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Supermodes of High-Repetition-Rate 

Passively Mode-Locked Semiconductor Lasers 
Randal A. Salvatore, Steve Sanders, Thomas Schrans, and Amnon Yariv, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFellow, IEEE 

Abstract-We present a steady-state analysis of high-repetition- 
rate passively mode-locked semiconductor lasers. The analysis 
includes effects of amplitude-to-phase coupling in both gain and 
absorber sections. A many-mode eigenvalue approach is pre- 
sented to obtain supermode solutions. Using a nearest-neighbor 
mode coupling approximation, chirp-free pulse generation and 
electrically chirp-controlled operation are explained for the first 
time. The presence of a nonzero alpha parameter is found to 
change the symmetry of the supermode and significantly reduce 
the mode-locking range over which the lowest order supermode 
remains the minimum gain solution. An increase in absorber 
strength tends to lead to downchirped pulses. The effects of 
individual laser parameters are considered, and agreement with 
recent experimental results is discussed. 

I. INTRODUCTION 

REVIOUSLY, the theory of passive modelocking has P been analyzed thoroughly in the time domain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11. Haus’ 

analysis has provided a clear picture of the evolution of pulses 

through gain, absorptive, and bandwidth-limiting elements 

within a cavity. A steady-state solution was found when these 

effects are included. Certain approximations were deemed 

necessary in order to present an analytic solution. For example, 

in the steady-state solution, a symmetric and unchirped pulse 
envelope is assumed as limited by the approximation of all 
time-domain effects only up to the quadratic term. The model 
has been extended to include chirped pulses due to self- 
phase modulation (SPM) yet only for a fast absorber [2], 

[3], and still restricts the analysis to exponents quadratic in 

time and achieves symmetric pulses. No recovery is assumed 

to occur during pulses. Additionally, both models include an 
approximation of the discrete-mode spectrum by a continuous 

spectrum. Although the latter approximation works well for 

mode-locked lasers having many closely-spaced modes, and 

a slightly-varying gain with frequency, it, along with the 

assumption of no material recovery during the pulse, is not 
adequate for the case of high-repetition-rate passively mode- 
locked lasers (250 GHz). In this case, the difference in gain 
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between neighboring modes can be significant, and typically 

only a small number of rnodes (around 3-10) dominate. 

Active modelocking, on the other hand, has been analyzed 
thoroughly in both the time domain and the frequency domain 
[4]-[6]. It has been suggested that passive mode-locking 

should be analyzed in the time domain since simple products in 

the time-domain analysis result in cumbersome convolutions 

in the frequency domain analysis 171, however, in the case of 

high-repetition-rate passive modelocking, where few modes 

are involved and the induced carrier modulation is much 

closer to a sinusoid [8], the frequency domain approach 

becomes more appropriate. In this paper, we present a steady- 

state analysis of passive modelocking directed toward high- 
repetition-rate semiconductor lasers. The analysis is done in 
the frequency domain extending that presented in [8]. For 
the first time, passive mode-locking supermodes are found 

while amplitude-to-phase coupling from slow saturation is 

permitted. Section I1 describes the model and arrives at an 

equation for each mode in the supermode. It incorporates 

dispersive effects through the common semiconductor laser 

parameters and unlike previous frequency domain calculations, 

does not force all modes beyond (the minimum) three modes 

to contribute zero coupling. Section I11 describes the eigen- 

value formulation used to arrive at a self-consistent solution 
of the coupled nonlinear equations. Section IV presents an 
approximate analytical expression based on (the minimum) 

three modes in order to reduce the complexity and allow one 

to build physical intuition about the gain requirements and 

amplitudes and phases of the supermode spectrum. Section V 
presents results for the full calculation. Section VI compares 

the results with experiments for high-repetition-rate passively 

mode-locked lasers. Finally, Section VI1 includes conclusions. 

11. THE MODEL 

High-repetition-rate modelocking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(250 GHz) was first 

demonstrated by Vasil’ev [9] and by Sanders et al. [lo]. 

To date, semiconductor lasers are the only mode-locked lasers 

that have been able to generate repetition rates of hundreds of 

GHz. Due to their large material gain coefficients, fast recovery 
times, and the ability to be made into short monolithic cavities, 

high-repetition-rate pulse trains can be generated easily. 

Typically, high-repetition-rate lasers involve a monolithic 
semiconductor laser structure, meaning no external cavity 
is used. The model presented is intended to analyze the 

monolithic multisection laser, and no intention of including an 
external cavity is made here although one could easily modify 
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were disallowed [see Fig. 2(b)]. One can write an equation for 

the net gain of each mode including the coupling effects due 

to each of its neighboring modes. Also there are phase effects, 

and for stable mode-locking one requires that all the modes 

will be equally spaced in frequency. The rest of this section 
will be devoted to deriving an equation for each of these 
coupled modes which will subsequently be solved to find the 
supermode for the high-repetition-rate passively mode-locked 

laser. 
The net optical field inside the laser can be written as a 

sum over individual modes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p , ( t ) W ,  (1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

Fig. 1. Schematic for two-section monolithic passively mode-locked laser. where E, ( t )  represents the time dependence of mode n, 
and G,(?) represents the nth spatial eigenmode of the cold 
cavity and satisfies v J 2 G n ( F )  + ~ ~ E , R ~ G , ( ? )  = 0. Here, 

is the magnetic permeability of free space, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, is the 
electric permittivity, and 0, is the resonant frequency of 

the nth mode of the cold cavity. Assuming we have some 

uniform guiding (through index or gain-guiding) structure 

longitudinally throughout the laser, we can write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Single Mode AM Mode-locking Gn(F) = Jzqz, y) cos (P,Z). (2) 

These modes of the cold cavity may be delta-function nor- 
(b) 

lm 
(a) 

Fig. 2. Without any mode coupling, a homogeneously broadened laser will 
lase in the single mode at which the gain and loss are (a) equal. Allowing 
mode coupling, amplitude modulated (AM) passive modelocking may permit 
a cooperative saturation of the absorber during some part of the repetition 
cycle and allow supermode lasing to occur (b) with a lower threshold gain 
than if mode coupling were disallowed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,(q . Gm(?) dV = V,S,,. ( 3 )  J' 

Similar to (1), the net electronic polarization can be written as 

a sum of terms separable in space and time. Upon writing the 

wave equation for the net field projecting 
onto Cn(F): 

the modeled cavity to include a reflection-free facet and some 
length of free space to account for an external cavity. 

Passive modelocking requires a minimum of two sections 

polarization 

- -  
such that one section is pumped above transparency and one 

remains below. A standard two-section monolithic passively 
mode-locked laser structure is shown in Fig. 1. More complex 
structures have been made to achieve Bragg filtering [ I l l ,  

incorporate additional sections [ 121, [ 131, change recombi- 

nation rates [14], or develop transient gratings to increase 

the effectiveness of absorber saturation [ 121. The steady-state 

effects of each of these can be taken into account by adjusting 

the appropriate parameters of the model in Fig. 1. 

Physically, one may model the average net gain of a 
semiconductor laser as having an approximately parabolic 

spectrum near its peak. Typically, if one pumps the gain 
strongly enough, it will reach a point at which the gain 

equals the loss as shown in the left side of Fig. 2. If the gain 

equals the loss for some mode, this mode will start lasing, the 

homogeneous gain will become clamped, and further pumping 

will go into generating light in the lasing mode. 

On the other hand, if one allows a coupling to exist between 

the modes, the presence of light in mode n, under some 

conditions, can make it easier for the light in mode n+ 1 

(and vice versa) to saturate through the absorber at certain 

times during the repetition cycle. Thus, the laser may lase at 
a lower average carrier density than it could if mode coupling 

(4) 

where P,(t) = (l/Vc) $(?, t )  . G,(F') dV is the projection 

of the polarization on mode n. Here rp, represents the photon 

lifetime for the nth mode. 

With the optical frequency much greater than the repetition 

rate, we may write E,(t) as the slowly varying complex 
envelope of &,(t) such that 

&,(t) = $E,(t)e- + C.C., (5) 

where w, is the optical angular frequency of the nth lasing 

mode (w, # R, for nonzero detuning), and correspondingly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P, ( t )  may be written as the slowly varying complex envelope 
of the polarization. Thus, 

1 -  
~- i(0, - wn)E,(t) + -E,(t) 

d t  2 7 p n  
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where pn(t) will contain coupling terms to electric fields 

spaced at harmonics of the repetition rate, A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, - wn-l> 
since the net polarization is given by 

where 

may possess optical-pulse-induced oscillations in the carrier 

density [SI, and f(w,) takes into account the frequency 
dependent gain or loss of the material. Although in general 

the material's loss spectrum has somewhat different center and 
shape than that of the material's gain spectrum, we shall not 

attempt to model that in this paper. 
Because lasers tend to operate at their gain peak and 

semiconductor lasers have a significant contribution of gain- 

dependent phase shift at their gain peak, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxk(F) = xk(F) + 
i x i (F )  presents not only a gain, but a change in refractive 

index as well. The mode-locked laser is in fact no better in 

this respect. It tends to operate at an even longer wavelength 

than a continuous wave (CW) laser (due to the presence of the 
absorber) [SI and is expected to produce even a slightly larger 
amplitude-to-phase coupling factor 01 in its gain section [15], 

where a = -&( f l / x ; (F) .  
Since pn(t) is computed from a projection of @(F, t )  onto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cn (F) over the whole length of the laser, there is a contribution 

from both the gain and absorbing sections 

where 

and 

(The notation ( g / a )  indicates quantities pertaining to the gain 

or absorber region, respectively.) We will use x'' = g p L r c / w ~  
to relate the material gain coefficient, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, to the imaginary part 

of the susceptibility with pT being the cold cavity refractive 

index. 

The imaginary part of (10) yields 

and this term is proportional to thie average single pass gain 

where r is the confinement factor, c is the speed of light, ti 
is the material gain coefficient of the absorber section (ti < 
0), I ,  is the total laser length, and h, and h, are the ratios of 
the gain section and absorber section lengths, respectively, to 

the full laser length. The term & ~ , e - ~ v ~ 9  will be determined 
from the carrier dynamics by using a linear approximation for 

the change in optical gain (loss) versus carrier density for the 
gain (absorber) section with g = G[n,(t) -1201. Here, G is the 
differential gain, n, ( t )  is the time dependent carrier density, 

and 110 is the carrier density at transparency. Correspondingly, 

ti = A[n,(t) - no] for the absorber. 

Gain and absorber dynamics result from the photon inten- 

sity, which is proportional to 

S(X ,  t )  = S O  + s ~ ( x )  COS (kat) (13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

with 

and 

where ( ) A  represents a spatial average over a wavelength. 

Permitting this form, one notices from the carrier rate equation 

that a modulation in the light intensity will induce a mod- 

ulation in the carrier density at tlhe same fundamental and 

harmonics of that frequency. However, the effect of both the 

small number of modes and the shorter in-phase overlaps of 

quickly beating pairs of modes causes the coupling of higher 

harmonics to drop off. Ignoring the terms responsible for 
second nearest neighbor and higher coupling terms to simplify 

the problem and still keep it suitable for high-repetition rate 

modelocking, from the carrier rate equation, 

(16) 

we find a saturated material gain g for the gain section, 
dependent on the gain recombination time r, and the injection 

pumping Rp(,/a) and correspondingly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 for the absorber 
section dependent on the absorber recombination time r, , 

Here, g' and 6' represent the unsaturated gain and unsaturated 
Loss. Additionally, the carrier density is written n( , la ) (z ,  t )  = 
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nO(gla)+nl(gl, ,(~) COS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[At+$(,/,)]+. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , and terms showing 
modulation at the first harmonic in the rate equation lead to: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALL [accomplished through a(g/a),], giving the single pass net 

gain and phase effects that are not due to coupling as 

and 

da2 + ($ + As,)' 

So the carrier modulation becomes small and it lags the optical 
pulses by nearly 7r/2 radians since the repetition rate is well 

beyond the recombination rate or saturation rate. Computing 
the spatial integrals in (1 l), we find that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I sin (27rhg) 
1 1  

and 

is the normalized gain. Likewise for the part of the integral 

over the absorber, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-A& 

K, = 

For steady state, we can ignore all time derivatives and 

using (6),  (9), (23), (25), (26), (28), and (29), the equation for 

mode n becomes, 

{2i.r,,(Qn - U,) - 1 + f (%)[ ( l+  ia,,)io 

+ (1 + iaan)60]}E, 

+ - ( vn -G-1+  l?n+E,+l) = 0 ,  (30) 
S1 

SO 

where we have defined coupling coefficients for the nearest 
neighbor modes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'fn- = f ( W n ) [ K g ( l  + iCYgn)f?ilLG 

(27) I sin (27rha) 
1 1  

v,+ = f ( w , ) [ n , ( ~ +  icvgn)e-'+g 

+ Ka(  1 + zaa,)e-4a] -. (32) 
SO 

2 
These two terms are completely determined by the structure 
of the laser and the average photon intensity. 

Let a single detuning in the separation of modes be defined, 

6 = w, - R, - (wn-l - Rn-l),  since for stable modelocking 
the detuning of the repetition rate, 6, must equal the detuning in 

the separation between all neighboring modes. The detuning, 

S,, of mode n with respect to R, is then the detuning of 

the zeroth mode plus n times the repetition rate detuning, 

6, = 60 + nS. The general equation then for the nth mode 
with nearest neighbor coupling, for a parameters incorporated 
for the gain and absorber, and with geometric overlap factors 
included is 

[-2zrPn(S0 + nS) + (1 + iagn)in + (1 + iaa,)E, - 11 

Here 51 = s1/sO, and the material gain bandwidth is taken 

into account with g, = f ( w n ) g o ,  and 6, = f(w,)&. 

. E ,  + sl('fn-En-l + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?j,+B,+l) = 0. (33) 

111. THE SOLUTION 

The coupled nonlinear equations (33) can be solved system- 

atically. Also, one should solve the problem for a large enough 

number of equations such that the result does not depend 
strongly on the fact that the modes beyond those considered 

have been forced to have an electric field of zero. To reduce 

the number of parameters for the calculation, it will be helpful 
to transform to dimensionless parameters, 

and 

(28) 

One can write the single pass gain from (12) along with 

its corresponding phase contribution. Also, for generality, one 
should allow the inclusion of a frequency dependence 1161 of 

C T P  

Pr 
ti0 = riih, -. 

and 

A 
G '  

s = -  

-3 ' - Gr, ' 

(34) 

(35) 

(39) 
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One may subtract out the detuning of mode zero from the 

set of equations (33). Defining a constant, 

(40) 

Im (R) is the component of detuning of the center mode due to 

mode coupling and Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(R )  is the reduction in required average 

gain for the center mode due to mode coupling, similar to that 

discussed in [17]. Taking the imaginary part of the n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 
equation and subtracting it from the general mode n equation 
leads to 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA51 

EO 
R = (i jo-E-1 + i jO+E+l)T, 

[-2iTp,,n6 + (1 + i(Vgrl)jn + (1 + ia,,,)a, 

- i ( c y y o j o  + a,o i io )  - i Im (R) - 1]E, 

+ &(ijn-G--l + ijn+En+l) = 0. (41) 

The net gain spectrum of the semiconductor material is con- 

cave downward and may be represented by the form f(uT1) = 
1/[1 +(U, - w ~ ) ~ / ( A w ) ~ ] .  Since to second order, one may 
write f (w, , )  = 1 -bn2, substituting this, and since b << 1 and 

the coupling term is of the same order, we may ignore their 

product which goes like b 2 .  Now the general equation for mode 
n with center mode detuning subtracted finally becomes 

[-2iTp,7L6 + ( 5 0  + G " ) ( l  - bn2)  

- ,ibn2(crg,jo + a, ,~ ,~)  - 1 - i Im (R)]E, 
(42) 

- -  + S I ( % - L  + ijn+En+l) = 0. 

Considering a set of 2q+ 1 modal equations (all are complex 

except for the .n = 0 equation), there are 4qf 1 real equations 
and a list of 4q+ 3 unknowns including 4q+ 1 unknowns 
to specify the fields [we may take arg(E0) = 0 to define an 

absolute optical phase] and two other unknowns, go and 6. The 
phase of the repetition rate is also a degree of freedom and 
one may specify arg (91) = 0. Then, the modulation response 

of the laser sections can be referenced relative to the phase 

of the optical pulses. Since physically one considers a laser 

operating with a specific dc pumping (or more appropriately 

here, a constant average output) power, one may specify a 

particular average cavity photon intensity for 50. The latter 

two conditions, without loss of generality, reduce the number 

of unknowns in the field vector to 4q- 1, making the problem 

completely determined. Due to the nonlinear dependence of 
the parameters go,  ?io, 6, Im (R) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG's, and SXl on the vector 

E ,  the problem remains challenging. However, the solution 
is vastly simplified by viewing it as an eigenvalue problem. 

For example, one may directly write the problem in a matrix 

form as (43) found at the bottom of the page. Through 

multiplications of the rows by the appropriate complex factors 

+ 

Choose initial values 

of Gnand 6 

f - 7  Findnew go 

T- 

Update %atrix, 

recalculate E, and test 

t--- Update zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, R, 
and test 

945 

\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

Recalculate 6 

Fig. 3. Flowchart of calculation for self-consistent supermode solution. 

one may also show that the problem can always be written, 

having a single complex eigenvalue, i, in the form 

[A"(go, 6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi) - Ij,]zm = 0, (44) 

where A" (go, 6, E )  is a modified complex matrix and E m  is 
a modified eigenvector. The problem is more easily solved by 
keeping it in the form of (43), however. For a nontrivial eigen- 
solution, we require that the real and imaginary parts of the 
determinant of the matrix in (43) equal zero. This gives two 

conditions from which one may find a best estimate for ,GO and 

b,  and this was done simply through Newton's method. With 

this better estimate of the eigenvalue we proceed to update the 

relevant parameters and find a new estimate of the eigenvalue. 

The process is repeated as shown in Fig. 3 until convergence 

is reached. The computation gives tlhe supennode solutions of 

the high-repetition-rate laser for the chosen average operating 
power go. 

Iv. RESULTS FROM AN APPROXIMATE 

THREE-MODE SOLUTION 

The full numerical solution is complicated, involving a large 

number of interrelated parameters, and it does not quickly 
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lead to a simple intuitive picture of the effects of the device 

parameters. To supplement the full numerical solution, an 

approximate analytical description involving only three modes 

and an approximation of the supermode symmetry is pursued. 
One may show ,that if the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ parameters of the gain and 

absorber sections are ignored, and the gain bandwidth is 
symmetric relative to the cavity modes, a totally symmetric 
(odd symmetry) supermode solution for any number of modes 
will result. The form of the supermode solution will be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

En = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl,, (45) 

and one can always find a three-mode solution having all three 

modes exactly in phase. However, as soon as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAag # 0 or a, # 
0 is chosen, the symmetry is broken and one finds that now a 

chirpfree supermode solution of this form will not generally 

exist. 
Thus, no passively mode-locked supermode will exist hav- 

ing the form of (45) when the amplitude-to-phase coupling 
is taken into account. The relative phases of the modes in 

the supermode depend strongly on the amplitude-to-phase 

coupling. One finds, for numerous solutions of the full nu- 

merical analysis that once a nonzero Q parameter is chosen, 

the solutions are of the even symmetric form 

since phase effects resulting from the Q parameter greatly 
outweigh the effects present when the Q'S were zero. 

Since a simple, analytic, and reasonably accurate result can 
be obtained assuming (46) when some nonzero Q is present, we 

derive a solution for three mode-locked modes using this even 

symmetric assumption. The term - i b [ ~ , ( * ~ ) g o  + ~ , ( * ~ 1 i i o ]  

is found to have little effect on the net gain, amplitudes, or 

phases of the supermode and will, for this reason, be ignored 

in this three-mode approximation. 

From the n = 1 and n = - 1  equations of (42), the 

expressions 

and 

can be obtained. Combining this with the n = 0 equation, we 
can find the reduction in required gain for the center mode, 

Re (R )  = -(GO + Zo - 1) 

From (48), we will find that a chirp-free solution will exist if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kgag sin ?Lg = -&aa sin $,. (50) 

In this case, a soliton-like compensation effect occurs in the 
monolithic laser cavity. This condition implies that the self- 
phase modulation (SPM) of the absorber section may exactly 
oppose the SPM from the gain section [ 181, [ 191. For a larger 

TABLE I 
PARAMETER VALUES USED IN THE CALCULATIONS 

- 

Variable Symbol Vdhir Units 

Kumbei of Modes Considered Z q + l  15 

Center Wavelength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 0.85 pni 

Effective Index of Refraction p. 3 6  

Diffcrcntial Gain G 1 x 10-15 cmz 

Ratio of Diff. Abs. / Diff. Gam .9 2.2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gdin Spction nccov~ry  Time rJ I x 10-9 

Rdtio of Abs. Krcov. Time 1 Gain Recov. Time r 0.3 

FunddrnriiI.al RepPt,ition Rate A/2* 80 GHz 

C a n  Section a parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0" 4 

Absorber Scction a pararnekr a, 2 I 

Pholon Cavit.y Lifetime r, 10 ps 

Confincnient Factor r 0.05 

Katio of Absorber Length / Total Laser Length h, 0.25 

Uormalized TTnsdturatrri Absorptiun a; -2.0 

Gain Bandwidth Aw/Zn 10 THa 

Coefficient for 0's dependencc on intensity ai 0.25 

ratio of cyg : a,, a net upchirp (optical frequency rising with 
time during the pulse) due to SPM will occur. In the frequenc? 

domain picture this corresponds to a phase term. eza("-'"o) , 
multiplying the optical spectrum, where a is negative. For a 
smaller ratio of ag : a,, a net downchirp due to SPM is found 
to occur. A plot of chirp verses the ratio of a g :  a, for a 

specific laser operating point will be shown in the next section, 

using the full calculation. Evidence of both these regimes has 

recently been demonstrated [20]. 

V. THE FULL SUPERMODE CALCULATION 

As formulated in Section 111, the high-repetition-rate laser 
supermode can be found numerically. This may be accom- 
plished even while eliminating all assumptions on the modal 
phase and removing any restrictions on the number of partic- 

ipating Fabry-Perot modes. One finds that if a large enough 

number of modes is allowed such that the outermost modes 

have powers of < loF6 compared to the strongest modes, there 

is little further change in the result if additional modes are 
included. 

Given reasonable parameters for laser material and structure, 
such as those shown in Table I, one can find the supermode 
solution. In general, one would not expect the a parameter 
from the gain and absorber regions to be equal. Previously 
[ 151, the dependence of the interband transition component 

of this parameter has been calculated. One would expect 

a smaller Q parameter for laser sections pumped to lower 
carrier densities. This, in fact, is found to be an important 
consideration in finding a stable supermode solution. Lau 
[8] has calculated supermode solutions for three modes with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cy = 0 for both sections. We find reasonably good qualitative 
agreement with these results even as the number of modes 

considered is increased. The plots resulting from Q = 0, 
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Fig. 4. Calculated mode structure of supermode assuming no ampli- 
tude-to-phase coupling, ay  = 0, clcl = 0, .go = 2.5, and using the other 

parameter values as given in Table 1. 
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Fig. 6. Calculated plot of Re(X) ,  the reduction in threshold gain due to 
mode coupling, versus average cavity intensity is plotted for a ,  = 0, u a  = 
0, ai = 0. The corresponding detuning, 6, of the repetition rate is shown on 
the scale at right. 
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Fig. 5.  Calculated phase of the supcrmode assuming no amplitudc-to-phase 

coupling, a!, = 0, a, = 0, .So = 2.5, and using Table I to define all other 

parameters. 

<?o = 2.5, a 15-mode calculation, and the parameters in Table 

I are shown in Figs. 4 and 5.  From here on, the frequency 

dependence of the cold cavity loss is neglected so rpn = rp. 
Fig. 4 shows the calculated field strengths for the 15-mode 

supermode. Fig. 5 shows the corresponding modal phases, 

where 4% is defined as the optical phase in Ene2(wnt+d'n). 
Clearly, the symmetry of (45) is present here. Fig. 6 shows the 

threshold gain difference, Re (R) ,  as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50, defined 

previously and is displayed in units of IOW4 times the cold 

cavity loss (from rp). The right side scale of this plot shows the 

expected detuning, 6, of the cavity repetition rate. Fig. 7 shows 

the modulation depth at the first harmonic as a function of 

average intensity. The threshold gain for single mode operation 

must be greater than the mode-locking threshold gain, meaning 

Re (R )  > 0 for stable modelocking to be realized [8]. In ideal 

amplitude modulated (AM) passive modelocking, a minimum 
mode coupling is required in order to obtain simultaneous 

lasing from 3 or more modes of a homogeneously broadened 

laser. This requires a minimum nonlinearity to be present. 

Hence, if the average cavity intensity, 50, is too low, an 
inadequate amount of mode coupling is generated, and mode- 

locked operation cannot be obtained. Additionally, if the cavity 
intensity is large such that the absorber is strongly saturated to 
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Fig. 7. 
of the repetition rate is plotted for aq  = 0, a ,  = 0, 01 = 0. 

The calculated modulation depth €or the signal at the first harmonic 

a point far beyond the knee of the nonlinearity, the minimum 

mode coupling again cannot be obtained. This explains why 
mode-locking may only be obtained over a finite range in 

Fig. 6. The right scale in Fig. 7 shows in this case where ag = 
0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcy, = 0, one does not expect SPM to generate any pulse 
chirp effects and the quadratic phase (41 + 4-1 - 2 4 0 ) / 2  = 
0 indicates that, to first order, no linear chirp is present in 

this case. 

As discussed in the previous section, the a parameter 

can have a large effect on the phase of each optical mode. 
Assuming an N parameter of ag = 4 for the gain section, 
only a limited range of values for cy,, the N parameter for 

the absorber section, was found to give stable self-consistent 
solutions. A calculation of the approximately linear chirp 
(quadratic phase) at the center of the optical spectrum, (41 + 
4-1 - 2 4 0 ) / 2 ,  versus a,/ag is plotted in Fig. 8 for the range 

corresponds to a region where the SPM effects from absorber 

and gain nearly cancel as discussed in [20]. The dependence of 

the a's on frequency is ignored in this and subsequent plots. 

The same plots as shown in Figs. 4-7 can be shown for 
the case including effects of reasonable nonzero a's. The 
new calculated field strength for the 15-mode supermode with 

of stable mode-locked solutions. The range is quite narrow and 
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Fig. 8. 
center of the optical spectrum, for difl‘erent values of 

A calculation of the linear chirp, the quadratic phase around the Fig. 10. 
coupling, ay = 4, ua = 2.1. Parameters are exactly as shown in Table 1. 

Calculated phase of supermode when allowing amplitude-to-phase 

- 8  - 6  - 4  - 2  0 2 4 6 8 

Mode Number, n 

Fig. 9. Calculated mode structure of supermode when allowing ampli- 
tude-lo-phase coupling, as = 4, aa = 2.1, and So = 2.5. Parameters are 
exactly as shown in Table I. 

ag = 4 and a, = 2.1 is shown in Fig. 9. Fig. 10 shows 

the corresponding modal phases, 4%. The previously discussed 

change in supermode symmetry is mainly shown in this plot 

of dn. Before discussing the other three plots, it should be 

mentioned that physically as the gain current in the laser is 

increased to raise the average intensity, go, one weakens the 
absorber section through the relation ko = ii;/(l + r s s ” ~ ) ,  
where kb is the section’s normalized unsaturated absorption. 
The strength of the gain is also weakened since we require 

that go + i i o  - 1 0. Thus, the two sections both operate 

closer to transparency as 50 is increased. This implies a 
change in each section’s a parameter also occurs and their 

dependence on 50 will be approximated to first order here by 

Aa, = -alA50 and Aa, = alASo, where a1 takes into 
account a linear decrease (increase) in ag (0,) as the cavity 
intensity is increased. Here, QZ is taken as 0.25 around the 
point sXo = 2.5. 

Fig. 11 shows the plot of required gain reduction, Re (R) ,  
and the expected detuning in the repetition rate as a function 

of 50. Fig. 12 shows the modulation depth and an estimate of 
the mode-locked laser’s linear chirp (41 + 4-1 - 249)/2. One 

can see that the expected mode-locking range over which the 

coupled equations can be simultaneously satisfied is severely 

limited when the phase condition including the a parameter is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 11. Calculated plot of Re (I?), the reduction in threshold gain due to 
mode coupling, versus average cavity intensity is plotted for as = 4, aa = 
2.1. The corresponding detuning of the repetition rate is shown on the scale 
at right. 
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Fig. 12. The calculated modulation depth for the signal at the first harmonic 
of the repetition rate is plotted for ag = 4, cua I 2.1. The corresponding 
linear chirp, ($1 + 4-1- 240)/2 is shown on the scale at right. 

considered (although other parameters remain identical). This 
is a direct result of the presence of the a parameters in the 
coupling terms and occurs consistently regardless of whether 

or not one includes more allowed modes in the calculation. 

It is expected that the mode-locked laser’s operation will 

change if one modifies the structure or bias parameters. These 
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to gain recovery time. 

effects are important if one intends to understand or optimize 

the laser’s operation. We have calculated results one would 

expect from modifying key laser parameters and using the 

nearest-neighbor mode coupling approximation for the range 

of supermode solutions that exist around the case considered 

in Fig. 9. 

One finds that if s,  the ratio of the differential absorption 

to differential gain is increased, a larger mode coupling is 

obtained. This leads to a larger value of Re (R) ,  the reduction 

in the mode-locking threshold relative to the single-mode 
threshold, as shown in Fig. 13, which is expected to lead to a 
more stable mode-locked supermode. Fig. 13 also shows that a 

decreased upchirp or increased downchirp is expected to occur 

if a larger s is present and all other parameters are unchanged. 

The effect of T ,  the ratio of absorber recovery time to gain 

recovery time, is expected to be nearly the opposite. Shown in 

Fig. 14. an increased r leads to a decrease in the mode-locked 
gain reduction and ultimately a loss of a stable mode-locked 
solution altogether as the ratio is increased above T = 0.46 in 

this case. Simultaneously the increased value of T will lead to 
an increased upchirp as shown in Fig. 14. It i s  known that one 

can reduce the value of r through stronger reverse bias or ion 

implantation into the absorber section. 
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Fig. 16. Calculated value of Re ( R ) ,  the reduction in threshold gain due to 
mode coupling, plotted against h a ,  the physical length of the absorber as a 
fraction of the laser’s full  length. 

An increase in t ib ,  the unsaturated absorption strength of 

the saturable absorber, is shown to lead (as shown in Fig. 15) 
to an increase in the mode-locked gain reduction, Re (R) .  
The strength of the unsaturated absorption is proportional to 

this section’s length and absorption coefficient. An increase 

in either of these is expected to lead to a more strongly 
downchirped pulse as shown in Fig. 15. This agrees with 

expectations described in [20] where a stronger saturable 
absorber is cited as the reason for a significant downchirp 
being obtained over most of the experimental chirp-versus- 

current curve. 
Unlike the time-domain analyses [ 11-[3], the frequency 

domain analysis allows one to account for the spatial geometry 

of the laser. Recently, this has been noted by Martins-Filho et 
al. [13]. The ratio of the physical length of the absorber to the 

total laser length, ha, is expected to change the effectiveness 
of mode coupling. If the same absorber strength can be 
incorporated into a smaller segment of the laser, one can 
achieve a more effective mode coupling and obtain a larger 
mode-locked gain reduction, Re ( 1 2 ) .  This is consistent with 
results determined in [21]. Fig. 16 also shows the effects on 
pulse chirp when the parameter h, is varied. 

The mode-locked laser’s round-trip frequency is determined 

by the laser’s cavity length. A larger cavity round-trip fre- 
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8' section. A broader spectrum and longer pulses as found from 

streak camera results can typically be obtained at higher bias 0.05 
+ 

conditions. An optical spectrum for the laser operating at 

30 mA has previously been shown in [20]. The chirp of 

this spectrum has been measured through cross-correlation 

techniques [20], and integration of these results leads to phase 

values, 4(X) ,  of the optical spectrum plotted in Fig. 19. The 
figure shows a phase of the optical spectrum corresponding to 
a train of pulses with a 1.7 pshm downchirp and a time- 

bandwidth product, &-Ai/, which is 18% larger than the 

compressed pulse time-bandwidth product achieved in the 

to the calculated optical phase in Fig. 10. Additionally, the 

experimental measurement of 1.7 pshm downchirp for this 
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Fig. 18. Calculated value of Re (n), the reduction in threshold gain due to experiment. This regime Of Operation qualitatively corresponds 

quency is expected to result in reduced mode coupling due to 
a reduction in ng and n,. This will eventually lead to a point 

where the minimum mode coupling cannot be obtained and 
no stable mode-locked supermode exists. Although the point 
is ~ 1 0 5  GHz in this case (Fig. 17), using larger values of s 
(=5), we have obtained stable supermode solutions slightly 

beyond 200 GHz. This agrees well with the theoretical results 

presented by Lau [SI. In this case, larger mode coupling effects 

resulted in a reduced downchirp. 

As intuitively expected, lasers having a larger gain and 
absorber bandwidth will obtain a greater mode-locked gain 

reduction. Fig. 18 shows the expected increase in Re(R) as 
one solves the supermode equations allowing successively 
larger material bandwidths. Even larger advantages are found 

to occur if one assumes a gain bandwidth wider than the laser's 
absorption bandwidth. An expected decreased pulse chirp for 

larger material bandwidth is also shown in Fig. 18. 

laser is equivalent to (41 + 4-1 - 2 4 0 ) / 2  = 0.07 rad. 
Previously presented experimental results have demonstrated 

the effect of changes in the dc gain section injection current 

from the preceding case. The experimental results are shown 
in Fig. 20. While the laser is above threshold, the changes in 
dc injection current are nearly linearly related to the average 

photon intensity inside the cavity, go. Hence, we expect 

Fig. 20 to show agreement with the calculated pulse chirp 

in Fig. 12. Both show a sequence of upchirped, chirp-free, 

and downchirped operation as the photon intensity inside the 

cavity is increased. 

Although good agreement between theory and experiment 
is obtained, we do not intend to imply that we have found 

the actual parameters of the mode-locked laser. However, we 
believe that the chosen parameters place the calculation in 
qualitatively the same regime of operation and that the calcu- 
lated effects of the Q parameter, the laser structure parameters, 

and the bias parameters will show a good correspondence with 

further experimental results. 

Additionally, all results presented in this paper are be- 

lieved to be for the lowest-order supermode-the one which 

possesses a minimum threshold gain. We have found some 
relatively small regions in the parameter space in which a 
second supermode solution could be found as a self-consistent 
solution. For a set of reasonable parameters and an arbitrary go, 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

Experimental measurements of the spectrum, pulse chirp, 

and the variation of pulse chirp with injection current have 
previously been published [20]. The laser used was a mono- 

lithic two-section quadruple quantum well GaAs laser having 
a repetition rate of 73 GHz. It showed qualitatively the same 
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Fig. 20. 
increasing downchirp is seen as the gain current is increased. 

Measured values of chirp as a function of gain section currents. An 

the second supermode was always found to exist for a slightly 

different repetition rate detuning, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, and a higher required 

gain, ,GO. The supermode solutions were not orthogonal. This 
is contrary to some assumptions in a recent publication on 

passively mode-locked laser noise [22] .  One would expect 

actively mode-locked supermode solutions to be orthogonal. 

However, passively mode-locked lasers are inherently non- 

linear, i.e., mode coupling is a direct consequence of the 

saturation effects resulting from the beating of the Fabry-Perot 

laser modes. Only in a linear coupled mode problem would 
one expect the eigenvectors to be orthogonal. In passive 

mode-locking, however, the presence of one supermode will 

modify the system (the laser) such that conditions will not 

permit a second supermode to exist simultaneously. Thus a 

superposition of supermodes is not a valid solution to the set 

of coupled nonlinear equations. The characteristic shape of 

the second supermode we have found has essentially the same 

shape for its supermode envelope but was offset by half of 

one mode spacing from the usual spectrum center. Two of the 

lasing modes in its supermode thus possessed nearly equal field 
strengths, the nearly quadratic phase was essentially centered 

about this offset point and the necessary gain was always found 
to be higher than that required for the supermode which was 

not offset. 

VII. CONCLUSION 

In conclusion, we presented a steady-state analysis for high- 

repetition-rate passively mode-locked semiconductor lasers. 
We derived an equation for an arbitrary mode that exists 
in the supermode of the laser. The equation requires gain 

to balance loss and incorporates phase effects that result 
from amplitude-to-phase coupling in each section of the laser. 
Additionally, mode coupling enters through the nonlinearity 

of both the saturable gain and saturable absorption sections. 
A nonlinear eigenvalue problem approach was presented to 

numerically solve for the passively mode-locked laser’s su- 
permode. An approximation of nearest-neighbor-only coupling 
was used in this paper. Next, an approximate three-mode 
solution was analytically solved for the purpose of building in- 
tuition and theoretically explaining recent experimental results 
which show the possibility of obtaining upchirped, chirp-free 

and downchirped pulses all from a single laser under different 

gain section bias. Results of the full supermode calculation 

(with nearest-neighbor-only coupling) were presented. The 

supermode magnitude and phase were plotted in the case 

where no amplitude-to-phase coupling exists in either laser 

section. Here, supermode solutions could be obtained over a 

broad range of cavity intensities. In this case, parameter values 

and mode-loclung ranges show good agreement with previous 
calculations by Lau [8]. Other characteristics of the supermode 
solution were plotted as a function of cavity intensity also. 

When reasonable amplitude-to-phase coupling factors were 

chosen for both laser sections, the supermode symmetry was 

severely changed. The phase was found to take on a predomi- 

nantly quadratic shape in the region of the spectrum where the 

mode strengths are significant. This indicated the presence of 

essentially linearly chirped pulses. The presence of a nonzero 

a parameter was found to drastically limit the range (in terms 

the variation of cavity intensity) over which stable mode- 

locked solutions could be found owing to the added phase 

effects. Near regions where the phase effects from gain and 

absorber nearly compensated each other, the effect of the a 
parameters on the reduction in gain due to coupling were 

neither very advantageous nor very harmful. They typically 

led to a slight weakening in Re (R) ,  the reduction in thresh- 

old gain due to mode coupling. To facilitate understanding 
and optimization of high-repetition-rate passively mode-locked 

lasers, calculations of the reduction in gain provided through 

mode coupling and of the expected linear chirp were presented 
for variations in parameters of the laser structure and bias. 

Comparisons were made lo expectations and to results from 

other models. 

Next, experimental results from a high-repetition-rate pas- 

sively mode-locked laser at 73 GWz were compared to the 

supermode calculations in this paper. A good qualitative 

agreement for the spectral shape, chirp, and variation in chirp 

with changing injection current was found. The calculated su- 

permodes analyzed were typically not as broad as the measured 

supermode. The reason for choosing narrower supermodes is 
that in this case the higher-order coupling effects (e.g., second 
nearest neighbor, third nearest neighbor coupling, etc.) are 

expected to be smaller. Thus, in this case, the nearest-neighbor- 

coupling approximation is expected to be more accurate. 

However, by including second-nearest-neighbor coupling and 

higher-order coupling in the matrix for the supermode solution, 

one may more accurately model lower repetition rate mode- 
locked lasers down to lower repetition rates ( ~ 5 5  GHz) which 

are viable for data rates in communication systems which are 

practical today. 
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