact = FACTOREDand equed = COL or BOTH, each elementof C must

be positive,

L (output)SuperMatrix*

The factor L from the factorization

pr*A*pc=L*U (if A->Stype= NC) or

Pr*transpose(A)*Pc=L*U (if A->Stype= NR).

Uses compressedrow subscriptsstoragefor supernodes,i.e.,

L has types: Stype = SCP, Dtype = -D, Mtype = TRLU.

u (output)SuperMatrix*

The factor U from the factorization

Pr*A*Pc=L*U (if A-X3type= NC) or

pr*transpose(A)*Pc=L*U (if A->Stype= NR).

Uses column-wisestoragescheme,i.e.,U has types:

Stype = NCP, Dtype = -D, Mtype = TRU.

(input/output)SuperMatrix*

B has types: Stype = DN, Dtype = _D, Mtype = GE.

On entry, the right hand side matrix.

On exit,

if equed = NOEQUIL,B is not modified;otherwise

if A->Stype= NC:

if trans = NOTRANS and equed = ROW or BOTH, B is overwritten

by diag(R)*B;

if trans = TRANS or CONJ and equed = COL of BOTH, B is

overwrittenby diag(C)*B;

if A->Stype= NR:

if trans = NOTRANS and equed = COL or BOTH, B is overwritten

by diag(C)*B;

if trans = TRANS or CONJ and equed = ROW of BOTH, B is

overwrittenby diag(R)*B.

81



x (output)SuperMatrix*

X has types: Stype = DN, Dtype = .D, Mtype = GE.

If info = O or info = A->ncol+l,X’COntains the’solutionmatrix

to the originalsystemof equations.Note that A and B are modified

on exit if equed is not NOEQUIL,and the solutionto the

equilibratedsystem is inv(diag’(C))*Xif trans = NOTRANS and

equed = COL or BOTH, or inv(diag(R))*Xif trans = TRANS or CONJ

and equed = ROW or BOTH.

recip.pivot_growth(output)double*

rcond

ferr

berr

The reciprocalpivot growth factor computedas

max_j ( max_i(abs(A-ij))/ max_i(abs(U-ij))).

If recip_pivot_growthis much less than 1, the stabilityof the

LU factorizationcould be poor.

(output)double*

The estimateof the reciprocalconditionnumber of the matrix A

after equilibration(if done). If rcond is less than the machine

precision (in particular,if rcond = O), the matrix is singular

to workingprecision.This conditionis indicatedby a return

code of info > 0.

(output)double*,dimension(B->ncol)

The estimatedforward error bound for each solutionvector

X(j) (the j-th columnof the solutionmatrix X).

If XTRUE is the true solutioncorrespondingto X(j), FERR(j)

is an estimatedupper bound for the magnitudeof the largest

element in (X(j) - XTRUE) dividedby the magnitudeof the

largest elementin X(j). The estimateis as reliableas

the estimatefor RCOND, and is almost always a slight

overestimateof the true error.

(output)double*,dimension (B->ncol)

The componentwiserelativebackwarderror of each solution

vector X(j) (i.e.,the smallestrelativechange in

any elementof A or B that makes X(j) an exact solution),

superlu_memusage(output)superlu-memusage_t*

Record the memory usage statistics,consistingof followingfields:

- for-lu (float)

The amount of space used in bytes for L\U data structures.

- total_needed(float)

The amount of space needed in bytes to performfactorization.

- expansions(int)

The number of memory expansionsduring the LU factorization.

info (output)int*
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= O: successfulexit

< 0: if info = -i, the i-th argumenthad an illegalvalue

> 0: if info = i, and i is

<= A->ncol:U(i,i) is exactlyzero. The factorizationhas-

been completed,but the factorU is exactly

singular,so the solutionand error bounds

could not be computed.

= A->ncol+l:U is nonsingular,but RCOND is less than machine

precision,meaning that the matrix is singularto

workingprecision.Nevertheless,the solutionand

error bounds are computedbecausethere are a number

of situationswhere the computedsolutioncan be more

accuratethan the value of RCOND would suggest.

> A->ncol+i:number of bytes allocatedwhen memory allocation

failureoccurred,plus A->ncol.

B.3 pdgstrf

void

pdgstrf(pdgstrf-options-t*pdgstrf-options,SuperMatrix*A, int *perm_r,

SuperMatrix*L, SuperMatrix*U, Gstat_t*Gstat, int *info)

Purpose
-------

PDGSTRFcomputesan LU factorizationof a general sparsenrow-by-ncol

matrix A using partial pivotingwith row interchanges.The factorization

has the form

pr*A=L*U

where Pr is a row permutationmatrix, L is lower triangularwith unit

diagonalelements (lowertrapezoidalif A->nrow > A->ncol),and U is

upper triangular(uppertrapezoidalif A->nrow < A->ncol).

Arguments
--.--------.------

pdgstrf-options(input)pdgstrf-options_t*

The structuredefinesthe parametersto controlhow the sparse

LU factorizationis performed.The followingfields must be set

by the user:

o nprocs (int)

Number of processesto be spawned and used for factorization.

o refact (yes_no-t)

Specifieswhether this is first time or subsequentfactorization.
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= NO: this factorizationis treated as the first one;

= YES: it means that a factorizationwas performedprior to this

one. Therefore,this factorizationwill reuse some

existingdata structures,such as L and U storage,column

eliminationtree, and the symbolicinformationof the

Householdermatrix.

o panel.size(int)

A panel consistsof at most panel.sizeconsecutivecolumns.

o relax (int)

Degree of relaxingsupernodes.If the number of nodes (columns)

in a subtreeof the eliminationtree is less than relax, this

subtree is consideredas one supernode,regardlessof the row

structuresof those columns.

o diag_pivot.thresh(double)

Diagonalpivotingthreshold.At step j of Gaussianelimination,

if abs(A_jj)>= diag_pivot_thresh* (max_(i>=j.)abs(A_ij)),

use A_jj as pivot. O <= diag.pivot_thresh<= 1. The default

value is 1.0, correspondingto partialpivoting.

o usepr (yes-no_t)

Whetherthe pivotingwill use perm-r specifiedby the user.

= YES: use perm_r;perm_r is input,unchangedon exit.

= NO: perm_r is determinedby partialpivoting,and is output.

o drop_tol (double)(NOT IMPLEMENTED)

Drop toleranceparemeter.At step j of the Gaussianelimination,

if abs(A_ij)/(max.iabs(A_ij))< drop_tol,drop entry A_ij.

O <= drop-tol<= 1. The defaultvalue of drop-tolis O,

correspondingto not droppingany entry.

o perm.c (int*)

Columnpermutationvector of size A->ncol,which definesthe

permutationmatrix Pc; perm-c[i]= j means column i of A is

in positionj in A*Pc.

o perm-r (int*)

Column permutationvector of size A->nrow.

If pdgstrf_options->usepr= NO, this is an output argument.

o work (void*)of size lwork

User-suppliedwork space and space for the output data structures.

Not referencedif lwork = 0;

o lwork (int)
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A

perm.r

Specifiesthe length of work array.

= o: allocatespace internallyby systemmalloc;

> 0: use user-suppliedwork array of length lwork in bytes,

returns error if space runs out.

= -1: the routineguesses the amount of space needed without

performingthe factorization,and returns it in

superlu-memusage->total_needed;no other side effects.

(input)SuperMatrix*

Originalmatrix A, permutedby columns,of dimension

(A->nrow,A->ncol).The type of A can be:

Stype = NCP; Dtype = _D; Mtype = GE.

(input/output)int*, dimensionA->nrow

Row permutationvector which definesthe permutationmatrix Pr,

perm_r[il= j means row i of A is in positionj in Pr*A.

If pdgstrf_options->usepr= NO, perm-r is output argument;

If pdgstrf-options->usepr= YES, the pivotingroutinewill try

to use the inputperm-r,unless a certainthresholdcriterion

L

u

Gstat

info

is violated.In that case, perm_r is overwrittenby a new

permutationdeterminedby partialpivotingor diagonal

thresholdpivoting.

(output)SuperMatrix*

The factor L from the factorizationPr*A=L*U;use compressed

subscriptsstoragefor supernodes,i.e.,L has type:

Stype = SCP, Dtype = -D, Mtype = TRLU.

(output)SuperMatrix*

row

The factor U from the factorizationPr*A*Pc=L*U.Use column-wise

storagescheme, i.e., U has types: Stype = NCP, Dtype = -D,

Mtype = TRU.

(output)Gstat_t*

Record all the statisticsabout the factorization;

See Gstat-t structuredefined in util.h.

(output)int*

= O: successfulexit

< 0: if

> 0: if

<=

info = -i, the i-th argumenthad an illegalvalue

info = i, and i is

A->ncol:U(i,i) is exactlyzero. The factorizationhas

been completed,but the factor U is exactlysingular,

and divisionby zero will occur if it is used to solve a

system of equations.

> A->ncol:number of bytes allocatedwhen memory allocation

failure occurred,plus A->ncol.
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Appendix C

Specifications of routines in

MPI-based SuperLU-DIST

C.1 pdgssvx_ABglobal

void

pdgssvx.ABglobal(superlu-options-t

ScalePermstruct.t

*options, SuperMatrix*A,

*ScalePermstruct,

double B[], int ldb, int nrhs, gridinfo.t*grid,

LUstruct-t*LUstruct,double *berr,

SuperLUStat_t*stat, int *info)

Purpose
-.------------

pdgssvx_ABglobalsolves a system of linear equationsA*X=B,

by using Gaussianeliminationwith “staticpivoting”to

computethe LU factorizationof A.

Staticpivoting is a techniquethat combinesthe numericalstability

of partialpivoting with the scalabilityof Cholesky (no pivoting),

to run accuratelyand efficientlyon large numbers of processors.

See our paper.athttp://www.nersc.gov/”xiaoye/SuperLU/

descriptionof the parallelalgorithms.

Here are the options for using this code:

for a detailed

1. Independentof all the other optionsspecifiedbelow, the

user must supply

- B, the matrix of right hand sides, and its dimensionsldb and nrhs

- grid, a structuredescribingthe 2D processormesh

options->IterRefine,which determineswhetheror not to

improvethe accuracyof the computedsolutionusing
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iterativerefinement

On output,B is overwrittenwith the s61utionX.

2. Dependingon options->Fact,the user has severaloptions

for solvingA*X=B. The standardoption is for factoring

“A “from scratch”.,(The other options,describedbelow,

are used when A is sufficientlysimilarto a previously

solvedproblem to save time by reusingpart or all of

the previousfactorization.)

options->Fact= DOFACT:A is factored“from scratch”

In this case the user must also supply

- A, the inputmatrix

as well as the followingoptions,which are describedin more

detailbelow:

options->Equil, to specifyhow to scale the rows and columns

of A to “equilibrate”it (to try to reduce its

conditionnumber and so improvethe

accuracyof the computedsolution)

options->RowPerm,to specifyhow to permutethe rows of A

(typicallyto controlnumericalstability)

options->ColPerm,to specifyhow to permutethe columnsof A

(typicallyto controlfill-in and enhance

parallelismduring factorization)

options->ReplaceTinyPivot,to specifyhow to deal with tiny

pivots encounteredduringfactorization

(to controlnumericalstability)

The outputsreturnedinclude

- ScalePermstruct,modifiedto describehow the inputmatrix A

was equilibratedand permuted:

- ScalePermstruct->DiagScale,indicateswhetherthe rows and/or

columnsof A were scaled

- ScalePermstruct->R,array of row scale factors

- ScalePermstruct->C,array of column scale factors

- ScalePermstruct->perm_r,row permutationvector

- ScalePermstruct->perm_c,columnpermutationvector
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3.

(partof ScalePermstructmay also need to be suppliedon input,

dependingon options->RowPermand options->ColPermas described

later).

- A, the input matrix A overwrittenby the scaled and permutedmatrix

Pc*Pr*diag(R)*A*diag(C)

where

Pr and Pc are row and coltis permutationmatricesdetermined

by ScalePermstruct->perm-rand ScalePermstruct->perm.c,

respectively,and

diag(R) and diag(C) are diagonalscalingmatricesdetermined

by ScalePermstruct->DiagScale,ScalePermstruct->Rand

ScalePermstruct->C

- LUstruct,which containsthe L and U factorizationof Al where

Al = Pc*Pr*diag(R)*A*diag(C)*Pc-T= L*U

(Note that Al = Aout * PC-T, where Aout is the matrix stored

in A on

The secondvalue

sparsitypattern

In

as

options->Fact

output.)

of options->Fact

as A has already

= SamePattern:A

the same nonzeropattern as

assumesthat a matrix with the same

been factored:

is factored,assumingthat it has

a previouslyfactoredmatrix. In this

case the algorithmsaves time by reusingthe previouslycomputed

columnpermutationvector stored in ScalePermstruct->perm-c

and the “eliminationtree” of A stored in LUstruct->etree

this case the user must still specifythe followingoptions

before:

options->Equil

options->RowPerm

options->ReplaceTinyPivot

but not options->ColPerm,whose value is ignored.This is becausethe

previous column permutationfrom ScalePermstruct->perm-cis used as

input.The user must also supply

- A, the input matrix

- ScalePermstruct->perm_c,the columnpermutation

- LUstruct->etree,the eliminationtree

The outputsreturned include
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- A, the inputmatrix A overwrittenby the scaled and permutedmatrix

as describedabove

- ScalePermstruct,modifiedto describehow the inputmatrix A was

equilibratedand row permuted

- LUstruct,modifiedto containthe new L and U factors

4. The third value of options->Factassumesthat a matrix B with the same

“sparsitypattern as A has alreadybeen factored,and where the

row permutationof B can be reusedfor A. This is useful when A and B

have similarnumericalvalues, so that the same row permutation

will make both factorization numericallystable.This lets us reuse

all of the previouslycomputedstructureof L and U.

options->Fact= SamePattern_SameRowPerm:A is factored,

assumingnot only the same nonzeropattern as the previously

factoredmatrix B, but reusingB’s row permutation.

In this case the user must still specifythe followingoptions

as before:

options->Equil

options->ReplaceTinyPivot

but not options->RowPermor options->ColPerm,whose values are ignored,

This is becausethe permutationsfrom ScalePermstruct->perm_rand

ScalePermstruct->perm.care used as input.

The user must also supply

- A, the inputmatrix

- ScalePermstruct->DiagScale,how the previousmatrix was row and/or

column scaled

- ScalePermstruct->R,the row scalingsof the previousmatrix, if any

- ScalePermstruct->C,the columnsscalingsof the previousmatrix,

if any

- ScalePermstruct->perm_r,the row permutationof the previousmatrix

- ScalePermstruct->perm_c,the columnpermutationof the previous

matrix

all of LUstruct,the previouslycomputedinformationabout L and U

(the actualnumericalvalues of L andU stored in

LUstruct->Lluare ignored)

The outputsreturnedinclude

- A, the inputmatrix A overwrittenby the scaledand permutedmatrix

as describedabove

- ScalePermstruct,modifiedto describehow the inputmatrix A was
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equilibrated

(thusScalePermstruct->DiagScale,R and Cmaybe modified)

- LUstruct,modifiedto containthe new,L and U factors

5. The fourth and last value of options->Factassumesthat A is

identicalto a matrix that has alreadybeen factoredon a previous

call, and reuses its entireLU factorization

options->Fact= Factored:A is identicalto a previously

factorizedmatrix, so the entirepreviousfactorization

can be reused.

In this case all the other options

(options->Equil,options->RowPerm,

options->ReplaceTinyPivot)

The user must also supply

mentionedabove are ignored

options->ColPerm,

- A, the unfactoredmatrix, only in the

is to be done (specificallyA must

case that iterativerefinment

be the output A from

the previous call, so that it has been scaled and permuted).

all of ScalePermstruct

all of LUstruct,includingthe actualnumericalvalues of L and U

all of which are unmodifiedon output.

Arguments
------------------

options (input)superlu_options_t*

The structuredefinesthe inputparametersto control

how the LU decompositionwill be performed.

The followingfields shouldbe definedfor this structure:

o Fact (fact-t)

Specifieswhether or not the factoredform of the matrix

A is suppliedon entry, and if not, how the matrix A should

be factorizedbased’onthe previoushistory.

= DOFACT: The matrix A will be factorizedfrom scratch.

Inputs: A

options->Equil,RowPerm,ColPerm,ReplaceTinyPivot

outputs:modifiedA

(possiblyrow and/or column scaled and/or

permuted)

all of ScalePermstruct
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all of LUstruct

= SamePattern:the matrix A will be factorizedassuming

that a factorizationof a matrix with the same sparsity

pattern was performedprior to this one. Therefore,this

factorizationwill reuse columnpermutationvector

ScalePermstruct->perm_cand the eliminationtree

LUstruct->etree

Inputs: A

options->Equil,RowPerm,ReplaceTinyPivot

ScalePermstruct->perm_c

LUstruct->etree

outputs:modifiedA

(possiblyrow and/or column scaled and/or

permuted)

rest of ScalePermstruct(DiagScale,R, C, perm.r)

rest of LUstruct (GLU_persist,Llu)

= SamePatternJ%meRowPerm:the matrix A will be factorized

assumingthat a factorizationof a matrix with the same

sparsitypattern and similarnumericalvalues was performed

prior to this one. Therefore,this factorizationwill reuse

both row and column scalingfactorsR and C, and the

both row and columnpermutationvectorspe~.r and perm_c,

distributeddata structureset up from the previous symbolic

factorization.

Inputs: A

options->Equil,ReplaceTinyPivot

all of ScalePermstruct

all of LUstruct

outputs:modifiedA

(possiblyrow and/or column scaled and/or

permuted)

modifiedLUstruct->Llu

= FACTORED:the matrix A is alreadyfactored.

Inputs: all of ScalePermstruct

all of LUstruct

o Equil (yes_no-t)

Specifieswhetherto equilibratethe system.

= NO: no equilibration.

= YES: scalingfactors are computedto equilibratethe system:

diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B.

Whether or not the systemwill be equilibrateddepends

on the scalingof the matrix A, but if equilibrationis

used, A is overwrittenby diag(R)*A*diag(C)and B by

diag(R)*B.
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o

0

0

0

RowPerm (rowperm_t)

Specifieshow to permute rows of the matrix A.

= NATURAL: use the naturalordering.

= LargeDiag:use the Duff/Kosteralgorithmto permuterows of

the originalmatrix to make the diagonallarge

relativeto the off-diagonal.

= MY_PERMR: use the orderinggiven in ScalePermstruct->perm_r

input by the user.

ColPerm (colperm_t)

Specifieswhat type of columnpermutationto use to reduce fill.

= iVATURAL: use the natural ordering.

= COLAMD: use approximateminimum degree column ordering.

= MMD.ATA: use minimum degree orderingon structureof A’*A.

= MMD_AT_PLUS_A:use minimum degree orderingon structureof A’+A.

= MY_PERMC: use the orderinggiven in ScalePermstruct->perm_c.

ReplaceTinyPivot(yes_no_t)

= NO: do not modify pivots

= YES: replacetiny pivots by sqrt(epsilon)*norm(A)during

LU factorization.

IterRefine(IterRefine-t)

Specifieshow to perform iterativerefinement.

= NO: no iterativerefinement.

= DOUBLE: accumulateresidualin doubleprecision.

= EXTRA: accumulateresidualin extra precision.

NOTE: all optionsmust be identical on all processeswhen

callingthis routine.

A (input/output)SuperMatrix*

On entry,matrix A in A*X=B, of dimension (A->nrow,A->ncol).

The number of linear equationsis A->nrow.The type of A must be:

Stype = NC; ‘Dtype= -D; Mtype = GE. That is, A is stored in

compressedcolumnformat (alsoknown as Harwell-Boeingformat).

See supermatrix.hfor the definitionof ‘SuperMatrix’.

This routine only handles square A, however,the LU factorization

routinepdgstrf_Aglobalcan factorizerectangularmatrices.

On exit, A may be overwrittenby Pc*Pr*diag(R)*A*diag(C),

dependingon ScalePermstruct->DiagScale,options->RowPermand

options->colpem:

if ScalePermstruct->DiagScale!= NOEQUIL,A is overwrittenby

diag(R)*A*diag(C),

if options->RowPerm!= NATURAL,A is furtheroverwrittenby

Pr*diag(R)*A*diag(C).
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if options->ColPerm!= NATURAL,A is further overwrittenby

Pc*Pr*diag(R)*A*diag(C).

If all the above conditionare true; the LU decompositionis

performedon the matrix Pc*Pr*diag(R)*A*diag(C)*Pc-T.

NOTE: Currently,A must reside in all processeswhen calling

this routine.

ScalePermstruct(input/output)ScalePermstruct.t*

The data structureto store the scalingand permutationvectors

describingthe transformationsperformedto the matrix A.

It containsthe followingfields:

o DiagScale (DiagScale-t)

Specifiesthe form of equilibrationthat was done.

= NOEQUIL:

= ROW:

= COL:

= BOTH:

no equilibration.

row equilibration,i.e., A was premultipliedby

diag(R).

Column equilibration,i.e., A was postmultiplied

by diag(C).

both row and column equilibration,i.e., A was

replacedby diag(R)*A*diag(C).

If options->Fact= FACTOREDor SamePattern_SameRowPerm,

DiagScaleis an input argument;otherwiseit is an output

argument.

o perm-r (int*)

Row permutationvector,which definesthe permutationmatrix Pr;

perm_r[il= j means row i of A is in positionj in Pr*A.

If options->RowPerm= MY_PERMR,or

options->Fact= SamePattern-SameRowPerm,perm-r is an

input argument;otherwiseit is an output argument.

o perm_c (int*)

Columnpermutationvector,which definesthe

permutationmatrix Pc; perm_c[i]= j means column i of A is

in positionj in A*Pc.

If options->ColPerm= MY_PERMCor options->Fact= SamePattern

or options->Fact= SamePattern-SameRowPerm,perm_c is an

input argument;otherwise,it is an output argument.

On exit, perm-cmay be overwrittenby the product of the input

perm-c and a permutationthat postordersthe eliminationtree

of Pc*A’*A*Pc’;perm_c is not changedif the eliminationtree

is already in postorder.

o R (double*)dimension

The row scale factors

(A->nrow)

for A.
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B

ldb

nrhs

grid

If

If

If

an

DiagScale= ROW or BOTH, A is multipliedon the left by

diag(R).

DiagScale= NOEQUIL or COL, R is not defined.

options->Fact= FACTOREDor SamePattern-SameRowPerm,R is

input argument;otherwise,R is an output argument.

o C (double*)dimension(A->ncol)

The column scale factorsfor A.

If DiagScale= COL or BOTH, A is multipliedon the right by

diag(C).

If DiagScale= NOEQUIL or ROW, C is not defined.

If options->Fact= FACTOREDor SamePattern&uneRowPerm,C is

an input argument;otherwise,C is an output argument.

(input/output)double*

On entry, the right-handside matrix of dimension(A->nrow,nrhs).

On exit, the solutionmatrix if info = O;

NOTE: Currently,B must reside in all processeswhen calling

this routine.

(input)int (global)

The leadingdimensionof matrix B.

(input)int (global)

The number of right-handsides.

If nrhs = O, only LU decompositionis performed,the forward

and back substitutionare skipped.

(input)gridinfo-t*

The 2D processmesh. It containsthe HPI communicator,the number

of process rows (NPROW),the number of process columns (NPCOL),

and my process rank. It is an input argumentto all the

parallelroutines.

Grid can be initializedby subroutineSUPERLU-GRIDINIT.

See superlu_ddefs.hfor the definitionof ‘gridinfo_t’.

LUstruct (input/output)LUstruct_t*

The data structuresto store the distributedL and U factors.

It containsthe followingfields:

o etree (int*)dimension (A->ncol)

Eliminationtree of A’*A, dimensionA->ncol.

It is computedin sp-colordero during the first factorization,

and is reused in the subsequentfactorization of the matrices

with the same nonzeropattern.

On exit of sp_colordero, the columnsof A are permuted so that
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berr

stat

info

the etree is in a certainpostorder.This postorderis reflected

in ScalePermstruct->perm_c.

NOTE: Etree is a vector of parent pointersfor a forestwhose

verticesare the integersO to A->ncol-l;

etree[root]= A->ncol.

o Glu-persist(Glu.persist_t*)

Global data structure(xsup,supno) replicatedon all processes,

describingthe supernodepartitionin the factoredmatrices

L andU:

xsup[s] is the leading columnof the s-th supernode,

supno[i]is the supernodenumber to which column i belongs.

o Llu (LocalLU_t*)

The distributeddata structuresto store L and U factors.

See superlu-ddefs.hfor the definitionof ‘LocalLU.t’.

(output)double*,dimension(nrhs)

The componentwiserelativebackwarderror of each solution

vector X(j) (i.e.,the smallestrelativechange in

any elementof A or B that makes X(j) an exact solution).

(output)SuperLUStat_t*

Recordthe statisticson runtime and floating-pointoperationcount.

See util.h for the definitionof ‘SuperLUStat_t’.

(output)int*

= O: successfulexit

> 0: if info = i, and i is

<= A->ncol:U(i,i) is exactlyzero. The factorizationhas

been completed,but the factor U is exactlysingular,

so the solutioncould not be computed.

> A->ncol:number of bytes allocatedwhen memory allocation

failureoccurred,plus A->ncol.

C.2 pdgstrf

void

pdgstrf(superlu_options_t*options,int m, int n, double anorm,

LUstruct-t*LUstruct,gridinfo-t*grid, SuperLUStat_t*stat, int *info)

Purpose
------=

pdgstrfperformsthe LU factorizationin parallel.
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Arguments
_________---------

options (input)superlu-options-t*

The structuredefinesthe inputparametersto control

how the LU decompositionwill be performed.

The followingfield shouldbe defined:

o ReplaceTinyPivot(yes-no_t)

Specifieswhetherto replacethe tiny diagonalsby

sqrt(epsilon)*norm(A)during LU factorization.

(input)int

Number of rows in the matrix.

(input)int

Number of columns in the matrix.
*

anorm (input)double

The norm of the originalmatrix A, or the scaledA if

equilibrationwas done.

m

n

LUstruct(input/output)LUstruct_t*

The data structuresto store the distributedL and U factors.

The followingfields shouldbe defined:

o Glu-persist(input)Glu_persist_t*

Global data structure(xsup,supno)replicatedon all processes,

describingthe supernodepartitionin the factoredmatrices

L andU:

xsup[s] is the leadingcolumn of the s-th supernode,

supno[i]is the supernodenumber to which column i belongs.

o Llu (input/output)‘LocalLU.t*

The distributeddata structuresto store L and U factors.

See superlu_ddefs.hfor the definitionof ‘LocalLU_t’.

grid (input)gridinfo-t*

The 2D process mesh. It containsthe MPI communicator,the number

of process rows (NPROW),the number of process COlumnS (NPCOL),

and my process rank. It is an input argumentto all the

parallelroutines.

Grid can be initializedby subroutineSUPERLU-GRIDINIT.

See superlu_ddefs.hfor the definitionof ‘gridinfo-t’.

stat (output)SuperLUStat_t*

Record the statisticson runtime and floating-point
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See util.h for the definitionof ‘SuperLUStat_t’.

info (output)int*

= O: successfulexit

< 0: if info = -i, the i-th argumenthad an illegalvalue

> 0: if info = i, U(i,i) is exactlyzero. The factorization

been completed,but the factor U is exactlysingular,

and divisionby zero will occur if it is used to solve

system of equations.

C.3 pdgstrs-Bglobal

void

pdgstrs_Bglobal(intn, LUstruct_t*LUstruct,gridinfo_t*grid,double

int ldb, int nrhs, SuperLUStat_t*stat, int *info)

Purpose
--------------

pdgstrs-Bglobalsolves a systemof distributedlinear equations

A*X = B with a generalN-by-Nmatrix A using the LU factorization

computedby pdgstrf.

Arguments
------------------

n (input)int (global)

The order of the systemof linear equations.

LUstruct (input)LUstruct_t*

The distributeddata structuresstoringL and

The L and U factorsare

the possiblyscaled and

See superlu_ddefs.hfor

grid (input)gridinfo_t*

The 2!Jprocessmesh. It

of processrows (NPROW),

obtainedfrom pdgstrf

permutedmatrix A.

U factors.

for

has

a

*B,

the definitionof ‘LUstruct-t’.

containsthe MPI communicator,the number

the number of processcolumns (NPCOL),

and my process rank. It is an input argumentto all the

parallelroutines.

Grid can be initializedby subroutineSUPERLU_GRIDINIT.

See superlu-ddefs.hfor the definitionof ‘gridinfo-t’.

B (input/output)double*

On entry,the right-hand

and row permutedsystem.

side matrix of the possiblyequilibrated
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ldb

nrhs

stat

info

On exit, the solutionmatrix of the possiblyequilibrated

and row permutedsystem if info = O;

NOTE: Currently,the N-by-NRHS matrix B must reside on all

processeswhen callingthis routine.

(input)int (global) ~

Leading dimensionof matrix B.

(input)int (global)

Number of right-hand sides.

(output)SuperLUStat-t*

Recordthe statisticsabout the triangularsolves.

See util.h for the definitionof ‘SuperLUStat-t’.

(output)int*

= O: successfulexit

< 0: if info = -i, the i-th argumenthad an illegalvalue

C.4 pdgsrfs_ABXglobal

void

pdgsrfs-ABXglobal(intn, SuperMatrix*A, double anorm,LUstruct-t*LUstruct,

gridinfo.t*grid, double *B, int ldb, double *X, int ldx,

int nrhs, double *berr,SuperLUStat-t*stat, int *info)

Purpose
--------------

pdgsrfs-ABXglobalimprovesthe computedsolutionto a system of linear

equationsend provides error bounds and backward error estimates

for the solution.

Arguments
------------------

n (input)int (global)

The order of the system of linear equations.

A (input)SuperMatrix*

The originalmatrix A, or the scaled A if equilibrationwas done.

A is also permuted into the form Pc*Pr*A*Pc’,where Pr and Pc

are permutationmatrices.The type of A can be:

Stype = NCP; Dtype = _D; Mtype = GE.
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NOTE: Currently,A must reside in all

this routine.

anorm (input)double

The norm of the originalmatrix A, or

equilibrationwas done.

LUstruct (input)LUstruct.t*

processeswhen calling

the scaledA if

The distributeddata structuresstoringL and U factors.

grid

B

ldb

x

ldx

nrhs

berr

The L and U factors are

the possibly scaled and

See superlu.ddefs.hfor

(input)gridinfo_t*

The 2D processmesh. It

Of process rows (NPROW),

obtainedfrom pdgstrffor

permutedmatrix A.

the definitionof ‘LUstruct_t’.

containsthe MPI communicator,the number

the number of processcolumns (NPCOL),

and my process rank. It is an input argumentto all the

parallelroutines.

Grid can be initializedby subroutineSUPERLU_GRIDINIT.

See superlu_ddefs.hfor the definitionof ‘gridinfo_t’.

(input) double* (global)

The N-by-NRHSright-handside matrix of the possiblyequilibrated

and row permutedsystem.

NOTE: Currently,B must reside on all processeswhen calling

this routine.

(input)int (global)

Leadingdimensionof matrix B.

(input/output)double* (global)

On entry, the solutionmatrix X, as computedby PDGSTRS.

On exit, the improvedsolutionmatrix X.

If DiagScale= COL or BOTH, X shouldbe premultipliedby diag(C)

in order to obtain the solutionto the originalsystem.

NOTE: Currently,X must reside on all processeswhen calling

this routine.

(input) int (global)

Leading dimension of matrix X.

(input) int

Number of right-handsides.

(output)double*,dimension(nrhs)
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The componentwiserelative backward error of each solution

vector X(j) (i.e., the smallest relative change in

any element of A or B that makes X(j) ,an exact solution).

stat (output)SuperLUStat_t*

Record the statistics about the refinement steps.

See util.h for the definitionof SuperLUStat_t.

info (output)int*

= O: successful exit

< 0: if info = -i, the i-th argument had an illegal value
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