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The optical characteristics of phase-locked semiconductor laser arrays are formulated in terms of the array super-

modes, which are the eigenmodes of the composite-array waveguide, by using coupled-mode theory. These super-

modes are employed to calculate the near fields, the far fields, and the difference in the longitudinal-mode oscilla-

tion wavelengths of the array. It is shown that the broadening in the far-field beam divergence, as well as the

broadening of each of the longitudinal modes that were observed in phase-locked arrays, may arise from the excita-

tion of an increasing number of supermodes at increasing pumping levels.

Phase locking of several diode lasers that are integrat-
ed in parallel provides a useful means for obtaining
high-power injection lasers having low beam diver-
gence.1-7 Moreover, it was recently demonstrated that
phase-locked arrays incorporating separate laser con-
tacts7 also exhibit a remarkable degree of longitudi-
nal-mode selectivity as well as output-wavelength
tunability.8 Many of the observed characteristics of
these useful devices, however, are yet not fully under-
stood. The only attempts to explain the optical prop-
erties of phase-locked arrays have been limited, to date,
to evaluating the array far field, assuming that it con-
sists of identical radiators,2 and to deriving the phase
relationship between adjacent emitters.9

In this Letter, we present an optical model of phase-
locked semiconductor laser arrays. This model yields
the optical characteristics of the array in terms of its
supermodes, i.e., the eigenmodes of the composite-array
waveguide. For some special, yet important, cases we
calculate analytically the near fields, the far fields, and
the propagation constants of these supermodes.

Consider an array of N coupled lasers, as shown in
Fig. 1. Each individual laser waveguide, when isolated
from its neighbors, is presumed to support a single,
TE-like, spatial mode. This mode is described by its
electric field 61 (x, y) exp(iflz), I = 1, 2,. .. N, where At
is the complex propagation constant. The total electric
field of the array is

N
Ey (x, y IZ) = F, &j1(x, y)Aj (z) exp(i~jz),

1=4

dE/dz = iAE, (2)

where E is a vector whose elements are El _= Al exp(ilz)

and the only nonvanishing elements of the matrix A are
ALjl = $j, with I = 1, 2,... N, and A11,j+i = K',t+i, Atl+ i
= KI+i l, with I = 1, 2,. . . N - 1. The definition of the
coupling coefficients Kij is the same as in the case of a
pair of coupled waveguides.11

The array supermodes are, by definition, the eigen-
solutions of Eq. (2), i.e., those vectors that satisfy

EV(Z) = EI(O) exp(iavz), (3)

a, being the propagation constant of the supermode E".
Substitution of Eq. (3) into Eq. (2) gives

(A. -,J)ER = 0, (4)

where I is the unit matrix.
A solution of Eq. (4) yields the N supermodes that are

supported by an array of N single-mode lasers. The
eigenvectors EB, v = 1, 2, .... N, can be used in Eq. (1)
to evaluate the near field of each supermode; each such
mode say, B', describes a phase-locked combination of
the individual laser modes with amplitudes E1 ". Gen-

z

(1)

where the z dependence of Al(z) is due to the interac-
tion among the array elements. Assuming only the
nearest-neighbor coupling, the coupled-mode equa-
tions10 for the N-channel array can be written in the
form

K12 K23 KN-1,
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Fig. 1. Schematic illustration of an N-channel laser array.
The y axis is in the p-n-junction plane.

0146-9592/84/040125-03$2.00/0 © 1984, Optical Society of America



126 OPTICS LETTERS / Vol. 10, No. 4 / April 1984

Table 1. Propagation Constants of the Supermodes of
Identical-Channel Arrays

Number of Propagation
Channels N Constants oa,

2 4 iK12

3 4; K13
4 i(K142/2)

4 [(K14
2
/2)

2
- K122K34

2
11/

2
11/2

5 f3;f J3 (K12/2)
i [(K 15

2
/2)

2
- (K1 2

2
K34

2

+ K12
2
K45

2 + K23
2
K45

2
)]

1
/2J1/2

K11
2 K122 + K23

2 + ... + KI-1,12

and where E(8) is the far-field pattern of each individual
array element, P111 _ ElP/ElV are the admixture factors,
S is the center-to-center separation of adjacent lasers,
0 is the angle in the junction plane, and ko = 2-r/Xo, X0
being the free-space wavelength.

Generally, the eigenvalues of a given N-channel array
can be found by solving Eq. (4) numerically. It is useful,
however, to consider special cases that allow for analytic
solution and provide some physical insight. The sim-
plest case is that of an array with identical channels, Il

= $2 =** AN - with uniform coupling, i.e., Kij =
K. In this case, the solution of Eq. (4) is

.,3 2 /-3;

VI V

A An

\/2v

3V A 

EzY =sin 1N+)'

U= + 2K COS (N7 V

_ +3K Note that the splitting in the propagation constants of
the supermodes is proportional to the coupling coeffi-
cient K. When N >> 1, these propagation constants
form a quasi-continuum in the range: - 2K < of < $ +
2K, and the maximum wavelength splitting in the FP
modes becomes [see Eq. (5)]

A+ K

Axos = (4/r)KLAXOFP

Since usually KL S 1, the excitation of several super-
modes would result in an effective broadening of each
of the longitudinal modes of the laser array. Such a
broadening of the FP modes with increasing pump
current was indeed observed experimentally.2

In the case of similar channels ($A = i) but nonuni-
3- d3K

Fig. 2. Schematic illustration of the supermodes in a five-
channel array of equal waveguides (fj = /) and uniform
coupling (Kij = K). The numbers beside the near-field lobes
indicate the relative magnitude of the field amplitude. The
expressions beside each field pattern are the corresponding
supermode eigenvalues.

erally, the arrayn near field will consist of a superposition
of the near fields of a number of supermodes. The
different propagation constants o-p of the different su-
permodes may give rise to a group of Fabry-Perot (FP)
resonances associated with a given longitudinal mode
of the laser cavity. The wavelength separation AXOS
between two such modes, which is usually smaller than
the FP mode spacing AXoFP, is given by

Ax 0S = (AWrL/iX0oFP,

Cl)
z

z

Lii>-

-J

(5)

where AO is the difference in the supermode propaga-
tion constants and L is the laser-cavity length.

The supermode near fields can be readily employed
to evaluate the far-field radiation pattern of each su-
permode. In the case of arrays with similar individual
near fields 61 = 6, the far-field intensity pattern in the
junction plane (y-z plane in Fig. 1) is given by

Pv(0) = E(6)GV(O),

with

G"(0) -- | A, P1 exp(ikoS sin 0)

(6a)

Fig. 3. The grating function G for the supermodes of Fig. 2.

(6b) The dashed curve corresponds to an array of five identical
radiators.
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Fig. 4. Effect of variation of the coupling coefficients on the
near field of the (+++++) supermode for K23 = K34.

form coupling (KiJ # -lm for ij F# im), Eq. (4) was solved
analytically for N < 5. The eigenvalues for this case are
summarized in Table 1. Note that in this case the ad-
mixture factors P11 depend only on the ratios of the
coupling coefficients of adjacent pairs of channels. In
what follows, we illustrate in more detail the supermode
features of an array of five identical lasers.

Figure 2 shows schematically the near-field patterns
of the supermodes in such an array when the coupling
is uniform. Note that the relative excitation of the
channels is different in different supermodes. In par-
ticular, some of the supermodes are characterized by
unexcited channels (which is indicated by a 0 in the
notation of Fig. 2). These peculiar forms of the su-
permode near fields have an important effect on the
value of the saturated-gain coefficient in each channel
for a given current combination through the array lasers
and a given total output intensity.12 The modal gain
of a given supermode depends on the phase relationship
between the fields in adjacent channels, which deter-
mines the supermode intensity in the regions between
the pumped laser stripes. For example, in the case of
more-or-less equal currents, which are injected mainly
below each laser stripe contact, it is expected that the
(+-+-+) mode would have the lowest threshold since
the unpumped regions correspond to a small modal
intensity.

Figure 3 shows the grating function G [Eq. (6b)] for
the supermodes of Fig. 2. The actual far-field intensity
patterns are obtained by superimposing upon these
curves the envelope function E(Q). In practical arrays
(e.g., GaAs arrays with S - 10 Am and 4-,4-m laser
stripes) one can concentrate on the region IkoS sin 01
' 27r, outside which E(0) is practically zero. For
comparison, we also show the grating function for (five)
identical radiators (dashed curve, Fig. 3), which was
used in Ref. 2. Note that the main lobes in the far-field
patterns of the supermodes that are characterized by
unexcited channels are displaced with respect to those
of the (+++++) and (+-+-+) ones. Thus it is clear
that, when several supermodes are excited, each will
contribute to an effective angular divergence in the far
field, as indicated by the arrows in Fig. 3. Thus angular
divergencies that can be almost as much as four times
the diffraction-limited width are expected. This may
explain the wide beam divergencies that are observed
with most arrays." 3' 4' 6 For the GaAs five-element array
of Ref. 1 with X0 = 0.8 gm and S = 8 Am, we find that
the effective angular divergence (FWHP) of the
(+-+-+), (+-O+-), and (+0-0+) supermodes is 1.2',
2.60, and 3.8°, respectively. The experimental results'

show a broadening of the main lobe in the far field from
1.90 at I = Ith to 3.80 at I = 2.1 X Ith, which was ac-
companied by the appearance of a structure in this main
lobe, in qualitative agreement with our prediction.

Finally, we briefly discuss the effect of varying the
coupling coefficients Kij. Figure 4 shows the near fields
of the (+++++) supermode for K23 = K34 and for two
values of K23/K12 = K34/K45. Variations in Kij can be ac-
complished by fabricating the array with different
spacing of the laser stripes or by controlling the coupling
by using additional contacts intermediate to the laser
stripes.' 3 Decreasing the coupling of the two outermost
lasers results in further decrease in their excitation in
the (+++++) supermode. A stronger coupling of the
outermost lasers yields a more uniform excitation in the
near field. This illustrates the potential use of the
coupling coefficients in tailoring the near fields of a
phase-locked array.

In conclusion, we have presented an optical model for
phase-locked semiconductor laser arrays that is based
on the array supermodes. The description of the array
optical field in terms of these supermodes, which are
derived by coupled-mode theory, is intermediate be-
tween treating the array as a single, giant waveguide and
viewing it as a group of coupled waveguides. This
model uses the eigenmodes of the total, composite-array
waveguide while maintaining and using the information
on the coupling between the array elements.
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