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ABSTRACT

We present optical photometry and optical/near-infrared spectra of the type Ia
SN 2002bo spanning epochs from –13 days before maximum B-band light to +102 days
after. The pre-maximum optical coverage is particularly complete. The extinction de-
duced from the observed colour evolution and from interstellar NaID absorption is
quite high viz. E(B − V ) = 0.43 ± 0.10. On the other hand, model matches to the
observed spectra point to a lower reddening (E(B − V ) ∼ 0.30). In some respects,
SN 2002bo behaves as a typical ”Branch normal” type Ia supernova (SN Ia) at opti-
cal and IR wavelengths. We find a B-band risetime of 17.9±0.5 days, a ∆m15(B) of
1.13± 0.05, and a de-reddened MB = −19.41± 0.42. However, comparison with other
type Ia supernovae having similar ∆m15(B) values indicates that in other respects
SN 2002bo is unusual. While the optical spectra of SN 2002bo are very similar to those
of SN 1984A (∆m15(B) = 1.19), lower velocities and a generally more structured ap-
pearance are found in SNe 1990N, 1994D and 1998bu. For supernovae having ∆m15(B)
> 1.2, we confirm the variation of R(SiII) (Nugent et al. 1995) with ∆m15(B). How-
ever, for supernovae such as SN 2002bo, with lower values of ∆m15(B) the relation
breaks down. Moreover, the evolution of R(SiII) for SN 2002bo is strikingly differ-
ent from that shown by other type Ia supernovae. The velocities of SN 2002bo and
1984A derived from SII 5640Å, SiII 6355Å and CaII H&K lines are either much higher
and/or evolve differently from those seen in other normal SNe Ia events. Thus, while
SN 2002bo and SN 1984A appear to be highly similar, they exhibit behaviour which
is distinctly different from other SNe Ia having similar ∆m15(B) values. We suggest
that the unusually low temperature, the presence of high-velocity intermediate-mass
elements and the low abundance of carbon at early times indicates that burning to Si
penetrated to much higher layers than in more normal type Ia supernovae. This may
be indicative of a delayed-detonation explosion.

Key words: Supernovae: general – Supernovae: 2002bo

1 INTRODUCTION

Thermonuclear (type Ia) supernovae (SNe Ia) are be-
lieved to originate from the thermonuclear disruption of
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a white dwarf composed of carbon and oxygen. In the
favoured scenario, the white dwarf accretes mass (mostly
hydrogen) from a companion star in a binary. However,
the identification of the progenitor type is by no means
certain. Alternative initial scenarios include the merging
of two binary white dwarfs, or the accretion of helium
(Hillebrandt & Niemeyer 2000). It is generally accepted
that when the degenerate mass reaches the Chandrasekhar
limit (1.4 M⊙), explosive carbon ignition occurs and
burning to nuclear statistical equilibrium ensues, forming
mostly radioactive 56Ni. Intermediate-mass nuclei, e.g. 28Si,
are produced in the outer, lower-density regions. These
elements give rise to the typical observed spectra of SNe Ia,
which are dominated by lines of Fe, Si and S. Nevertheless,
the details of the explosion mechanism are still poorly
understood. For example, it is not clear whether nuclear
burning proceeds entirely in the form of a deflagration,
or whether a subsequent transition to a detonation wave
occurs. Also, we do not understand fully what determines
the mass of 56Ni produced, or if events producing the same
56Ni mass can differ in other respects.

It is vital that we improve our understanding of SNe Ia
both for the insight they can provide about astrophysical
processes taking place under extreme conditions, and
because of their use in the measurement of cosmological
distances. Observational studies of SNe Ia at high redshifts
(z ∼ 0.3 − 1.2) are yielding increasingly strong evidence
that we are living in a Universe whose expansion be-
gan to accelerate at half its present age. This finding is
commonly taken to indicate a finite positive cosmological
constant Λ (Riess et al. (1998); Perlmutter et al. (1999))
or, alternatively, a new form of as yet unidentified energy
with negative pressure (Caldwell et al. 1998). However, an
important caveat is that these cosmological conclusions rely
on the assumption that the physical properties of high–z
SNe Ia are the same as those seen locally. But given the
uncertainties in the nature of local SNe Ia, it is important
to test the validity of this assumption. In order to address
this fundamental question we must endeavour to improve
our physical understanding of the SN Ia phenomenon.

SN Ia theoretical models must be tested and con-
strained through comparison with observed light curves
and spectral evolution. Yet only for a few events has even
moderate coverage been achieved, especially at infrared
wavelengths. Moreover, at all wavelengths there is a
scarcity of observations during the 2–3 weeks when the SN
is still brightening. Data obtained during this time can
be particularly effective in setting tight model constraints
(Riess et al. 1999). A minority of SNe Ia are obviously
peculiar (Leibundgut et al. (1993); Turatto et al. (1996);
Turatto et al. (1998); Li et al. (2001)), although their
significance for the overall picture is not clear. However,
even the so-called “normal” SNe Ia display differences from
one to another, e.g. in the photospheric expansion velocities
deduced from the lines of the intermediate mass elements
(IME) (Branch et al. (1988); Barbon et al. (1990)). Other
more subtle differences in the photospheric spectra can also
be seen.

The desire to make decisive progress in accounting

for the observed behaviour and diversity of SNe Ia in
terms of the explosion physics and the nature and evo-
lution of the progenitor provided the motivation for the
recently formed European Supernova Collaboration (ESC).
This comprises a large consortium of European groups
specialising in the observation and modelling of SNe Ia.
The consortium is partially funded as an EU Research
Training Network. The ESC aims to elucidate the nature of
SNe Ia through the acquisition of high-quality photometry
and spectra for 10–12 nearby SNe Ia. These data will
be used to constrain state-of-the-art models for the ex-
plosion and progenitor, also under development by the ESC.

Our first target, SN 2002bo in NGC 3190 (SA-LINER
type), was discovered independently by Cacella and Hirose
(Cacella et al. 2002) in CCD images taken on Mar. 9.08 UT
and Mar. 9.505, respectively. It lies at the edge of a dust
lane. Soon after discovery, SN 2002bo was classified as a
type Ia SN at an early epoch, with the discovery date be-
ing about 2 weeks before maximum light (Kawakita et al.
(2002), Benetti et al. (2002), Matheson et al. (2002) and
Chornock et al. (2002)). The high expansion velocity (about
17,700 kms−1) of the Si II 6355Å doublet was particu-
larly indicative of an early epoch. In this paper we describe
the results of our photometric and spectroscopic monitoring
campaign for SN 2002bo, and compare the observed proper-
ties with those of a sample of Branch-normal (Branch et al.
1993) SNe Ia. We also modelled two of the optical spectra,
the earliest one and one very close to maximum, in order to
derive some of the properties of the SN ejecta. We address
the problem of determining the epoch of the spectra and
in particular the reddening to the SN. We have also mod-
elled our earliest IR spectrum both to address the amount
of primordial carbon left in the SN ejecta and to identify the
transitions present in this spectrum.

2 OBSERVATIONS

Spectroscopy and imaging were carried out at several sites
using a number of different telescopes and/or instruments
(Tables 2 & 4).

2.1 Optical Photometry

The CCD frames were first debiased and flat-fielded in the
usual manner. Since most of the data were obtained un-
der non-photometric conditions, relative photometry was de-
rived with respect to a local sequence of field stars (see Fig.
1). The three photometric nights marked in table 2 (plus one
VLT+FORS1 observation of SN 2002bo on March 3rd, 2003)
were used to calibrate this sequence against Landolt stan-
dard stars (Landolt 1992). The magnitudes and estimated
errors of the local standards are shown in Table 1. These
magnitudes were obtained by summing the counts through
an aperture, the size of which varied according to the seeing.
The telescope+instruments used for covering the SN 2002bo
light curves appear to define a reasonably homogeneous pho-
tometric system. No systematic deviations are apparent in
any photometric band (Fig. 2). This holds even for the
S70 and INT photometric systems which have high colour
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Figure 1. SN 2002bo in NGC 3190 and reference stars. The
image is in the I band and was taken with the TNG+DOLORES
on 2002 May 6.

Table 1. Magnitudes of local sequence stars identified in Fig. 1

star B V R I

1 15.19 ± 0.02 14.39 ± 0.04 13.96 ± 0.05 13.58 ± 0.02
2 15.01 ± 0.03 14.28 ± 0.06 13.84 ± 0.05 13.52 ± 0.02
3 13.03 ± 0.09 12.37 ± 0.08 11.98 ± 0.08 11.64 ± 0.08
4 18.47 ± 0.04 17.18 ± 0.03 16.31 ± 0.04 15.63 ± 0.04
5 16.31 ± 0.04 15.65 ± 0.06 15.24 ± 0.07
6 18.55 ± 0.06 17.90 ± 0.04 17.51 ± 0.08 17.16 ± 0.04

terms in the colour equations (S70 - B:−0.27× (B −V ) and
I:−0.31×(R−I); INT - B:+0.23×(B−V ), V:+0.135×(B−V )
and R:+0.20 × (R − I)).

Ideally, one would like to remove the galaxy background
by subtraction of a galaxy “template” where the SN is ab-
sent. This procedure was indeed applied to some of the
S70 observations, especially those with complex background
(mostly R and I frames) around the SN. However, for most
of the data a suitable template image was not available.
Therefore, in such cases the SN magnitudes were measured
using the IRAF point-spread-function fitting task Daophot.
This procedure allows the simultaneous fitting and subtrac-
tion of the galaxy background. While the pixel scales var-
ied from one instrument to another, they were always suf-
ficiently small to provide good sampling of the PSFs (see
Table 2 caption). For cases in which the seeing is fair, the
SN is relatively bright, and its PSF well-sampled, it has been
found that this method produces results in excellent agree-
ment with the template subtraction method (cf. Rigon et al.
(2000)). Our results confirm this. The supernova magnitudes
are presented in Tab. 2. The table lists the date (col.1),
Modified Julian Day (col.2), epoch relative to tBmax

(col.3),

Figure 2. B,V,R and I light curves of SN 2002bo. The R limit of
Sarneczky & Bebesi 2002 is also shown. The solid lines represent
the B,V,R and I light curves of SN 1998bu (Suntzeff et al. 1999,
Jha et al. 1999, Hernandez et al. 2000) adjusted to the SN 2002bo
distance and reddening (see Sect. 2.2). A distance modulus of
30.25 (Tanvir et al. 1999) and a reddening of 0.33 (Phillips et al.
1999) have been assumed for SN 1998bu. The dashed line is the
B light curve of SN 1984A (Barbon, Rosino & Iijima, 1989). In
this case the light curve has been arbitrarily shifted in magnitude
to fit the SN 2002bo B maximum.

BVRI magnitudes with estimated internal errors in paren-
theses (cols.4–7), the telescope used (col.8), and the seeing
for each epoch, averaged over the observed bands (col.9).

2.1.1 Light curves and rise times

The B, V, R and I light curves of SN 2002bo are
shown in Fig. 2, including the pre-discovery limit of
Sarneczky & Bebesi (2002). The light curves are very
well sampled, spanning epochs from just a few days after
the explosion to 100 days post-maximum. We used a
high order Legendre polynomial to fit the points around
maximum, and hence infer a Bmax = 14.04 ± 0.10 mag on
tBmax

=MJD 52356.0±0.5 (2002 March 22.5 UT). Thus, our
observations cover epochs between –13 and +102 days with
respect to tBmax

. Likewise, we found Vmax = 13.58 ± 0.1
mag, and occurring about two days after tBmax

, in agree-
ment with the template light curves derived by Leibundgut
(1991a). The corresponding values for the other two
bands are R = 13.49 ± 0.10 and I = 13.52 ± 0.10 and
occurred respectively about 1 day after and about 2.4
days before tBmax

. The tendency for the I-band peak to
occur before tBmax

has been observed in other SNe Ia
e.g. SN 1998bu (Hernandez et al. 2000). The secondary
I maximum has been reached on = MJD 52381.5 (e.g.
∼ 30d after and 0.35mag below the primary maximum).
From the B light curve we derive a post-maximum decline
of ∆m15(B)= 1.13 ± 0.05.

Thanks to the early detection and good temporal cover-
age of SN 2002bo we have been able to estimate the risetime
to maximum and hence the explosion epoch t0, following
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Table 2. Photometric measurements for SN 2002bo

date M.J.D. epoch∗ B V R I tel. avg seeing
(days) (arcsec)

9/3/02 52342.95 –13.1 16.94 (0.04) 16.22 (0.03) 15.90 (0.03) 15.86 (0.03) A1.82 2.4
11/3/02 52344.01 –12.0 16.30 (0.10) 15.71 (0.12) 15.37 (0.10) 15.43 (0.10) A1.82 1.5
12/3/02 52345.02 –11.0 15.72 (0.06) 15.22 (0.03) 14.93 (0.05) 14.95 (0.06) A1.82 2.3
12/3/02 52345.99 –10.0 15.33 (0.07) 14.93 (0.07) 14.55 (0.05) 14.56 (0.06) A1.82 2.2
13/3/02 52346.92 –9.1 15.11 (0.03) 14.71 (0.03) 14.32 (0.03) 14.30 (0.03) A1.82 2.6
15/3/02 52348.02 –8.0 14.83 (0.03) NOT 1.1
15/3/02 52348.89 –7.1 14.72 (0.03) 14.39 (0.02) 13.86 (0.04) S70 2.6
16/3/02 52349.92 –6.1 14.47 (0.04) NOT 0.9
17/3/02 52350.89 –5.1 14.31 (0.06) 14.07 (0.02) 13.63 (0.05) S70 2.0
19/3/02 52352.04 –4.0 14.22 (0.03) NOT 3.2
19/3/02 52352.05 –4.0 14.22 (0.05) 13.88 (0.07) 13.62 (0.11) 13.57 (0.08) A1.82 3.0
19/3/02 52352.75 –3.3 14.17 (0.03) 13.88 (0.02) 13.54 (0.03) S70 1.4
19/3/02 52352.96 –3.0 14.10 (0.04) 13.76 (0.03) 13.54 (0.05) 13.56 (0.04) A1.82 3.7
20/3/02 52353.89 –2.1 14.08 (0.02) NOT 3.1
21/3/02 52354.84 –1.2 14.07 (0.10) 13.68 (0.10) 13.50 (0.10) 13.55 (0.10) A1.82 2.0
21/3/02 52354.95 –1.1 14.08 (0.07) NOT 1.1
23/3/02 52356.87 0.9 14.05 (0.05) 13.68 (0.02) 13.57 (0.02) S70 1.8
25/3/02 52358.85 2.9 14.14 (0.06) 13.64 (0.03) 13.67 (0.04) S70 1.7
27/3/02 52360.74 4.7 14.23 (0.04) 13.65 (0.02) 13.64 (0.03) S70 1.5
28/3/02 52361.08 5.1 14.13 (0.06) 13.66 (0.04) 13.45 (0.10) 13.77 (0.04) JKT 2.0
29/3/02 52362.74 6.7 14.40 (0.04) 13.77 (0.02) 13.75 (0.02) S70 1.9
2/4/02 52366.84 10.8 14.64 (0.04) 14.00 (0.02) 13.91 (0.05) S70 3.4
8/4/02 52372.85 16.9 15.36 (0.06) 14.31 (0.02) 13.99 (0.05) S70 1.5
10/4/02 52374.89 18.9 15.68 (0.11) 14.47 (0.03) 13.98 (0.05) S70 1.7
14/4/02 52378.8 22.8 16.37 (0.23) 14.66 (0.03) 13.87 (0.03) S70 1.4
23/4/02 52387.88 31.9 15.20 (0.03) 14.02 (0.17) S70 1.5

5/5/02 52399.86 43.9 17.11 (0.18) 15.70 (0.05) 14.82 (0.06) S70 1.6
6/5/02∗∗† 52400.89 44.9 17.03 (0.05) 15.63 (0.05) 15.13 (0.05) 14.92 (0.05) TNG 1.9
7/5/02 52401.82 45.8 14.89 (0.07) S70 6.5
12/5/02 52406.85 50.9 16.13 (0.05) 15.26 (0.11) S70 2.6
15/5/02 52409.83 53.8 17.45 (0.34) 16.16 (0.06) 15.23 (0.11) S70 1.7
15/5/02 52409.95 54.0 17.20 (0.08) 15.86 (0.06) 15.52 (0.03) 15.36 (0.04) A1.82 2.1
26/5/02 52420.86 64.9 16.60 (0.18) 15.94 (0.18) S70 4.0
10/6/02 52435.87 79.9 17.47 (0.07) 16.47 (0.06) 16.44 (0.08) 16.54 (0.04) A1.82 2.6
14/6/02 52439.98 84.0 17.52 (0.07) 16.71 (0.06) 16.54 (0.04) 16.64 (0.05) NTT 0.7
27/6/02 52452.92 96.9 17.65 (0.04) 16.98 (0.04) 16.86 (0.04) 16.93 (0.09) INT 1.1
29/6/02† 52454.94 98.9 17.06 (0.06) 17.10 (0.04) 17.12 (0.06) JKT 1.4
30/6/02 52455.92 99.9 17.70 (0.05) JKT 2.0
2/7/02† 52457.94 101.9 17.72 (0.08) 17.20 (0.05) 17.01 (0.10) 17.07 (0.10) JKT 2.6

∗ Epoch relative to Bmax, which occurred on MJD=52356.0 = 2002 March 22.5 UT
∗∗ We also have a U -band measurement at this epoch of U = 17.58 ± 0.05
† Photometric night
A1.82 = Asiago1.82m telescope + AFOSC; pixel scale=0.473”/px
NOT = Nordic Optical Telescope + ALFOSC; pixel scale=0.188”/px
S70 = 0.70m Sternberg Astronomical Institute telescope + CCD Camera; pixel scale=1.00”/px
JKT = 1.0m Jacobus Kapteyn Telescope + CCD camera; pixel scale=0.330”/px
TNG = Telescopio Nazionale Galileo + DOLORES; pixel scale=0.275”/px
NTT = ESO NTT + EMMI; pixel scale=0.1665”/px
INT = 2.5m Isaac Newton Telescope + WFC; pixel scale=0.333”/px

Riess et al. (1999). The main hypothesis of this method is
that the early luminosity (for epochs t0 <

∼
10 days) is pro-

portional to the square of the time since explosion. We find
t0(B) =MJD 52338.7 ± 0.6, t0(V ) =MJD 52338.1 ± 0.8,
t0(R) =MJD 52339.2 ± 0.8 and t0(I) =MJD 52338.3 ± 1.0.
Thus there is reasonable agreement between the bands as to
the explosion epoch, viz. MJD= 52338.1 ± 0.5. The B-band
risetime of 17.9±0.5 days is consistent with the Riess et al.
value of 18.7 ± 0.6 days for a SN Ia with the ∆m15(B) of
SN 2002bo. However, our explosion epoch is in better agree-
ment with the −17.6 ± 0.05 days for SN 1994D derived by

Vacca & Leibundgut (1996) through empirical light curve
fitting of B, V and R photometry. Finally, we note that the
explosion epoch derived from modelling of the SN 2002bo
spectra (see Sect. 2.4) is −18 ± 1 days, which is consistent
both with our photometry-based value.

2.1.2 Colour evolution

In Fig. 3 we show the intrinsic B − V , V − R and V − I
colours and their evolution. The B − V colour was de-
reddened by 0.43 mag, with corresponding values being
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Figure 3. De-reddened B−V , V −R and V − I colour evolution
of SN 2002bo compared with that of SN 1994D (Patat et al 1996),
SN1998bu (Suntzeff et al. 1999, Jha et al. 1999, Hernandez et al.
2000), 2001el (Krisciunas et al. 2002) and the Nobili colour-curve
templates (Nobili et al. 2003). In the upper panel, the dashed
line shows the Lira loci which describes the later B − V colour
evolution of unreddened SNIa.

applied to the other two colours (see subsection 2.2). The
law of Cardelli et al. (1989) was used for de-reddening.
Also shown is the colour evolution of SNe 1994D, 1998bu
and 2001el, together with the colour templates (with their
intrinsic dispersions) of Nobili et al. (2003) for 0 − 40 days,
and the loci of Lira (Lira (1995), Phillips et al. (1999)). The
3 comparison SNe have ∆m15(B) values of, respectively,
1.32, 1.01 and 1.13. Similarly to SN 1994D, two weeks
before maximum the intrinsic B − V colour is quite red,
viz. (B − V )0 ∼ +0.28, but it moves rapidly blueward
reaching a minimum of −0.12 around −4d. SNe 1994D,
1998bu and 2001el display a similar behaviour, although
SN 2001el shows a slightly deeper minimum. The curve
then moves redward such that by day +23 it appears to
reach a maximum at (B−V )0 ∼ 1.27, about 0.2 mag redder
than for the comparison SNe. The curve then follows a
typical evolution to the blue, reaching a value close to zero
by +100d. The Nobili et al. template nicely describes the
B − V evolution in the 0 − 40 day era.

The V − R colour curve of SN 2002bo exhibits a
behaviour which is very similar to those of the comparison
SNe. Only near maximum does the SN 2002bo curve depart
from the general trend, showing values which are about
0.10 mag. bluer. The Nobili template fails to describe the
V − R evolution of our SN Ia sample especially around
phase +10days. The V − I colour evolution of SN 2002bo
is very similar both to those of the comparison SNe, and to
the Nobili template.

2.2 Reddening, distance and bolometric light

curve

Lira (1995) and Phillips et al. (1999) found a uniform
colour evolution in the B − V colour of unreddened Type
Ia SNe between +30 and +90 days. By de-reddening the
observed SN 2002bo B − V colour curve until it matched
the Lira relation (Fig. 3), we deduced a colour excess of
E(B − V ) ∼ 0.47 mag. Only a minor fraction of this is
due to extinction in the Galaxy (E(B − V )Gal = 0.027,
Schlegel et al. (1998)), with the remaining ∼0.44 mag.
being due to extinction in the host galaxy. That the light
from SN 2002bo suffered significant extinction in the host
galaxy is confirmed by strong NaID interstellar absorption
lines at the redshift of NGC 3190. These lines have a total
equivalent width EW = 2.27 ± 0.20Å. Using the relation
E(B − V )>

∼
0.16 × EW (NaID) of Turatto et al. (2003)

yields E(B − V )host
>
∼

0.36, in good agreement with the
value of 0.44 derived from the late photometry. Given the
intrinsic dispersion in both the E(B − V ) − EW (NaID)
relation and the Lira relation, we conservatively adopt
E(B − V ) = 0.43 ± 0.10. We note, however, that spectral
modelling (see Sect. 2.4) points to a lower reddening value
of E(B − V ) ∼ 0.3.

Adopting a redshift of +1405 kms−1and correcting for
LG infall (+208 km s−1) onto the Virgo cluster (LEDA) with
an adopted Virgo distance of 15.3 Mpc (Freedman et al.
2001) we derive a distance modulus of µB = 31.67
(21.6 Mpc) for NGC 3190.

This value is adopted throughout the paper. Given
the apparent peak magnitudes and the reddening, we
obtain absolute peak intrinsic (i.e. de-reddened) magni-
tudes of MB = −19.41 ± 0.42, MV = −19.42 ± 0.33,
MR = −19.18 ± 0.25, and MI = −18.93 ± 0.18 for
SN 2002bo. As before, the law of Cardelli et al. (1989) was
used for de-reddening. Given the uncertainties involved,
the SN 2002bo magnitudes are consistent with the mean
values given by Gibson et al. (2000) and Saha et al. (2001)
for SNe Ia with Cepheid-determined distances. The average
∆m15(B) of these calibrators is 1.15 ± 0.14 (Altavilla et al.
2003), similar to that of SN 2002bo.

The host galaxy of SN 2002bo, NGC 3190, belongs to
the LGC 194 (Leo III) galaxy group (Garcia 1993), which
contains 16 members. The surface brightness fluctuation
method of distance determination (Tonry et al. 2001) has
been applied to two of these viz. NGC 3193 and NGC 3226,
yielding values of 32.66± 0.18 and µ = 31.86± 0.24, respec-
tively. Together with the distance modulus for NGC 3190
derived above, this suggests considerable depth (∼16 Mpc)
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Figure 4. uvoir light curve of SN 2002bo. The solid line is the
uvoir light curve of SN 1998bu reconstructed from the published
UBVRI data and adding the UV and IR contributions given in
Suntzeff (1996) for a sample of SNIa. The error bars refer only to
the photometric errors and not to the uncertainty related to the
reddening.

in LGC 194, and may even cast doubts upon the group
membership of NGC 3193.

Integrating the fluxes in the BVRI bands, adding the
IR contributions at various epochs as discussed in Sect.
2.3.3, and applying the Contardo et al. (2000) and Suntzeff
(1996) corrections for the missing U and UV contributions,
respectively, we derived the uvoir luminosity for SN 2002bo
(see Fig. 4). For comparison the uvoir light curve of SN
1998bu is also plotted. The similarity of the two light curves
is remarkable. SN 2002bo reached bolometric maximum on
MJD=52356 with logL=43.19. The date of the maximum
and the rise time (about 17.4 days, calculated with the
method described in the previous section) closely match the
maximum date and rise time found for the B band.

A summary of the main parameter values for SN 2002bo
and its host galaxy are given in Tab. 3.

2.3 Spectroscopy

Spectroscopic observations spanned days –12.9 to +84, with
exceptionally good temporal coverage being achieved during
the risetime, allowing us to follow day-to-day variations.
Table 4 lists the date (col.1), the Modified Julian Date (col.
2), the epoch relative to tBmax

(col.3), the wavelength range
(col.4), the instrument used (col.5), and the resolution as
measured from the FWHM of the night-sky lines (col.6).
On three epochs (∼–4, –2, –1 days), almost contemporary
spectra were obtained at the A1.82 and NOT. These were

Table 3. Main parameter values for SN 2002bo and its host
galaxy

Parent galaxy NGC 3190
Galaxy type SA(s)a pec sp LINER †

RA (2000) 10h18m06s
.51

Dec (2000) +21◦49’41”.7
Recession velocity [km s−1] 1405 ‡

Distance modulus (H0 = 65) 31.67
E(B − V ) 0.43 ± 0.10
Offset from nucleus 11”.6E 14”.2S

Explosion epoch (MJD) 52338.1 ± 0.5 (Mar 06, 2002)
Date of B maximum (MJD) 52356.0 ± 0.5 (Mar 23, 2002)
Magnitude at max B = 14.04 ± 0.10, V = 13.58 ± 0.10,

R = 13.49 ± 0.10, I = 13.52 ± 0.10
∆m15(B) 1.13 ± 0.05

† NED
‡ LEDA, corrected for LG infall (208 kms−1)

co-added to produce the spectra shown for these epochs.

The spectra were reduced following standard FIGARO
or IRAF routines. Extractions were usually weighted by the
variance based on the data values and a Poisson/CCD model
using the gain and read noise parameters. The background
to either side of the SN signal was fitted with a low order
polynomial and then subtracted. Fluxing was by means of
spectrophotometric standard stars. The flux calibration of
the optical spectra was checked against the photometry
(using the IRAF task stsdas.hst calib.synphot.calphot) and,
where discrepancies occurred, the spectral fluxes were scaled
to match the photometry. On nights with good observing
conditions the agreement with photometry was within 10%.
The flux calibration of the IR spectra was checked against
JHK photometry kindly supplied to us by K. Krisciunas
and N. Suntzeff. The fluxing was adjusted where necessary.
The IR spectra on days +56/57/61 and day +85 were at
later epochs than covered by the photometry. Therefore, the
IR light curves of Meikle (2000) were used to extrapolate
to these ephochs. The optical spectra are shown in Figure
5, and the IR spectra in Figure 12.

2.3.1 Optical spectra

Inspection of Figure 5 shows that the early blueward shift
of the (B − V ) colour (Figure 3) is at least partly due to a
gradual steepening of the continuum until about −4 days.
Similarly, the subsequent reddening follows a gradual
decrease in the continuum slope.

We compare the spectra of SN 2002bo with those of
SNe 1984A, 1990N, 1994D and 1998bu at about 1 week
pre-maximum in Fig. 6, and at maximum light in Fig. 7.
All these SNe have a ∆m15(B) in the range 1.01–1.32,
and so in this sense can be regarded as fairly typical.
Nevertheless, spectral differences between the events are
apparent. At ∼1 week pre-maximum (Fig. 6), starting at
the shortest wavelengths we note that, unlike SNe 1990N
or 2002bo, SN 1998bu shows a double structure in the
CaII H&K absorption feature. SN 1994D shows a similar
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Figure 5. Spectral evolution of SN 2002bo. Wavelength is in the observer frame. The ordinate refers to the first spectrum, and the
others have been shifted downwards by: 0.6, 1.2, 1.8, 2.4, 3, 3.6, 4.2, 4.8, 5.4, 6, 6.2, 7.4, 8, 8, 8.6, 9.2 and 9.2 respectively. Epochs are
shown to the right of each spectrum. The ⊕ symbols show the main telluric features
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Table 4. Spectroscopic observations of SN 2002bo

Date M.J.D. epoch∗ range tel.∗∗ res.
(days) (Å) (Å)

10/03/02 52343.06 –12.9 3600-7700 A1.82 25
10/03/02 52343.99 –12.0 3600-7700 A1.82 25
11/03/02 52344.99 –11.0 3400-7700 A1.82 25
13/03/02 52346.91 –9.1 3400-7700 A1.82 25

14/03/02 52347.48 –8.5 8135-13060 UKIRT 25
14/03/02 52347.48 –8.5 14666-25400 UKIRT 100
15/03/02 52348.04 –8.0 3400-9050 NOT 14
16/03/02 52349.93 –6.1 3400-9050 NOT 14
18/03/02 52351.85 –4.1 3200-7550 WHT 2
19/03/02 52352.02 –4.0 3400-7700 A1.82 25
19/03/02 52352.05 –3.9 3400-9050 NOT 14
19/03/02 52352.94 –3.1 3400-7700 A1.82 25
20/03/02 52353.90 –2.1 3400-9050 NOT 22
20/03/02 52354.00 –2.0 3400-7700 A1.82 25
21/03/02 52354.88 –1.1 3400-7700 A1.82 25
21/03/02 52354.96 –1.0 3400-9050 NOT 22
22/03/03 52355.18 –0.8 3200-8900 WHT 12
23/03/02 52356.08 +0.1 3400-10350 A1.82 25
28/03/03 52361.94 +5.9 3100-8800 WHT 12
03/04/02 52367.29 +11.3 8180-13390 UKIRT 25
03/04/02 52367.29 +11.3 14725-25250 UKIRT 100
21/04/02 52385.40 +29.4 10680-13880 UKIRT 25
21/04/02 52385.40 +29.4 14780-25260 UKIRT 100
21/04/02 52385.91 +29.9 3500-9800 INT+I 4
23/04/02 52387.40 +31.4 8230-10980 UKIRT 25
01/05/02 52395.90 +39.9 3650-9200 INT+I 4
06/05/02 52400.94 +44.9 3250-8040 TNG 12
17/05/02 52411.90 +55.9 8155-10730 UKIRT 25
18/05/02 52413.00 +57.0 10730-13530 UKIRT 25
22/05/02 52417.00 +61.0 19840-25130 UKIRT 100
14/06/02 52440.00 +84.0 3900-9750 NTT 10
15/06/02 52440.99 +85.0 9400-16500 NTT+S 21

* - relative to the estimated epoch of B maximum (MJD=52356.0)
** - See note to Table 2 for telescope coding plus:
UKIRT = United Kingdom Infrared Telescope + CGS4
WHT = William Herschel Telescope + ISIS
INT+I = Isaac Newton Telescope + IDS
NTT+S = ESO NTT + SOFI

double structure close to maximum light (Fig. 7), and
this may well have also been present in its –8d spectrum.
However, the spectral coverage stopped short of the this
region. The prominent emission feature centered at about
4000Å varies somewhat between events owing to differing
strengths in the SiII 4128, 4131Å doublet. The strength
of this feature appears to be proportional to that of other
SiII features in the various SNe. In the 4000-4500Å range,
SN 2002bo and SN 1984A are rather similar in that they
show a strong, absorption at ∼4250 Å, dominated by MgII
4481 Å, plus a weak absorption feature at ∼4400 Å due to
SiIII 4553, 4568Å. In the other three SNe, the SiIII feature
is much stronger, comparable in depth to the ∼4250 Å
absorption which now contains both MgII 4481 Å as well
as a significant contribution from FeIII (4419, 4433 Å etc.),
as inferred from modelling and from the strength of the
corresponding FeIII feature near 4950Å (FeIII 5074, 5127,
5156Å). Given the temperature sensitivity of the SiIII line,
we can immediately conclude that both SNe 1984A and
2002bo have significantly cooler spectra than the other

Figure 6. Comparison between spectra of SNe Ia about a week
before maximum light arranged according to decreasing ∆m15(B)
(given in parenthesis). The data sources are: SN 1998bu (Hernan-
dez et al. 2000), SN 1994D (Patat et al. 1996), SN 1990N (Lei-
bundgut et al. 1991b) and SN 1984A (Benetti, 1989). The spectra
have been corrected for reddening and redshift. Epochs are shown
to the right of each spectrum.

three SNe shown in Fig. 6. In the range 4500-5000Å, SNe
1984A and 2002bo show a strong and broad absorption
(dominated by FeII lines including multiplet 48), showing
little structure. In contrast, the other three SNe Ia show
a much weaker absorption, but with a greater multiplicity
of small features. Some of these differences may be due to
higher velocities in SNe 1984A and 2002bo, leading to a
greater degree of line blending. In the 5000–6000Å range,
while the spectra of all five SNe Ia become more similar
to one another, we nevertheless note a somewhat larger
amount of structure in SNe 1990N, 1994D and 1998bu than
in SNe 1984A and 2002bo. For example, a small dip at
5150Å is present only in the first three SNe. Longwards
of 6000Å, we find that SNe 1984A and 2002bo show SiII
6355Å absorption profiles which are both broader and more
intense than in the other three SNe Ia.

Turning our attention now to the maximum-light spec-
tra SNe Ia (Fig. 7) we see that the differences between
SNe 1984A and 2002bo on the one hand and SNe 1990N,
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1994D and 1998bu on the other are similar to those seen
at the earlier epochs. For example, the double structure in
the CaII H&K absorption is still present in SN 1998bu and,
as mentioned above, in SN 1994D (see also Hatano et al.
(2000)). However, it remains absent in SN 2002bo. The
4000–5000Å region exhibits differences similar to those seen
at earlier times, with a strong and relatively structure-
less emission feature at 4500Å dominating the SNe 1984A
and 2002bo spectra, while the other three SNe Ia show
much weaker but more structured features. Also, the SiII
6355Å absorption profiles continue to be broader and deeper
in SNe 1984A and 2002bo.

Nugent et al. (1995) found that the ratio, R(SiII), of
the depth of the SiII 5972Å and SiII 6355Å absorption
troughs near maximum light is related to the speed of
decline (and therefore to the luminosity) of the event, and
to the characteristic temperature of the spectrum. Slower,
brighter decliners exhibit a smaller value of R(SiII) at max-
imum. In Figure 8 we have plotted maximum-light R(SiII)
vs. ∆m15(B) for 11 SNe. These include our SNe Ia sample
plus those presented in Nugent et al. (1995), and SN 1999ee
(we found values of R(SiII) for SNe 1990N and 1994D
which are slightly different from those of Nugent et al.
(1995): 0.21 and 0.33 vs. 0.16 and 0.29 respectively). Figure
8 shows that while the Nugent et al. relation holds for
∆m15(B)>1.2, at values smaller than this it breaks down.

We also investigated the variation with epoch of the
Nugent et al. relation for SNe 1984A, 1990N, 1994D,
1998bu, 2002bo, 1999ee. Fig. 9 shows that as we move to
pre-maximum epochs the value of R(SiII) remains higher in
the faster-declining SN 1994D (∆m15(B)=1.32) than in the
slower-declining SNe 1999ee, 1990N and 1998bu. SNe 1994D
and 1998bu show low amplitude variations with epoch,
without any strong trend, while SN 1990N and possibly
SN 1999ee move to lower ratios at earlier epochs. However,
SN 2002bo exhibits a strikingly different behaviour. R(SiII)
has a remarkably high value of 0.54 at an epoch of −13d,
but then undergoes a dramatic decline, levelling out just
a few days before maximum at R(SiII)=0.17. This is the
lowest value measured in the entire sample at this epoch.
SN 1984A also seems to follow this trend, although it does
not fall to such a low value. The decrease of R(SiII) in
SN 2002bo seems to track the increase of the photospheric
temperature as indicated by the decrease of the (B − V )
colour (see Fig. 3) at these epochs.

2.3.2 The expansion velocities

Up to +5 days, SiII 6355Å provides one of the deepest
absorption features. At the earliest epochs (see Figure 5),
the profile is significantly asymmetric, owing in part to
the presence of strong NaID interstellar absorption and
the smaller equivalent width of the SiII feature at these
early times. The minimum then shifts rapidly redwards
and deepens with time as the photosphere moves into
deeper, more slowly-moving material. This is illustrated
in Fig. 10, which also shows the SiII 6355Å velocity
evolution for SNe 1998bu, 1994D, 1990N, 1984A. The figure
reveals clear differences between these events. SN 2002bo
exibits an exceptionally high velocity which decreases in

Figure 7. As for Fig. 6 but for spectra at maximum light.

a smooth, gradual manner. A similar behaviour may be
present in SN 1984A, although the data are more sparse. In
contrast, SNe 1990N, 1994D and 1998bu show significantly
lower velocities, with a distinct break in the decline rate
around −5 days. The presence of a velocity break may
be related to the fact that the velocity deduced from the
SiII 6355Å absorption traces the photospheric velocity
only during the era when the material near the photo-
sphere is Si-rich. Later, the Si absorption region becomes
more detached from the photosphere leading to a veloc-
ity which changes more slowly with time (Patat et al. 1996).

Lentz et al. (2000) computed emergent pre-maximum
spectra for a grid of SNIa atmospheres and argued that dif-
ferences between SNe Ia events in the blueshift of the SiII
6355Å line at a given epoch may indicate a range of metal-
licities in the SNIa progenitor. In Fig. 10 we show the Lentz
model velocity predictions for metallicity values of ×1/3,
×3 and ×10 solar. While the behaviour of the lower veloc-
ity SNe Ia is plausibly encompassed by a metallicity range
×1/3 to ×3, a metallicity even as high as ×10 solar fails
to give velocities that are anywhere near those exhibited by
SN 2002bo, not to mention the even faster SN 1984A. This
suggests that the Si observed in these spectra is mostly the
product of SN nucleosynthesis, and that the outer layers of
the ejecta of SN 2002bo do not preserve much memory of
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Figure 8. R(SiII) vs. ∆m15(B) of the SNIa sample of Fig. 9
plus those presented in Nugent et al. 1995. Most of the ∆m15(B)
have been taken from Phillips et al. (1999) but that of SN 1999ee
(Stritzinger et al 2002), SNe 2002bo and 1984A (this paper). The
∆m15(B) have been corrected for the reddening effect (Phillips
et al. 1999). The R(SiII) of our sample have been measured by
us the others have been taken from Nugent et al. (1995).

the properties of the progenitor, as also indicated by the ab-
sence of the CII lines discussed below. Possible causes for
this are discussed later.

We have also examined the evolution of the SII 5640Å
absorption (Fig. 11a). This is an interesting line to study
since, as it is quite weak, we can be reasonably certain that
it is always formed close to the continuum photosphere (even
allowing for possible SiIII 5740Å contamination at early
times (Mazzali 2001)). Thus, it is a valuable probe of the true
photospheric velocity. Curiously, the pre-maximum velocity
behaviour appears to divide our sample into two groups. In
SN 2002bo, the SII velocity declines from a value of over
16,000 km/s at –13 days to about 10,000 km/s at maxi-
mum. A similar behaviour is observed in SN 1984A, where
the velocity is even slightly higher, although here the data do
not begin until about –7 days. In contrast, the other SNe Ia
reach only ∼12,500 km/s at –13 days, but they also decline
to 10,000 km/s at maximum. This suggests rather different
conditions in the outer envelopes of the two groups. Between
0 and +10 days, SNe 1990N, 1994D and 1998bu appear to
show roughly the same decline rate in the velocity of the SII
5640Å line. Coverage of SNe 1984A and 2002bo is insuffi-
cient to reach definite conclusions about their decline rate
in this period. Actually, at phase +8 days the SII doublet
has already disappeared in the SN 1984A spectrum.

The other very prominent absorption at early times
is due to the CaII H&K doublet. At a given epoch this
has an even higher optical depth than SiII 6355Å and so

Figure 9. Evolution of R(SiII) for a sample of SNe Ia. Solid
circles refer to SN 2002bo data. The data sources are as in Fig. 6,
SN 1999ee is from Hamuy et al. (2002). The ∆m15(B) values for
SNe 1999ee, 1998bu, 1994D, 1990N and 1984A are 0.94 (Hamuy
et al.), 1.01, 1.32, 1.07 (Phillips et al 1999) and 1.19 (this paper)
respectively.

Figure 10. Evolution of the expansion velocity deduced from the
minima of the SiII 6355Å absorption for SN 2002bo, SN 1998bu
(Asiago archive, Hernandez et al. 2000), SN 1994D (Meikle et
al. 1996, Patat et al. 1996), SN 1990N (Leibundgut et al. 1991b)
and SN 1984A (Benetti, 1989). Also shown (solid lines) are the
velocities predicted by the by Lentz et al (2000) model for cases
of ×10 (top at epoch 0) , ×3 (middle) and ×1/3 (bottom) solar
C+O layer metallicity
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Figure 11. Evolution of the expansion velocities deduced from
the minima of the SII 5640Å (a) and CaII H&K absorptions
(b). The data sources are as in Fig. 10 apart from CaII H &
K of SN 1984A which are from Wegner & McMahan (1987) and
the McDonald Observatory (unpublished). For comparison, the
SN 2002bo expansion velocity from SiII 6355Å is also shown (solid
line) in both panels.

the line forms further out in the ejecta, in higher velocity
layers. Consequently, the CaII H&K minima exhibit higher
velocity blueshifts than those seen in contemporary SiII
6355Å minima (Fig. 11b). Up to maximum light, the CaII
H&K velocities of SNe 1990N, 1994D, and SN 2002bo are
similar, while SN 1998bu shows velocities which are slower
by about 4000 kms−1. On the other hand, the velocity in
SN 1984A is about 5000 km s−1 higher. By +10 days, the
SN 1994D velocity has declined to values similar to those
of SN 1998bu. On the other hand, the SN 2002bo velocity
declines more slowly, so that by +10 days its interpolated
value exceeds those of SN 1994D and SN 1998bu by ∼3000
kms−1. By about day +20, the SN 1984A velocity is
only 1000 kms−1 faster than the interpolated value for
SN 2002bo.

2.3.3 Infrared spectra

Inspection of Figure 12 shows the earliest IR spectrum (–
8.5 days) to be largely featureless. A weak, complex P-
Cygni line at about 10500 Å is apparent. This feature was
first noted in the early spectra of SN 1994D (Meikle et al.
1996), who suggested either HeI 10830Å or MgII 10926Å
as plausible identifications. More detailed modelling by
Mazzali & Lucy (1998) yielded a similarly ambiguous iden-
tification. However, Wheeler et al. (1998) found that their
models indicated that the feature should be due almost en-
tirely to MgII. Our synthetic spectra (described below) tend
to support the MgII identification. A broad, P-Cygni profile
(peak emission at ∼16700Å, rest frame) is also present, and
Wheeler et al. (1998), Marion et al. (2003) attribute this to
SiII 16910Å and MgII 16760/800Åwith the SiII dominant.
Again, our synthetic spectra confirm this. At longer wave-
lengths the early IR spectrum is almost featureless except for
a shallow, broad P-Cygni feature with a peak at ∼20800Å
and attributed to SiII.

By +11 days, the spectrum has changed significantly,
with a number of prominent emission features now be-
ing present. The 10500 Å feature has vanished (similar
behaviour was seen in SN 1994D, (Meikle et al. 1996)),
while two strong, wide (FWHM ∼ 11000km s−1) emission
features have appeared at 15490 Å and 17525Å. These are
attributed to blends of CoII, FeII and NiII (Wheeler et al.
(1998), Marion et al. (2003)). The deep, characteristic
J-band deficit can also be seen (Spyromilio et al. 1994).
This persists right through to the latest spectrum at +85 d.
By one month post-maximum, three new broad emission
peaks have appeared at 21350Å, 22490Å and 23619Å
(rest frame), and these are attributed to Co, Ni and Si
(Wheeler et al. 1998). They are still visible in the +56 day
spectrum.

Hamuy et al. (2002) point out that the spectroscopic
homogeneity among Branch-normal SNe Ia extends to
the IR-domain. This is confirmed in Figure 13, where we
compare the IR spectra of SNe 2002bo at −8.5d, +11.1d
and +29.4d with those of SNe 1994D (Meikle et al. 1996))
and 1999ee Hamuy et al. (2002) at similar epochs. The
main difference between the three SNe Ia is that the –8.5 d
10500Å feature is absent from the SN 1999ee spectrum.
Since this feature is also clearly visible in SN 1999by
(Hamuy et al. 2002) it seems that SN 1999ee is peculiar in
this respect. We conclude that, as in the optical domain,
there exists some inhomogeneity among the IR spectra of
normal SNIa.

Figure 14 shows the overall optical+IR spectral evo-
lution of SN 2002bo. This was created by combining IR
and optical spectra having similar epochs. These collages
have been used to determine the IR flux contribution for re-
constructing the bolometric light curve (see Sect. 2.2). For
the earliest spectrum, following de-reddening we find that
the the total flux in the IR (integrated between 10000 and
25000 Å) is only 5% of the total optical flux (integrated be-
tween 3500 and 10000 Å). For the second one, taken near the
secondary maximum of the IR light curves, the IR contri-
bution rises to 18%. For the later two spectra the IR contri-
bution decreases to 6% of the optical. This is in close agree-
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Figure 12. Spectral evolution of SN 2002bo in the infrared. Wavelength is in the observer frame. The ordinate refers to the first spectrum,
and the others have been shifted downwards by: 1, 2.5, 2.9 and 4.4 respectively. Epochs are shown to the right of each spectrum.

ment with the finding of Suntzeff (1996, 2003) who shows
that more than 80% of the total SN Ia uvoir flux appears in
the 3000-10000Å window.

2.4 Comparison of observed and synthetic spectra

In order to interpret more deeply our observations, we have
computed synthetic spectra for some of the available epochs.
These models not only provide us with information about
the physical properties of the SN ejecta, such as tempera-
ture, chemical composition, etc., but also they can be used
to verify observation-based estimates of parameters such
as reddening, distance and epoch. We used a Monte Carlo
code originally developed by Abbott & Lucy (1985) to treat
multi-line transfer in the expanding envelopes of hot stars.
This code was further developed and adapted to SNe by

Mazzali & Lucy (1993), Lucy (1999), and Mazzali (2000).
We briefly describe here the structure of the MC code. De-
tails can be obtained from the references given above. The
code uses as input a model of the explosion (density v. ve-
locity), the emergent luminosity L, the epoch t (time since
explosion), the estimated velocity of the photosphere vph

and a set of abundances. These are treated as homogeneous
above the momentary photosphere.

The code divides the SN envelope into a number of
shells, with the thickness of each shell increasing as a
function of radius. Velocity is a continuous function of ra-
dius. For SN ejecta we may assume homologous expansion,
v = r/t, where r is the radius and t the time since the
explosion. Density is rescaled according to the epoch. The
temperature in the various shells is computed assuming
radiative equilibrium. At a given epoch, temperature and
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Figure 13. Comparison of SN 2002bo IR spectra with those of
SN 1999ee (from Hamuy et al. 2002) and SN 1994D for epoch
–8.5d (Meikle et al. 1996). The spectra have been corrected for
the redshift of the parent galaxies.

density are treated as constant in each shell. The Sobolev
approximation is adopted. Another basic assumption is
that all the radioactive decay and fast-electron energy is
deposited below a sharply-defined radius, the ”photosphere”
(Schuster-Schwarzschild approximation). This energy is
distributed equally among packets, which represent “collec-
tive photons”. These packets are characterised by a specific
frequency, and their distribution with frequency represents
the temperature at the photosphere. The packets propagate
through the envelope (i.e. the ejecta above the photosphere)
where they interact with electrons and atoms. Interaction
with electrons is treated as scattering, while if a packet is
absorbed by a line it is re-emitted in one of the allowed
downward transitions. This is selected randomly, but
weighted in proportion to the effective downward (u → l)
rate of each transition. The packet is assigned the new
frequency and a random direction and the MC procedure
continues until the packet either escapes the ejecta or is
absorbed back in the photosphere. Finally, the emergent
spectrum is computed using the formal integral (Lucy 1999).

Here, we present and discuss synthetic spectra for
two epochs. In view of the somewhat unusual properties

Figure 14. Opt-IR spectral evolution of SN 2002bo. Epoch from
B maximum is given for each IR and optical spectra.

of SN 2002bo (e.g. the high velocity of several lines at
early epochs), we computed models for the earliest spec-
trum (epoch ∼ −13 days) to determine whether or not
the outer abundances are peculiar. We also computed
models for a spectrum observed near maximum light
in order to check the consistency of our results. In our
computations we adopted a distance modulus µ = 31.67
(Section 2.2). The density structure and initial abundances
were taken from the W7 model (Nomoto et al. 1984).
However, unlike the W7 model, the composition is assumed
to be uniform above the momentary photosphere. This
is done by taking the W7 abundance at the velocity of
the momentary photosphere and assuming that this is
constant throughout the outer ejecta. This procedure is
repeated for each epoch independently of the previous
ones. An updated version of the code implementing the
full stratified abundance distribution is in preparation.
Keeping the density structure unchanged, the abundances
were then adjusted to improve the model match to the data.

We consider first the earliest spectrum (–13 days).
As indicated above, we started with a W7-like abundance
distribution. For the envelope at this epoch, the W7 abun-
dance is dominated by Oxygen (65% relative abundance by
number) and a rather small contribution of Carbon (7%).
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Figure 15. Spectrum of SN 2002bo 12.9 days before maximum. The dotted line shows the high reddened model with an epoch of 6.0 days

after explosion and the dashed line represents the model with lower reddening at an epoch of 5.0 days after explosion.

IME are represented by Magnesium (8%), Silicon (10%),
Sulphur (2%) and Calcium (2%). Iron group elements
(Titanium and Chromium 0.5% each, 2% of Iron, 2% of
Nickel and 1% of Cobalt) complete the initial abundance
set. Note that in order to reproduce observed features an
Fe abundance is adopted that is higher than the the W7
value. This is also higher than what 56Co decay would
allow, indicating that a significant quantity of Fe is left over
from the progenitor. A grid of models were then computed
in which radius of the ”photosphere”, emergent luminosity,
abundance distribution, epoch and reddening were adjusted
within a reasonable range to optimise the match to the
observed –12.9 day spectrum. Each cell of the grid consists
of a fixed epoch and reddening whilst the remaining
parameters are consequently set to optimise the fit to the
data. Spectra taken at the beginning of the rise of a SN are
very useful to determine the correct epoch since luminosity
changes significantly in this period. The position of the
photosphere in velocity space can be determined fairly
accurately by the position of the absorptions. Therefore,
a change in the assumed epoch translates almost directly
into a change of the photospheric radius (R = vt), which
influences strongly the overall temperature structure and
therefore the line depths and the ionization structure. The
epoch was varied between 4 and 7 days post-explosion,
and the reddening E(B − V ) between 0.00 and 0.45.
Velocity and luminosity were adjusted to fit the overall
flux level and the position of the absorptions. The best
match spectrum is shown in Figure 15. The corresponding
free parameter values obtained are: photospheric radius

= 6.67 × 1014 cm (corresponding to vph = 15, 450 kms−1),
log bolometric luminosity log10L = 41.94 [erg s−1], epoch
= 5 ± 1 days post-explosion, E(B − V ) = 0.30 and a total
mass of the envelope of Mtot = 0.088 M⊙. The abundance
distribution is discussed below. From this we deduce that
the maximum-light spectrum corresponds to an epoch of
18± 1 days post-explosion, indicating a risetime in B of the
same value. With a higher reddening of E(B − V ) = 0.45,
the best (but poorer) match (see Fig. 15) was achieved
with radius = 7.83 × 1014 cm (vph = 15, 100 kms−1),
log10L = 42.13 [erg s−1] at an epoch of 6 ± 1 days post-
explosion, implying a value of 19 ± 1 days for the epoch
of the maximum-light spectrum and the rise time. The
abundance distribution is discussed below. This higher-
reddening match yields a luminosity which is closer to the
value of log10L ≈ 42.12 [erg s−1] inferred from Fig. 4 for this
epoch, which could be expected, since the uvoir luminosity
in fig 4 was derived using the larger reddening. If a smaller
reddening was assumed, the SN luminosity would obviously
be smaller, and comparable to that obtained from the
low-reddening models here. While the overall best match
was obtained with E(B − V ) = 0.30, plausible matches
were also obtainable with smaller reddening. However, since
the photometry and NaID absorption indicate a higher
value viz. E(B − V ) = 0.43 ± 0.10, we conservatively adopt
E(B − V ) = 0.30 ± 0.15, and consider models with both
E(B − V ) = 0.45 and 0.30.

The radiation temperature at the photosphere TR is
found after six iterations determining the temperature struc-
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Figure 16. Near-infrared spectrum of SN2002bo. The –12.9 d model has been scaled to the flux level of the observations at day –8.5
before Bmax. Also shown are two versions of the low-reddening spectral models with carbon abundances of 3% and 40% respectively
(see text).

ture in the envelope and counts for the ”backwarming” ef-
fect, i.e. photons are scattered back into the photosphere
and heat it up. The values are TR = 9420 K for the low-
reddening model and TR = 9710 K for the high-reddening
model. Since in this temperature region there are ionisation
edges of some elements like Si and S, this difference in tem-
perature affects the ionization structure and consequently
the emergent spectra are significantly different. In the low-
reddening case, the Ca abundance was reduced to 1/4 of
its initial value while, for the high-reddening case, it was re-
duced to 1/10. All abundances of the iron group elements are
significantly lower than in W7 (≈ 10% of the initial values),
but the high-reddening model requires a higher Fe-group
abundance in order to reproduce the observed strength of
the FeI lines. This is due to the higher temperature in this
model, which leads to a lower fraction of FeII. The over-
all reduction of most elements caused an increased oxygen
abundance (≥ 70%).

We now consider in detail the model matches to the
early (–13 d) spectrum (Figure 15), and examine some of
the more prominent features. Shortward of ∼6500 Å both
models reproduce the main features of the data quite well.
Starting at the bluest part of the spectrum, the need for a
higher temperature in the high-reddening model is partly
driven by the requirement to reproduce the total flux in this
region. However this, in turn, tends to increase the ratio
of doubly- to singly-ionised species. Consequently, to repro-
duce the deep MgII 4481 Å absorbtion at 4300 Å, a higher
Mg abundance is required in the high-reddening model. A

similar argument is relevant to the deep, broad absorption
feature at ∼4800 Å, produced mostly by FeII lines. In the
high-reddening model this requires an Fe abundance of 0.02
in the envelope, but in the low-reddening model this falls to
0.015. We conclude that higher abundances of Mg and Fe are
required in the high-reddening model. In contrast, to repro-
duce the deep absorption feature at ∼5350 Å, attributed to
SII 5640 Å, we need a somewhat higher S abundance in the
low-reddening model (0.05 compared to 0.03). We ascribe
this to a larger proportion of S recombining to the neutral
state at this lower temperature compared with the high-
reddening model. When we consider Si, a difficulty for the
high-reddening model become apparent. In this model most
of the Si is ionized to Si2+, making it impossible to repro-
duce the full depth of the 5650 Å absorption, attributed to
the SiII 5972 Å line. The low-reddening model is able to re-
produce the absorption features due to SiII 5972 Å, 6355 Å,
by invoking a relative Si abundance of 0.12 by number at
high velocities (v ≥ 15400 kms−1). W7 predicts no Si at
such high velocities from which we may infer that extensive
mixing has taken place. However, accepting this, we might
also expect to see evidence of oxygen mixed downward to
low velocities. That this is not observed in the later spectra
perhaps suggests that O was at least partially burned to Si
even in the outer layers.

At longer wavelengths, both models produce a large
excess of flux. This is due to the limitation of the Schuster-
Schwarzschild approximation which is used in the code. In
the red/infrared part of the spectrum, where line opacity
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Figure 17. Spectrum of SN 2002bo 0.1 days after B maximum. Over-plotted are the two models with E(B − V ) = 0.45 (dashed) and
E(B − V ) = 0.30 (dotted line).

is low, the photosphere actually lies at a greater depth
than is estimated in the code, and consequently the model
overestimates the flux. Nevertheless, we have carried out
a comparison of model spectra with the observations in
the infrared region. Unfortunately there are no infrared
observations available at day –12.9, when the spectral
model is more applicable at such long wavelengths. The
earliest IR-spectrum is from day –8.5. Therefore, in order
to examine the 8000–25,000 Å region, we scaled the flux
of the –12.9d low-reddening model by ×1.4 to bring it
to the flux level of the observed spectrum from day –8.5.
The IR spectrum is shown in Figure 16, together with the
model spectra for two values of the carbon abundance (see
below). In general there is reasonable agreement between
the models and the observations with respect to the overall
shape of the IR spectra. In the 8000–13000 Å window we
identify features due to the MgII 9217,9243 Å doublet
and the 10914,10915,10952 Å triplet. Additionally there
is a SiII feature of minor importance at 9413 Å. In the
15,000–18,000 Å window we attribute the broad absorption
at 16,000 Å in the figure to a blend of SiII 16,906 Å,
16,977 Å, 17,183 Å and MgII 16,760 Å, 16,800 Å, with
the SiII feature dominating. Thus, at this early epoch we
confirm the IR identifications proposed by Marion et al.
(2003) for their spectra of other type Ia supernovae.
Marion et al. (2003) point out that the Mg II IR features
are valuable for placing limits on the mass of unburned
material. We shall address this issue in a later paper. In
the 20,000-25,000 Å region line no strong features were
observed in the spectrum nor predicted by the model.

There is only a shallow, broad P-Cygni feature at ∼20800Å
which we attribute to SiII. Marion et al. (2003) did not
cover this spectral region. A more detailed analysis of the
red/infrared part of the spectrum will be accomplished
in an upcoming paper using an improved version of the code.

One reason that early-time spectra are of particular in-
terest is because, via the strength of CII lines in the red
part of the spectrum, they can provide interesting limits on
the amount of carbon present, and how far into the outer
layers the burning penetrated. The carbon abundance at
extremely early times may even reveal the properties of the
progenitor white dwarf. Fisher et al. (1997) suggested that
the entire ‘SiII’ 6150 Å absorption feature in the –14 d spec-
trum of SN 1990N was actually CII 6578,83 Å at high ve-
locity. However, Mazzali (2001) showed that this line could,
at most, be responsible for only the red side of the 6150 Å
feature, as indicated by its presence as a weak absorption
at lower velocities sitting on top of the P-Cygni emission
of the SiII line, and by the weakness of the corresponding
CII 7231,36 Å line. Branch et al. (2003) identified absorp-
tion features due to CII 6578,83 Å and CII 7231,36 Å in
the −9 d spectrum of SN 1998aq. They are also clearly visi-
ble in the −10 d spectrum of SN 1994D (Patat et al. (1996),
Hernandez et al. (2000)), although by −8 d they had almost
disappeared (see Fig. 6). However, in SN 2002bo there is no
trace of these features, even in the earliest spectra. In order
to place limits on the abundance of high velocity C implied
by this negative observation, we increased the 7% carbon
relative abundance specified by W7, to 40% throughout the
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envelope. This produced very strong CII 6578,83 Å features
which were not present in the observed spectrum. We then
decreased the carbon abundance until the CII 6578,83 Å fea-
tures became fully undetectable in the synthetic spectrum.
This occurred for a C abundance of 3%.

As a check, we extended the modelling to 25,000 Å
where CI and CII lines are found in the model’s line
list. These include multiplets around 9,100 Å, 10,680 Å,
11,750 Å, 14,400 Å and 21,200 Å plus several single lines
distributed throughout the 8000–25,000 Å region. Figure 16
shows the IR spectrum plus the 40% carbon and 3% car-
bon models. It can be seen that, even with a 40% carbon
abundance, the carbon features are barely discernable. How-
ever, the observed spectrum shows no sign whatever of the
predicted carbon features confirming that the carbon abun-
dance is less than 40%. Reducing the carbon abundance to
3% causes the lines in the 8000–25,000 Å region to become
too weak or too blended with other lines (mostly SiII or
MgII) to be detectable. We conclude that the IR spectrum
is consistent with a 3% carbon abundance, although the ac-
tual limit here is less stringent than in the optical region.
We note that, aside from the low abundance, the weakness
of the CI lines is due to the temperature of the SN ejecta
which leads to an almost completely ionization to CII. The
low carbon abundance is discussed in the next section.

We turn now to the optical spectrum taken close to
maximum light (Fig. 17). By this epoch the photospheric
radius has increased to 1.4 × 1015 cm (corresponding to
vph = 9000 kms−1) in the low reddening model, and
= 1.6 × 1015 cm (corresponding to vph = 9740 kms−1) in
the high reddening model. The photospheric luminosities are
43.03 [erg s−1] and 43.27 [erg s−1] respectively. Once again
the high-reddening model attains a higher radiation tem-
perature (TR = 13420 K) compared with the low-reddening
model (TR = 12760 K). Note that the temperature of the
spectrum near peak brightness is hotter than at –13 days.
Such behaviour was also observed in SN 1990N (Mazzali
et al. 1993), one of the few other SNe Ia with very early
spectral coverage. It is probably due to the heating driven
by the delayed release of radiation energy overcoming the
expansion cooling of the envelope.

Both models have a problem in reproducing the 4300–
4500 Å absorption, which is dominated by SiII lines. To re-
produce the depth of the absorption, we need a high Si abun-
dance (62.1% for the higher reddening model and 66.7% for
the lower reddening one, respectively) indicating that the
part of the ejecta with velocities near 10,000 km s−1 is dom-
inated by IME. As with the high-reddening model at the
earlier epoch, the need for such a high abundance is driven
by the fact that almost all the Si is doubly-ionised in the
model. We also note that both models produce a double
structure in the trough, with the high-reddening case being
more pronounced. Curiously, while this structure is absent
from SN 2002bo, it is present in SNe 1994D and 1998bu
(Figure 7). The persistence of a weak absorption due to Si-
III 4567 Å in the model suggests that E(B − V ) could be
even smaller than 0.30. The high ionisation also results in the
absorption of the SiII 6355 Å line being slightly too shallow.
However, most striking is the fact that the SiII 5958 Å ab-
sorption, while well reproduced in the low-reddening model
is completely absent in the high reddening one.

As with the early-epoch spectrum, both models overpro-

duce the flux longward of ∼6500 Å, with the high-reddening
model being the most discrepant. The observed absorption
at 7500 Å might be identifiable as OI 7771 Å. (Note that
the narrower 7600 Å feature is the residual of the telluric ab-
sorption.) However, even with an unphysically high O abun-
dance we cannot reproduce the depth of this feature since
the high temperature ionises all the neutral oxygen. The
modelled CaII absorption at ∼3750 Å due to the 3933,68 Å
H&K doublet matches the observation very well, but the
absorption at ∼8200 Å due to the ∼8500 Å IR triplet is
too weak. Once again the match is somewhat better in the
low-reddening model. In general, we find that the difficulties
encountered by the high-reddening model are even larger at
this epoch.

We conclude that modelling of both epochs suggests
a reddening value smaller than the E(B − V ) = 0.45 de-
rived from the Lira and NaID relations. This is indicated by
the line ratios, line depths, overall shape of the spectra and
the model abundances. The spectral model-derived explo-
sion epoch of –18 ±1 days is consistent with the rise-time
derived from our photometry using the Riess et al. (1999)
procedure, and with the average value for SNe Ia given by
Riess et al. It may be that some of the difficulties encoun-
tered with the model results presented here arise from the
artificial homogenisation of the element distribution in the
envelope. The distribution of the elements throughout the
ejecta will be addressed in a separate analysis using an im-
proved version of the MC code, including abundance strati-
fication.

3 DISCUSSION

We have presented optical photometry and optical/infrared
spectra of the type Ia SN 2002bo spanning epochs from –
13 days before maximum B-band light to +102 days af-
ter. The pre-maximum optical coverage is particularly com-
plete. The extinction deduced from the observed colour evo-
lution and from interstellar NaID absorption is quite high
viz. E(B − V ) = 0.43 ± 0.10. On the other hand, model
matches to the observed spectra point to a lower reddening
(E(B − V ) ∼ 0.30). We have been unable to resolve this
reddening dichotomy. However, the ESC has monitored an-
other supernova, SN 2002dj. This event exhibits photomet-
ric and spectroscopic similarities to SN 2002bo, but suffers
from much less interstellar extinction. Modelling of the spec-
tra of SN 2002dj (Pignata et al, in preparation) may help to
establish the true extinction to SN 2002bo.

In some respects, SN 2002bo behaves as a typical
”Branch normal” type Ia supernova (SN Ia) at optical and
IR wavelengths. We find a B-band risetime of 17.9±0.5 days,
a ∆m15(B) of 1.13 ± 0.05, a de-reddened MB = −19.41 ±

0.42, and a bolometric maximum of log L = 43.19. How-
ever, comparison with other type Ia supernovae having
similar ∆m15(B) values indicates that in other respects,
SN 2002bo is unusual. The evolution of the SN 2002bo
(B − V ) and (V − R) colours shows some differences from
that seen in SNe 1994D, 1998bu, 2001el (see Fig. 3). More-
over, while the optical spectra of SN 2002bo are very sim-
ilar to those of SN 1984A (which has a similar ∆m15(B)
= 1.19), lower velocities and a generally more structured
appearance are found in SNe 1990N, 1994D and 1998bu
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(see also Hatano et al. 2000), whose values of ∆m15(B) are
only slightly smaller (SNe 1990N and 1998bu) or slightly
larger (SN 1994D). The evolution of R(SiII) for SN 2002bo
is strikingly different from that shown by other type Ia
supernovae. The SN 2002bo spectra demonstrate the exis-
tence of S at 16, 000 km/s, Si at > 17, 500 km/s and Ca at
> 26, 000 km/s. While small amounts of primordial abun-
dances may be present, this cannot explain the strength of
the high velocity IME spectral features. Moreover, modelling
of the SiII 5972, 6355Å lines confirms the presence of Si at
velocities higher than that predicted by W7. We conclude
that the behaviour of SN 2002bo cannot be easily related to
a single parameter description of the properties of SNe Ia
(see also Hatano et al. (2000)).

The presence of high-velocity IME (Si, S, Ca) in
SN 2002bo (and SN 1984A) may be interpreted in vari-
ous ways. One possibility is that the explosion that be-
came SN 2002bo was more energetic than that of the av-
erage SN Ia, thus setting material in motion at higher ve-
locities. Given that the velocities in SNe 2002bo and 1984A
are about 20% higher than in normal SNe Ia, the kinetic
energy of the explosion would have to be about 44% larger.
However, these high velocities are shown only by the IME.
In the iron-group layers the Fe nebular lines have velocities
comparable to those of normal SNe Ia, although lying to the
higher velocity side of the distribution. Therefore, the physi-
cal difference between SN 2002bo and more normal SNe may
not be so great. In support of this view, we note that most
of the kinetic energy is produced by burning to Si, while the
remaining burning stages to NSE make a further, but minor
contribution.

Therefore one may imagine a situation where burning
to IME continues further out into the outermost layers in
SNe 2002bo and 1984A than in other SNe Ia. This enhanced
burning may point to some form of delayed detonation. This
scenario has some useful consequences. Since the IME are
produced at high velocities, but at the same time no more
56Ni is produced than in other SNe Ia, then this would only
have a small effect on ∆m15, since the shape of the light
curve depends mostly on the behaviour of the line opacity,
which is dominated by Fe-group elements (Mazzali et al.
2001). Moreover, the amount of progenitor material (C, O)
observed in the outer layers of the SN would be greatly re-
duced. In particular, if burning proceeded at a relatively low
density, C would be burned to IME, but not O, thus explain-
ing the unusually low abundance of carbon at the highest
velocities. It may be that the –13 day photosphere happened
to fall at the location where C but not O had been burned
to IME. This layer has a small velocity extent, and its lo-
cation depends on the overall properties of the explosion (it
is located further out the more 56Ni was synthesized, see
e.g. Iwamoto et al., Fig 25). It is therefore possible that the
original, high C abundance might still exist in layers well
above the photosphere of the –13 day spectrum, although
those layers may have densities too low for C lines to be
strong once the photosphere has receded to deeper layers.
Furthermore, this picture may explain the cool early-time
temperatures indicated both by the pre-maximum Si II line
ratio and by the SiIII 4553, 4568Å feature (see Sect.2.4). If
Si extends to higher levels than normal, to velocities where
unburned material is usually found, then such Si would be
subject to a much-reduced γ-ray/fast-electron flux and its

temperature would be lower than in the Si layer of more
typical SNe Ia. There would be a number of observable con-
sequences of this situation: 1) at very early times, the Si
lines would be stronger than in other SNe, and would ex-
tend to higher velocities, 2) also at very early times, the Si
line ratio would indicate a lower temperature than in other
SNe, because the Si that contributes to the lines is located
further from the 56Ni, and 3) as time goes by it might be
expected that the Si line ratio would evolve towards higher
temperatures, as confirmed in Figure 9.

The above scenario will be more severely tested by
spectral models which include abundance stratification, and
by the acquisition of even earlier spectra. Extremely early
observations may even place constraints on the progenitor
composition. In addition, the reason for such behaviour will
be explored via detailed 3D studies of the explosion, which
are currently under way.

Other possible explanations exist for the atypical
behaviour of SNe 2002bo and 1984A. For example, the
IME produced at deeper layers may be more efficiently
mixed upwards in SNe 2002bo and 1984A than in other
SNe Ia. This may provide an equally plausible explanation
for all the characteristics discussed above. One way to
discriminate between the two possibilities is to look for C
and O at lower velocities - if IME have been mixed out, C
and O should have been mixed in.

A somewhat more exotic scenario is that SNe 2002bo
and 1984A came from more massive progenitors, such as
might be produced by a binary white-dwarf merger. In this
case, however, one might expect that not only would more
IME be produced at higher velocities, but also that more
56Ni would be synthesised. This scenario would lead not only
to broad Fe nebular lines in the late-time spectrum, but also
to a brighter SN (Arnett 1982), something that does not
seem to be the case here. The nebular lines in the late-time
spectrum of SN 2002bo have widths comparable to those of
other typical SNIa.
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