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N. Fourmanoit3, S. González-Gaitán1, M. L. Graham13, M. J. Hudson18, E. Hsiao17, T. Kronborg3, C. Lidman19,

A. M. Mourao16, J. D. Neill20, S. Perlmutter17,21, P. Ripoche3,17, N. Suzuki17, and E. S. Walker4,22
1 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada; alexander.conley@colorado.edu

2 Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593, USA
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ABSTRACT

We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS)
with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe
(123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration
at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed
constant out to at least z = 1.4) in a flat universe, we find w = −0.91+0.16

−0.20 (stat)+0.07
−0.14 (sys) from SNe only, consistent

with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-
galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing
them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the
shape–luminosity and color–luminosity relationships. Unlike previous work, we include the effects of systematic
terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms.
We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and
intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems.
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1. INTRODUCTION

The Supernova Legacy Survey (SNLS) is a five year program
to measure the expansion history of the universe using Type Ia
supernovae (SNe Ia). The goal of this survey is to measure the
time-averaged equation of state of dark energy w to 0.05 (statisti-
cal uncertainties only) in combination with other measurements

∗ Based on observations obtained with MegaPrime/MegaCam, a joint project
of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope
(CFHT) which is operated by the National Research Council (NRC) of
Canada, the Institut National des Sciences de l’Univers of the Centre National
de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.
This work is based in part on data products produced at the Canadian
Astronomy Data Centre as part of the Canada–France–Hawaii Telescope
Legacy Survey, a collaborative project of NRC and CNRS.

and to 0.10 including systematic effects. The fundamental na-
ture of dark energy, which makes up 3/4 of the mass-energy
budget of the universe, remains almost completely mysterious.
A solid measurement that w �= −1 (which would rule out the
cosmological constant) would have profound implications for
cosmology and particle physics. SNLS completed data acqui-
sition in 2008 June; this paper presents SN-only cosmological
results from the first three years of operation (SNLS3).

All analysis in this paper is in the context of standard
cosmological models—i.e., we assume that the universe is
homogenous on large scales and that general relativity is correct.
SNe are used to measure the cosmological parameters by
comparing their apparent brightnesses over a range of redshifts.
Hence, it is very useful to include additional SN samples besides
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SNLS in the analysis, particularly nearby SNe (z < 0.1). This
paper has two primary goals. The first is to place SNe from
the literature on a common framework and demonstrate the
resulting constraints. The second is to present the systematic
uncertainties on the SN measurements in detail. This is the
second in a series of three SNLS cosmology papers based on
the first three years of data. The SNLS data sample used in this
analysis is presented in Guy et al. (2010, hereafter G10), and
the SN constraints are combined with other measurements in
M. Sullivan (2011, in preparation, hereafter S11), primarily the
WMAP7 measurement of the cosmic microwave background
(CMB), and baryon acoustic oscillations measured with galaxy
redshift surveys. In addition to these three papers, the calibration
of SNLS data is discussed in Regnault et al. (2009, hereafter
R09), and the simulations used to evaluate our survey selection
effects in Perrett et al. (2010).

Searches for additional parameters beyond light-curve shape
and color have been ongoing for two decades, and recently,
Kelly et al. (2010) have found evidence that SN residuals from
the Hubble diagram are correlated with host-galaxy mass. The
physical cause of this effect is as yet unknown. Sullivan et al.
(2010) analyze this issue using the SNLS3 sample and confirm
this result at higher significance. They find that splitting the
sample by host-galaxy mass and allowing the peak absolute
magnitudes of the two samples to differ corrects for these effects.
We adopt this approach in this paper; see Section 3.2 for details.
This effect has also been confirmed in the Sloan Digital Sky
Survey (SDSS) SN sample (Lampeitl et al. 2010).

Here, we give a brief overview of the data sets used in this
analysis. SNLS combines photometry from the deep component
of the Canada–France–Hawaii Telescope (CFHT) Legacy sur-
vey with extensive spectroscopic follow-up from the Keck, Very
Large Telescope (VLT), and Gemini telescopes to determine SN
types and measure redshifts. The photometry is carried out with
MegaCam, a 1 deg2 imager at the prime focus of CFHT. SNLS
is a rolling search, like most other modern high-redshift surveys,
which means that the same telescope is used to simultaneously
find new SNe candidates and to follow those already discovered,
resulting in a large multiplex efficiency advantage. Details of the
procedures used to find and prioritize new SNe can be found in
Sullivan et al. (2006a), and those used to type candidates from
their spectra in Howell et al. (2005) and Balland et al. (2009).

In addition to SNLS, we consider three additional data
sets: low-z, SDSS, and high-redshift SNe from Hubble Space
Telescope (HST). The low-z SNe, which we define here as
coming from surveys with the bulk of their SN below z = 0.1,
come from a heterogeneous combination of non-rolling surveys
which generally use different telescopes to find and follow
SN candidates. The HST SNe (Riess et al. 2007) are at
higher redshifts than any of the other samples. They contribute
relatively little to measurements of 〈w〉, but are quite useful
when trying to measure any redshift evolution of w. The SDSS
SN survey (Holtzman et al. 2008; Kessler et al. 2009, hereafter
K09) occupies intermediate redshifts (0.1 < z < 0.4) between
SNLS and the low-z SN, and is also a rolling search.

As SN samples have grown in size, characterizing and in-
corporating systematic uncertainties properly has grown in im-
portance. There are many aspects of SNLS which are designed
to reduce the effects of systematic uncertainties compared with
previous SN projects, but they are still roughly comparable to
the statistical uncertainties. A major lesson of this paper is that
most of the systematic effects which limit the current analysis
are related to the current low-redshift SN sample, particularly

in terms of cross-calibration requirements. Absolute calibration
is unimportant for our purposes, but the relative calibration of
different systems and observations at different wavelengths is
critical. The current low-z sample is dominated by SNe largely
calibrated to the Landolt system (Landolt 1992), which induces
many complications in our calibration (see R09 for more de-
tails). As the low-z SN sample is replaced by better calibrated
samples in the next few years, it will be possible to cross-
calibrate the various samples much more accurately, which will
substantially increase the legacy value of the SNLS sample. The
dominant uncertainties will probably then relate to the host-
galaxy–SN brightness relation and SN modeling, particularly
the thorny issue of SN colors.

A critical step in any SN cosmological analysis is light-curve
fitting, the conversion of a time series of photometric (and pos-
sibly spectroscopic) observations into a set of model parameters
for each SN which are used to estimate a relative distance. Be-
cause SN physics is sufficiently complicated, theoretical models
have so far offered relatively little guidance for this process. As
a result, all current models used for light-curve fitting are em-
pirical in nature. In this paper, we consider updated versions
of two models: SiFTO (Conley et al. 2008) and SALT2 (Guy
et al. 2007). While these models share a common overall phi-
losophy, there are many significant differences between them.
They are compared in detail in Section 5 of G10, and we include
the differences in the light-curve parameters in our uncertainty
budget. Because these models are trained on SN data, they are
affected by the same sources of systematic effects as the cosmo-
logical analysis. This is the first analysis to include this effect in
the analysis; previous analyses have therefore underestimated
their uncertainties by holding the light-curve model fixed when
modeling systematics.

There has been some variation in the literature as to how SN
systematic effects are treated. Examples of the most common
approach, which we will refer to as the quadrature method, can
be found in Perlmutter et al. (1999), Astier et al. (2006), Wood-
Vasey et al. (2007), and K09. This approach has a number of
disadvantages (and the advantage that it is relatively easy to
understand). The most important disadvantage is that it is dif-
ficult for subsequent consumers of SN relative distance moduli
to incorporate systematic uncertainties into their analyses. In
this paper, we rectify these deficiencies by modeling systematic
effects using a covariance matrix.

In Section 2, we describe the data sets included in this
analysis and the steps taken to bring them onto a common
system with the SNLS data. We then describe the combined
data set in Section 3, presenting the statistical constraints on
dark energy from SNe Ia alone, and the combined statistical and
systematic uncertainties in Section 4 along with a description of
our systematics methodology. In section Section 5 we describe
individual systematic terms in detail and in Section 6 we
compare our analysis with previous ones. Finally, in Section 7
we discuss ways in which the effects discussed in this paper can
be improved with the enhanced low- and intermediate-redshift
SN data sets which will be available in the near future.

2. DATA SETS

Ideally, all SNe would be observed with a single camera
on a single telescope. While this may be possible with future
programs such as LSST or Pan-STARRS, at the moment it
is not practical because no individual telescope can currently
obtain a large sample at both high and low redshifts. To obtain
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precision cosmological constraints, particularly on w, we must
incorporate additional SN data besides SNLS. Rather than
including all available SN data, we have chosen to incorporate
only external surveys which cover different redshift ranges
than SNLS. Other surveys which cover substantially the same
redshift range as SNLS have fewer SNe, larger photometric
uncertainties, less certain calibration, and have at most two-band
coverage (compared with the 4 bands of SNLS). Including them
in our analysis would reduce our statistical uncertainties only
marginally and would introduce additional systematic effects
which would have to be analyzed in detail. Nearby SNe are
currently the most important addition because the combination
of low redshifts and the small redshift range means that they
provide a very good constraint on the absolute magnitudes of
SNe Ia,23 which is largely independent of the density parameters
and w.

There has been a recent encouraging trend toward providing
photometry in the natural system of the detectors used to
obtain it—that is, rather than applying linear relations to
transform instrumental magnitudes into some standard system,
the calibration is transferred from the standard system to
the instrumental system, which is much more reliable. Using
natural system photometry involves slightly more work in the
analysis, but allows for a considerable improvement in accuracy
and precision, as long as the natural system response is well
measured. We use the natural systems of the SNLS, HST, SDSS,
Hicken et al. (2009b), and Contreras et al. (2010) samples in our
analysis, which together account for ∼90% of our sample.

In this section, we present the data samples we include in
our analysis and describe the steps we carry out to bring them
to a common system with the SNLS measurements. The most
critical items relate to calibration, but in addition it is important
to understand and apply a correction for the selection biases
of the external samples (i.e., Malmquist bias). The calibration
used in this analysis relies heavily on the CALSPEC program
based on HST observations of pure hydrogen white dwarfs
(Bohlin 1996). In particular, we use BD 17◦ 4708 as our primary
reference standard. We first describe our cuts (Section 2.1),
introduce the data samples (SNLS, nearby, HST, and SDSS,
Sections 2.2–2.5), and then discuss how we estimate selection
effects for these samples (Section 2.7) and the peculiar velocity
corrections we apply to nearby SNe (Section 2.8). All of these
have related systematic uncertainties, which are discussed in
Section 5.

2.1. Selection Requirements

The selection requirements (cuts) applied in our analysis have
already been described in Section 4.5 of G10; these are de-
signed to ensure adequate phase and wavelength coverage to
allow accurate parameter measurement. A particularly impor-
tant requirement is that each SN has data between −8 and +5
rest-frame days of peak brightness to avoid biasing the recov-
ered light-curve parameters, which primarily affects the low-z
sample—see G10 for further discussion.

As is the case for SNLS, we require spectroscopic confirma-
tion of all SNe. Since each SN team has its own scheme for
spectroscopic classification, it is not clear how to best ensure
uniform classification standards without re-examining all of the
raw spectra. Based on direct comparison of spectra, the classifi-
cation requirement applied to SNLS (SN Ia⋆Balland et al. 2009,

23 More precisely, they constrain a combination of the absolute magnitudes
and the Hubble constant, H0; we refer to this combination as M.

or CI=3 in the scheme of Howell et al. 2005) lies somewhere
between the “gold” and “silver” classification scheme of Riess
et al. (2007) for spectroscopically typed SN. We have chosen
to largely accept the classifications of the original authors with
a few caveats. First, as is the case for all SNLS SNe, we do
not include candidates whose type is based either purely on the
photometric properties of the SN or the red color or elliptical
morphology of its host galaxy; the latter standard is particu-
larly worrisome because some nearby ellipticals show evidence
of star formation, and this fraction may increase with redshift.
Recently, Kawabata et al. (2010) have reported the discovery
of an (unusual) core-collapse SN in an elliptical host, which
strengthens our caution.

Because we apply a peculiar velocity correction, we place
our minimum redshift cut at zcut = 0.010, somewhat lower than
the usual value of 0.015–0.020. There has been some recent
controversy relating to the minimum allowable redshift, related
to the potential for a discontinuous step in the local expansion
rate (a so-called Hubble bubble) detected by Jha et al. (2007).
Riess et al. (2007) use zcut = 0.023 in order to avoid this issue,
which removes 40% of the nearby sample. Conley et al. (2007)
argue that the Hubble bubble is an artifact of the treatment of SNe
colors combined with selection effects in the nearby sample, and
Hicken et al. (2009a) show that adding more nearby SNe shifts
the position and sign of the putative bubble considerably. K09
take a slightly more agnostic position (Sections 9.1 and 9.2),
but find significant variation in the cosmological parameters
with the minimum redshift cut, and therefore adopt zcut = 0.02
while including the variation as a major source of systematic
uncertainty. We also see similar variation with zcut in our sample,
but find it to be consistent with shot noise, and see no evidence
that such conservatism is warranted (Section 5.3). SNe with
z < zcut are still used to train the light-curve fitters, since we do
not use distance information in this process.

We exclude known peculiar SNe by hand, such as SNe 2000cx
and 2002cx, rather than using automated quality of fit (χ2)
cuts. In our experience, the uncertainties for low-z photometry
are sufficiently inaccurate that such cuts are often misleading.
Furthermore, many low-z SNe have the occasional outlying
photometric observation which has little to no effect on the
derived parameters but which drives the χ2 of the light-curve
fit to large values. A χ2-based cut will also affect different
SN samples very asymmetrically because the signal-to-noise of
the photometry varies strongly between samples, and hence
may introduce bias. Since SNe Ia are not perfect standard
candles, we should include some additional scatter in their
corrected peak magnitudes for cosmological purposes. This is
often called “intrinsic scatter” (σint) even though it probably
represents the gaps in our understanding of SN physics and
photometry rather than anything truly intrinsic. It is impossible
for any fully automated set of cuts to catch all the pathologies
of such a large and diverse collection of SNe, so we have also
inspected all of the SNe by eye to remove problems not caught by
our cuts. In any case, we remove the known spectroscopically
peculiar SNe 2000cx (Li et al. 2001), 2001ay (K. Krisciunas
et al. 2011, in preparation), 2002cx (Li et al. 2003), 2005hk
(Phillips et al. 2007), 2005gj (Aldering et al. 2006), 03D3bb
(Howell et al. 2006), 05D1by (which is spectroscopically similar
to SN 2001ay), and SN 2006X because it shows evidence for a
light-echo (Wang et al. 2008). Furthermore, we require all SNe
to have estimated photometric uncertainties.

We apply Chauvenet’s criterion (Taylor 1997) to reject
outliers, removing SNe for which we could expect less than half
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Figure 1. Redshift and color histograms of the samples used in this analysis. The left panel shows the redshift histogram after all cuts are applied. The first bin for
the low-z SNe contains 108 SNe. The right panel shows the color histogram before the color cut is applied (but removing known peculiar SNe as well as those with
insufficient coverage), and the cut is indicated by the vertical dashed lines.

(A color version of this figure is available in the online journal.)

Table 1

Effects of Cuts on Different Samples

Data Set Initiala Finalb Coveragec Faild z Cut s Color Outliers

Low-z 323 123 99 9 54 32 31 1
SDSS 101 93 6 0 0 4 1 1
SNLS 279 242 16 10 0 6 9 3
HST 35 14 5 12 11 3 0 1

Notes. The number of SNe removed by each selection criterion. Many SNe fail
multiple cuts.
a The initial number of SNe, after the removal of known peculiar SNe, SNe with
clear photometric inconsistencies, and SNe which have better photometry from
other samples.
b The number of SNe satisfying all selection criterion.
c SNe which did not have data close enough to peak brightness.
d SNe for which the fits could not provide reliable light-curve parameters, either
because of an insufficient number of epochs of data or insufficient wavelength
coverage to measure a color.

of an event in our full sample (assuming a Gaussian distribution
of intrinsic luminosities). This corresponds to a cut at about
3.2σ , which removes six SNe: one low-z (SN 2006cj), one
from SDSS (SDSS5635), three from SNLS (03D4au, 04D4gz,
05D2ei), and one from the HST sample (McEnroe), many
more than the 0.5 objects one would expect if the distribution
were truly Gaussian. Of the SNLS SNe, two of these have
slightly less secure spectroscopic identifications (SNIa⋆) and
are faint relative to the best fit, so may either be non-SN Ia or
spectroscopically peculiar SN Ia that our spectra were not high
enough signal-to-noise to identify. Note that lensing effects are
too small to explain these outliers, as the expected number of
3.2σ or greater outliers due to lensing is much less than 1 for
our sample.

We require the Galactic reddening along the line of sight to
satisfy E (B − V )MW < 0.2 mag because of concerns that the
assumed Galactic value of RV = 3.1 might not be appropriate
for highly extinguished objects. Next, we require 0.7 < s < 1.3,
where s (stretch) is the light-curve width parameter for SiFTO;
neither SiFTO nor SALT2 produce reliable fits for SNe outside
that stretch range. Finally, we require −0.25 < (B − V )Bmax <
0.25 because of concerns that very blue SNe are not represented
in our training sample and that the colors of very red SNe may
represent a combination of different effects, both affecting the
peak magnitudes of the SNe; see Conley et al. (2008) for further
discussion of the latter. Histograms for the redshift and color
distributions of the input samples are shown in Figure 1, and

the effects of the cuts are given in Table 1. The requirement of
good coverage near the peak luminosity has the largest effect,
mostly on the low-z sample. We also considered the effects
of the sharp color cut because of concerns that a high-redshift
SN with poorly measured colors might migrate across the cut
boundary, but found that the effect was negligible.

2.2. SNLS SNe

Systematics control is fundamental to the design of SNLS.

1. Because SNe are both discovered and photometrically
followed with only one telescope, we are able to concentrate
our efforts on thoroughly understanding that system (R09).
We can also avoid the difficulties associated with combining
observations from many telescopes onto a single system.

2. The survey is in four passbands (gMrMiMzM ), allowing us
to measure colors for all SNe in our survey. We measure
different rest-frame passbands at different redshifts; at low
redshifts we are mostly sensitive to B − V and at high
redshifts to U − B. These measurements must be used
in a consistent fashion at all redshifts to obtain accurate
results. We use intermediate-redshift SNLS SNe as a
consistency check of this process, since they have high-
quality measurements of both U − B and B − V (G10).

3. There are four survey fields (D1–D4) distributed in R.A. to
allow year-round coverage. The results from the four fields
can be compared with each other (S11).

4. The survey is quite deep, which limits the effects of
Malmquist bias (Perrett et al. 2010) at z < 0.6, the sweet
spot for measuring a constant w.

5. We obtain spectra for all of the SNe used in our analysis,
which allows us to limit non-Ia contamination, to search
for peculiar SNe such as 03D3bb (Howell et al. 2006), and
the comparison of the spectral energy distributions (SEDs)
of nearby and distant SNe as a test for evolution (Bronder
et al. 2008; Balland et al. 2009; Walker et al. 2010).

6. We have obtained much higher signal-to-noise spectra of
a subset of our SNe which can be used to study the near-
UV properties of SNe Ia in detail and allows more detailed
spectroscopic comparisons (Ellis et al. 2008; Sullivan et al.
2009).

7. Because SNLS is a rolling search, it is possible to go
back after an SN is discovered and study early-time, pre-
discovery photometry. Therefore almost all of our SNe have
very good early-time coverage, which can be used to test
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Table 2

Contributions to the Low-z SN Sample

Source Initial Numbera All Uses Cosmology Fit

Calán/Tololo 29 19 17
CfAI 22 10 7
CfAII 43 18 15
CfAIII 172 60 58
CSP 20 20 14
Other 37 23 12

Total 323 150 123

Notes. The relative contributions of various sources to the low-z sample used in
this paper.
aAfter the removal of duplicates, known peculiar SNe, and SNe with problem-
atical photometry.

evolutionary models which predict changes in the early-
time behavior (Conley et al. 2006b).

8. Because the duration of our survey is much longer than
the month timescale of SNe Ia, we can construct very deep
SN-free image stacks and get accurate colors for the host
galaxies. These can be turned into estimates of the mass and
star formation history and used to study the relation between
SN properties and host-galaxy environment to search for
host-dependent systematic effects (Sullivan et al. 2006b,
2010).

9. Our photometry allows us to construct improved empirical
models of SNe Ia light curves and spectra (Guy et al. 2007;
Conley et al. 2008), which is particularly important in the
near-UV.

SNLS is designed to obtain sufficient quality data to allow us
to investigate systematic effects within our own data, as well
as enabling a great deal of non-cosmological SN science too
extensive to list here.

We take the three year SNLS sample from G10 with only one
modification: we have updated the light-curve models to account
for the 2010 February update to the CALSPEC calibration
library. This update has almost no effect on the SNLS, SDSS,
and low-z SNe, but does have some on the HST SNe, which are
observed in the near-IR.

2.3. Low-z SNe

The current nearby SN set is dominated by five main samples:
Calán/Tololo (Hamuy et al. 1996, 29 SNe), CfAI (Riess et al.
1999, 22 SNe), CfAII (Jha et al. 2006, 44 SNe), CfAIII (Hicken
et al. 2009b, 185 SNe), and CSP (Contreras et al. 2010, 35
SNe). In addition, we make some use of 37 SNe with modern
photometry from a mixture of other papers. As the numbers
above show, the CfAIII sample provides almost half of the
nearby sample, and it was tempting to include only these SNe to
simplify our analysis. However, the other samples contribute
to the training of the light-curve models disproportionately
because some have denser phase coverage or sample slightly
different wavelengths, and since it is necessary to characterize
their properties and systematic uncertainties to include them
in the training, there is no point in excluding them from the
cosmological analysis. The effects of the cuts of Section 2.1 are
broken down by each nearby sample in Table 2. We do not use
rest-frame observations in the U band of the nearby sample in
our analysis for the reasons discussed in Section 2.6.

A handful of the nearby SNe have photometry from multiple
sources. This is useful for estimating the uncertainty in the

zero points of different samples (Section 5.1.2), but also forces
us to make some decisions about which data to include.
Generally, nearby SNe have dense enough light-curve coverage
that adding additional points does not improve the uncertainties
significantly. Since σint

24 dominates the uncertainty budget for
these SNe, including data from multiple sources is not beneficial
unless the data samples complement each other in wavelength or
light-curve phase. Unless this is the case, or one of the data sets
is clearly superior, we generally prefer to only use data from one
of the five large surveys, where we have a better understanding
of the systematic uncertainties.

For the Calán/Tololo, CfAI, and CfAII samples, the data were
transformed by the authors from the natural instrumental system
into the Landolt (1992) system using linear transformations
derived from stars in a limited color range. Since SN and
stellar spectra are quite different, these linear transformations
are incorrect when applied to SNe, and will introduce an error
in the reported magnitudes which is correlated across the SN
sample. In order to use these samples in a precision analysis, we
must determine the effective passbands of the Landolt system,
described in Appendix A.

For the CfAIII and CSP samples, natural system photometry
is available, which we use in our analysis. To use the natural
systems, we need the magnitudes of our fundamental flux
standard in their natural system. For the CfAIII sample we use
the linear transformations given in Table 2 of Hicken et al.
(2009b), after verifying that the arbitrary additive constants
are identically zero. Fortunately, our fundamental flux standard
(BD 17◦ 4708) lies in the color range well measured by
these transforms so they should be reliable, which would not
necessarily be the case for very blue stars such as Vega or
the white dwarfs used in the CALSPEC program. For the CSP
sample, the magnitudes of BD 17◦ 4708 are already given in the
natural system.

2.4. HST SNe

SNe above z = 1 are difficult to observe from the ground.
Therefore, the most successful searches in this redshift range
have been carried out with HST. SNe at such high redshifts
are useful when studying any possible time variation of w,
so we include the 2 SNe from Blakeslee et al. (2003), 16
from Riess et al. (2004), and the 22 from Riess et al. (2007)
in our sample; the latter also re-reduces the photometry from
the previous papers, taking into account the nonlinearity of the
NICMOS camera. The HST sample extends from z = 0.2–1.55.
For z < 0.7 SNe, rest-frame B is measured by the F606W
filter, which has a sufficiently broad response that the U band is
effectively included as well. This is unlike any of the other
SNe in our sample, and therefore may introduce additional
systematic effects in our light-curve fitting. Because these SNe
have virtually no impact on the cosmological parameters when
compared with the hundreds of SNe from other samples in
this redshift range, we exclude the 10 HST SNe with z < 0.7.
Requiring spectroscopic type confirmation eliminates five SNe,
but ensures a consistent analysis. We also exclude SNe with
z > 1.4 because we cannot estimate the Malmquist bias above
this redshift (Section 2.7), which eliminates one more SN.

One cut which should be revisited for the HST sample is
the requirement of having photometry close to the epoch of

24 SNe Ia are not perfect standard candles even after correction for the
empirical width– and color–luminosity relations. σint represents the remaining
scatter in distance moduli, and is discussed further in Sections 3.1 and 3.4.
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Figure 2. Bias in mB as a function of first epoch relative to maximum after day
−15 for HST-like data. The diamonds are the individual SNe used in this test,
the red circles with errors are the values averaged in 1 day bins.

(A color version of this figure is available in the online journal.)

peak flux. In Section 4.5 of G10, we quantitatively studied the
effects on the recovered fit parameters of not having photometry
before a certain epoch and concluded that an observation near
peak between rest-frame epochs −8 and +5 was necessary to
avoid bias. Unlike any of the other samples we consider, in
many cases the HST sample has data earlier than rest-frame day
−8 but not near peak, because it is the only (psuedo-)classical
high-z search we have included (i.e., it is not a rolling search,
and therefore there may be a large gap between the reference
and search image). We did not consider this possibility in our
original simulations. On the other hand, the signal-to-noise of
the HST photometry is much lower than any of the other samples
and the cadence less frequent, which may increase the bias.
Therefore, we have revisited this study, this time including
a single early-time data point between −20 and −15 with a
representative signal-to-noise in F850LP (the filter that the HST
searches were carried out in). Since it is imperative to use real
data in this test to reflect the diversity of light-curve shapes, to
simulate the lower signal-to-noise of the HST data we use SNLS
SNe above z = 0.65 and further degrade their uncertainties to
match the HST data. As for the other samples, only mB

25 shows
significant bias, which is shown in Figure 2. Comparing with
the results shown in G10, the extra early epoch significantly
reduces the bias. Therefore, for HST SNe we require either
an early observation between −20 and −15 and at least one
between −8 and +9, or, with no early time point, an observation
between −8 and +5 (all values rest frame epochs). Altogether,
we are left with a sample of 14 HST SNe from z = 0.7–1.4.

The HST data set considered here consists of observations
obtained with Advanced Camera for Surveys (ACS) in wide-
field mode and camera 2 of the NICMOS instrument. The
calibration of the NICMOS data is defined by the solar analog
P330e (A. G. Riess 2009, private communication) having the
magnitudes 11.91 and 11.45 in the F110W and F160W filters,
respectively. We do not have reliable Landolt system magnitudes
for P330e, so it is not suitable as a primary standard. Fortunately
it has a CALSPEC SED on the same system as our primary
flux standard, so we can use spectrophotometry to align these
observations with our calibration. Contrary to convention in

25 mB is the peak magnitude in the rest-frame B band and is one of the critical
parameters we use to estimate relative distances, see Section 3.

the near-IR, this is not consistent with Vega having zero
magnitude and zero color in these passbands, but instead implies
a magnitude of about −0.057 in both. It is not clear if other
analyses have taken this into account (K09, for example, do not,
while Amanullah et al. 2010 do), but this does not imply that
the Riess et al. (2007) analysis is in error. We have also updated
the ACS bandpasses and zero points to match Bohlin (2007)
and again for the 2009 January and 2010 February CALSPEC
updates. Together, these imply 2%–3% zero-point changes for
ACS.26 Before these corrections are applied, the HST SNe have
unusually red colors and are significant outliers in the Hubble
diagram.

2.5. SDSS SNe

The SDSS Supernova Survey has recently released light
curves for 146 intermediate redshift (z < 0.4) SNe observed
in their first year of operation (Holtzman et al. 2008). Perhaps
the most important aspect of this sample is that the calibration
is better understood than will likely ever be possible with the
bulk of the current nearby SN sample. Furthermore, because the
SDSS filter system is similar to the MegaCam system, many
inter-calibration issues with SNLS can be reduced significantly.
We have not yet fully carried out this program, but expect to do
so in a future collaboration with the SDSS and CSP SN teams.
This paper presents the results of a preliminary combination of
these data sets with our own which should be at least as good
as any previous combinations of different data sets, but which
does not take full advantage of the calibration improvements
possible with these three samples.

A visual inspection of the SDSS light curves reveals severe
systemic problems in the u band and lesser ones in z. We
therefore follow the advice of K09 and only include gri in
our fits. We follow Holtzman et al. (2008) in only including
points with data quality flag <1024. Of the 146 SNe present in
the full sample, our data quality cuts combined with removing
obviously peculiar SNe remove 45 SNe.

The SDSS SN relative calibration is based on the catalog
of Ivezić et al. (2007), and tied to an absolute calibration
(AB) via observations of three solar-analog stars with high-
quality CALSPEC SEDs. Unfortunately, these stars were too
bright to observe directly with the SDSS imager. Instead, they
were calibrated by transferring observations from the SDSS
monitor telescope (Tucker et al. 2006) using linear magnitude
and color transformations derived from standard stars. These
stars were chosen not because they are solar analogs, but
because they have colors similar to those of the standard stars
and hence the linear transformations are applicable. Because
these data are ultimately compared with data calibrated onto
the Landolt system, ideally these three stars would also have
Landolt magnitudes. Unfortunately, this is not the case. Since the
SEDs, effective bandpasses, and SDSS magnitudes are known,
synthetic photometry can be used to compute the offset between
SDSS and AB (Fukugita et al. 1996) magnitudes. We can then
place the derived light-curve parameters on the Landolt system
(i.e., mB) using our fundamental flux standard (BD 17◦ 4708),
for which we have Landolt magnitudes and whose SED shares
the same calibration as the solar analogs. The last step is
sensitive to the V magnitude of BD 17◦ 4708, unlike the rest
of our analysis—avoiding this dependence is why the current

26 The ACS calibration involves setting the magnitude of the CALSPEC SED
of Vega to zero using synthetic photometry, so updates on the SED or
bandpasses change the zero point.
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SNLS calibration is tied to the Landolt system, despite the
large differences between the MegaCam and Landolt passbands.
Offsets to the AB system are given in Holtzman et al. (2008).
As was the case for the HST data, we update these offsets for the
2010 February CALSPEC update, which changed the SEDs of
the solar analogs slightly and thus the SDSS to AB conversion
factor by 1%; when combined with the changes in the SED
of BD 17◦ 4708, the net effect of the CALSPEC update is to
change the flux calibration of the SDSS data by about 0.3% in g
and less in ri; the corresponding AB offsets mAB − mSDSS are
0.021, 0.005, and 0.018 mag, respectively. Here and elsewhere
we use the mean SDSS bandpasses of Doi et al. (2010).

2.6. U-band Observations of Nearby SNe

K09 devote considerable attention to discrepancies between
low-z rest-frame U-band data and higher redshift surveys (their
Sections 10.1.3 and 10.2.4), while finding that SNLS and SDSS
SNe at z = 0.3 were consistent. We will not repeat all of this
discussion here, but we independently confirm their result on
a larger nearby sample, finding strong evidence for issues with
observer-frame U data on several fronts. First, the observer-
frame U data show considerably more scatter in light-curve fits
than can be accounted for by the observational uncertainties,
which is not the case for higher redshift samples in rest-frame
U. In fact, despite their larger photometric uncertainties, the rms
of the rest-frame U-band data for the higher-z samples is much
lower than that for the nearby ones. Second, in color–color space
(i.e., rest-frame U − B versus B − V at the epoch of maximum
B brightness) low-z SNe with observer-frame U observations
show much more scatter and a large systematic offset (∼0.1
mag) compared with the other samples. Third, if observer-frame
U-band photometry is included in the cosmological fits, then
there is significant (∼2σ ) tension in the residuals from the best-
fit cosmology between the low-z SNe and the others, which all
agree quite well with each other, while without the U-band data,
there is good agreement (Section 4.5).

In addition to ∼90 low-z SNe observed in the U band, we also
have 14 nearby CSP SNe with rest-frame u′-band data. These
SNe have virtually identical selection effects as the CfAII and
CfAIII samples, since all three samples are primarily composed
of KAIT-discovered SNe. Tellingly, the CSP sample displays
none of the above pathologies—the scatter around the light-
curve template is small, the SNe are completely consistent
with the higher redshift samples in color–color space, and
this introduces no tension in the residuals from the best-fit
cosmology. We can quantify this by looking for offsets in the
rest-frame U − B versus B − V relation. The low-z U-band
sample is offset from the SNLS+SDSS samples by 0.047±0.005
mag toward redder values of B − V for a fixed U − B—nearly
10σ—while the CSP u′ sample is offset by 0.001 ± 0.006 mag;
not only are the low-z U-band data inconsistent with the SNLS
and SDSS data, they are also quite inconsistent with the low-z u′

data. Interpreted in terms of a change in U − B, which is natural
because the B − V versus V − R relation shows no problems,
this corresponds to a blueward shift of ∼0.1 mag in U − B for
the low-z SN relative to the high-z ones, which is consistent in
sign and magnitude with that seen by K09.

We are uncertain where the problem lies. U-band data are
notoriously difficult to calibrate due to the wide range of
detector and filter responses, the fact that the blue end of the
bandpass is affected by the atmospheric cutoff, which can be
highly variable, and the fact that many U-band filters suffer
from red leaks, but none of these seem adequate to fully

explain the effect. An interesting possibility may be that the
fundamental flux calibration is deficient in the UV, which would
only affect the nearby sample. However, this would not explain
the large observed scatter. Furthermore, the consistency of the
CSP sample argues that if there is any problem it is not with the
spectral calibration itself, but rather with the U-band magnitudes
of the flux standards. Note that the offset between a Vega-based
flux calibration and one based on BD 17◦ 4708, as used in this
analysis, is not nearly large enough to explain these effects. A
third possibility is that the response of the effective Landolt U
band is very different than that given by Bessell (1990), which is
usually used as a starting point in SN analyses. This is suggested
by Maı́z Apellániz (2006), who find a substantially different
U-band response curve using an HST spectroscopic database;
however, the passband suggested there does not alleviate these
problems. Finally, it is possible that this discrepancy is evidence
for evolution in SN properties with redshift, but if so this
evolution must be extremely sudden, turning on abruptly around
z = 0.25, and then there is no additional evolution out to at
least z = 1, which seems unlikely. Such evolution must also
somehow not affect the CSP sample. Ellis et al. (2008) find no
evidence for evolution in a spectroscopic study of UV spectra,
but this is hindered by the lack of low-z rest-UV spectra. This
issue deserves further study, and with the repairs to HST it will
now be possible to improve this test.

K09 argue that it is likely that this is due to some unidentified
issue with a low-z observer frame U band and includes this
effect as their major source of systematic uncertainty. We
concur with the former, but take the more aggressive position
of excluding all observer-frame U-band observations from our
analysis, while retaining rest-frame UV data for a higher redshift
SN. Interestingly, two recent spectroscopic studies comparing
low- and high-redshift SNe show some evidence for spectral
evolution in the near-UV (Cooke et al. 2010; Foley et al. 2010),
although there is some concern about selection effects. However,
in both cases the evolution is in the opposite sense to that seen
here—that is, the low-z SNe are redder in U − B in these
studies, while they appear bluer in our comparison, which only
exacerbates the problem.

2.7. Selection Effects for External Samples

SN samples are expected to suffer from Malmquist bias
(Malmquist 1936), which we explicitly correct for in our
analysis. In addition to the usual peak flux bias, there should
be additional effects associated with the stretch and color of the
SNe: for a given peak luminosity, higher stretch, more slowly
declining SNe Ia will stay above the detection threshold longer
and hence be easier to find. Because our survey has different
depths in different passbands, at the high-redshift end bluer SNe
will have more of their flux in bands we are more sensitive to, and
hence will also be easier to detect. The effects of the Malmquist
bias differ from survey to survey; some of the low-z surveys,
which are galaxy-targeted, suffer from little Malmquist bias
when searching for SN candidates, while others are traditional
flux-limited surveys and are strongly affected. The simulations
used to calculate these corrections for SNLS are described in
Perrett et al. (2010) and are based on inserting 2.4 million fake
SNe into the real images and re-running the extraction pipeline.
We are not in a position to apply a similar analysis to the external
samples, although we do compute and correct for Malmquist-
type effects in these samples as described below. The mean
Malmquist bias for the SNLS sample is about 0.03 mag at z = 1
for mB after correction for light-curve shape and color.
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For the HST and SDSS samples, we make use of the
detection and spectroscopic selection models of K09 (Section 6),
which are expressed in terms of the redshift and derived light-
curve parameters. These models assume certain distributions
of stretch, color, and σint. In order to ensure consistency with
our SNLS estimates, we generate our own simulated samples
using the same distributions as the SNLS simulations and apply
the K09 selection models to the results in order to estimate the
Malmquist bias.

Our cosmological analysis corrects for both SN light-curve
shape and color, which significantly reduces the effects of the
Malmquist bias. However, the relationship between color, shape,
and peak magnitude is not perfect, so it is useful to study
residual effects. For example, for an SN at z = 0.45 where
rM 
→ B and iM 
→ V , because the SNLS iM images are
deeper, an SN which fluctuates red relative to the mean color
relation may be harder to detect without affecting the peak
rest-frame B magnitude, mB. In some previous studies (e.g.,
Perlmutter et al. 1999; Knop et al. 2003) it sufficed to treat the
Malmquist bias as a simple offset between the nearby and distant
SN samples. Because the measurement of w is more sensitive
to the shape of the luminosity-distance relationship within our
sample, this approach no longer suffices, and we map out the
redshift dependence for all but the nearby sample. Applying
selection effects as priors when fitting the SN parameters is
unwieldy in the SALT2 and SiFTO frameworks, but is an equally
valid approach often used with the MLCS light-curve fitting
package (as in Wood-Vasey et al. 2007; K09). Instead, we
apply the mean corrections to the relative distance moduli as
a function of redshift to each sample. Our tool for calculating
these corrections are Monte Carlo simulations of artificial SNe
tuned to match the observed properties of the SN samples.

2.7.1. Malmquist Bias in the Nearby Sample

A nice feature of the nearby sample is that we do not need
to know the redshift dependence of the Malmquist bias, at least
for standard cosmological models, because of the very simple
form of the luminosity-distance–redshift relation. Because of
the simple nature of the luminosity–redshift relation, if a
nearby sample has a sharp cutoff in magnitude, then the mean
Malmquist bias is 0.032 mag, independent of the cutoff. In
reality, however, any cutoff is unlikely to be perfectly sharp
(which tends to decrease the amount of bias), some nearby
samples are poorly described by magnitude limits (those based
on searching known galaxies), and sample cuts tend to reduce
the amount of bias.

We have two tools for analyzing the Malmquist bias in
the nearby samples. First, the bias can roughly be measured
by examining at what point on the light curve the SNe were
discovered—if most of the SNe were discovered around peak
brightness, then the sample is more biased than the one where
SNe are mostly discovered before peak. The bias for the Calán/
Tololo sample was considered in Perlmutter et al. (1999) using
this approach, who found a bias of 0.04 mag. Since this is larger
than the value obtained for a sharp flux cutoff (0.032 mag),
we adopt the latter. The CfAI sample was partially discovered
by searches which targeted specific host galaxies, and therefore
should suffer from less Malmquist bias than the Calán/Tololo
survey. An examination of the light curves suggests that this
data set is not entirely free from bias, since many of the SNe
were discovered near peak. Applying the same technique as was
used for the Calán/Tololo sample, we estimate a Malmquist
bias of 0.02 mag for this sample. The CfAII sample was almost

completely based on galaxy-targeted searches, and hence should
suffer from even less Malmquist bias. Indeed, most of the SNe
from this sample used in our analysis were discovered prior to
peak luminosity. Therefore, we adopt a value of 0 mag here. The
CSP is selected from a combination of the same galaxy-targeted
survey and the SDSS survey. For the latter, at the redshifts of
these SNe, the Malmquist bias should be completely negligible,
so we also adopt a value of 0 mag.

The size of the CfAIII sample allows us to adopt a more
sophisticated treatment. This sample was also largely selected
from galaxy-targeted surveys, and therefore the detection ef-
ficiency should be fairly flat with redshift. This is confirmed
by the fact that the earliest epoch of photometry relative to
maximum is mostly uncorrelated with redshift. However, the
spectroscopic selection criterion did make use of a magnitude
cut of ∼18.5 mag, which introduces the Malmquist bias. This is
in turn confirmed by the fact that the mean color of the sample
changes with redshift, with few of the faint/red SNe in the upper
half of the redshift range, which would not be the case in the
absence of selection effects.

We model the spectroscopic selection function of the CfAIII
sample by comparing the predicted number of SNe for an
unbiased survey to that actually obtained as a function of
redshift. We generate 32 million fake SNe using the same color
and stretch distributions as the SNLS Malmquist simulations
distributed evenly per comoving volume element27 and then
attempt to fit the parameters of a selection function to match
the observed redshift distribution. We use a logistics function
to model the selection probability P in terms of the peak
magnitude: P = 1/ (1 + exp [γ (m − m0)]). Most low-z SN
searches are carried out either unfiltered or in very broad bands,
so for m we consider both V and R, finding identical parameters.
We obtain γ = 2.76 ± 0.31,m0 = 16.29 ± 0.20 mag. The
amount of bias depends weakly on γ , but is independent of
m0. These imply a mean Malmquist bias for this sample of
0.027 mag.

2.7.2. Malmquist Bias in the HST Sample

Strolger et al. (2004) argue that the HST searches are
sufficiently deep to suffer from little or no Malmquist bias out to
the maximum redshift SN discovered. Because of the small size
of the HST sample, we compute the Malmquist bias for each SN
individually by constructing 10,000 constrained realizations of
our SN model consistent with the observed properties of that
SN given the observational uncertainties, and then apply the
models of K09. This only models the search efficiency and not
the spectroscopic selection. Riess et al. (2007) argues that there
are no spectroscopic losses below z = 1.4, so we cut the HST
sample at this redshift because we cannot model the Malmquist
bias for the single more distant SN. We find that the Malmquist
bias for the remaining SNe is small, less than 0.01 mag in all
cases.

However, this conflicts with the fact that the majority of the
z > 1 HST SNe were discovered at or near maximum light—if
there were no Malmquist bias, we would expect many more
of the SNe to be discovered before maximum, as is seen with
the lower redshift HST SNe. We do not understand the reason
for this discrepancy, but it has almost no effect on our fits to
(constant) w.

27 We include a small correction for the evolution in the SN rate with z over
this range from the A+B model fits of K. Perrett et al. (2011, in preparation),
although this has negligible effect.
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Figure 3. Mean Malmquist bias as a function of redshift for the SDSS sample.
The sharp feature at z = 0.15 is an artifact of the discontinuous spectroscopic
efficiency model of K09 and has little effect on the cosmological constraints.

(A color version of this figure is available in the online journal.)

2.7.3. Malmquist Bias in the SDSS Sample

Our method for modeling the SDSS Malmquist bias is
described above. The resulting mean bias per redshift bin is
shown in Figure 3. The mean amount of bias is relatively small,
perhaps because for SDSS it was easy to obtain spectra of even
the faintest detected candidates with 8 m class telescopes.

2.8. Peculiar Velocities

Most analyses have attempted to include the effects of SN
peculiar velocities (relative to the Hubble flow) by assuming
a large intrinsic velocity dispersion as an additional source
of redshift uncertainty. These are only important for nearby
SNe. This approach neglects any correlations in the flows. We
instead follow the discussion presented in Neill et al. (2007)
and explicitly correct for peculiar velocities on an SN-by-
SN basis. The peculiar velocity model used in this analysis
(Hudson et al. 2004) is based on the galaxy density field
in the nearby universe (z < 0.06) and accounts for infall
into nearby superclusters (e.g., Virgo, Hydra-Centaurus, and
Perseus-Pisces) as well as a large-scale bulk flow. The accuracy
of the corrections estimated to be ±150 km s−1 for an individual
SN, but this is a random uncertainty whose importance can
be reduced by observing multiple SNe. Applying this model
adjusts the CMB frame redshift of nearby SNe, but also applies
a (much smaller) correction to their peak magnitudes because the
standard luminosity-distance relation is not quite correct in the
presence of peculiar velocities, although this is only important
at low-z—see Hui & Greene (2006) for details.

3. COSMOLOGICAL RESULTS AND STATISTICAL
UNCERTAINTIES WITH THE COMBINED SN SAMPLE

After the selection criterion is applied, the combined SN
sample for our primary analysis consists of 472 SNe Ia: 123
nearby, 93 from SDSS, 242 from SNLS, and 14 from HST.
These numbers do not include those nearby SNe that are not in
the Hubble flow but which are used for training the light-curve
fitters. The parameters of each subsample are given in Table 3.

Table 3

Summary of SN Samples

Sample Redshift Rangea NSN 〈Npoints〉b

Low-z 0.01–0.10 123 32
SDSS 0.06–0.4 93 27
SNLS 0.08–1.05 242 37
HST 0.7–1.4 14 10

Notes.
a Redshift range from this sample included in our analysis.
b Average number of photometric epochs in the range −25 to +30
days, the range used in our light-curve fits.

3.1. Model for Relative Distance Moduli

The χ2 of the data relative to our model is similar to that of
A06. In the absence of any covariances between SNe,

χ2 =
∑

SNe

(mB − mmod)2

σ 2
, (1)

where mB is the rest-frame peak B-band magnitude of an
SN, mmod is the predicted magnitude of the SN given the
cosmological model and two other quantities (stretch and color)
which describe the light curve of the particular SN, and σ
includes both the uncertainties in mB and mmod. The model
magnitude is given (for SiFTO) by

mmod = 5 log10 DL (zhel, zcmb, w, Ωm, ΩDE) − α (s − 1)

+ βC + M, (2)

where DL is the Hubble-constant free luminosity distance, zcmb
and zhel are the CMB frame and heliocentric redshifts of the SN,
s is the stretch (a measure of the shape of the SN light curve),
and C is color measure for the SN. For SALT2, the expression
is similar, with (s − 1) 
→ x1, where x1 is a different mea-
sure of the light-curve shape. α and β are nuisance parameters
which characterize the stretch–luminosity and color–luminosity
relationships, reflecting the well-known broader–brighter and
bluer–brighter relationships, respectively. M is another nui-
sance parameter representing some combination of the absolute
magnitude of a fiducial SN Ia and the Hubble constant; even if
one of these is known from some other measurement, the other
still has to be marginalized over.

mB, s, and C will naturally all be correlated for an individual
SN because they are determined from the same data. Further-
more, their values are correlated between different SNe in the
presence of systematic effects and statistical uncertainties. For
example, a systematic uncertainty in the rM zero point will di-
rectly affect mB for all SNLS SNe between z = 0.35 and 0.55
(since rest-frame B 
→ rM in this redshift range), and will
have indirect effects even for an SN without rM measurements
because it affects our empirical SN models by changing the
templates and also changes the measured color–luminosity re-
lationship (β). Introducing a vector of model residuals over the
SN sample ∆ �m = �mB − �mmod then a better expression for χ2 is

χ2 = ∆ �mT · C−1 · ∆ �m. (3)

It is useful, for reasons explained in Section 4.1, to further factor
the total covariance matrix as

C = Dstat + Cstat + Csys. (4)
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The first term is the purely diagonal part of the statistical
uncertainty given by

Dstat, ii = σ 2
mB ,i + α2σ 2

s,i + β2σ 2
C,i + σ 2

int +

(

5 (1 + zi)

zi (1 + zi/2) log 10

)2

× σ 2
z,i + σlensing + σhost correction + CmB sC,i . (5)

Dstat, ii , or something similar, is the only term that has been
included in most analyses. Here σmB ,i, σs,i, σC,i are the errors on
the fitted light-curve parameters of the ith SN, and σint represents
the intrinsic scatter of SNe Ia. CmB sC,i represents the covariance
terms between mB, s, and C for each SN, and is a function of α
and β. We will discuss how to construct the off-diagonal parts
of the covariance matrix (Cstat and Csys) in Section 4.1.

We use the empty-universe approximation for the relation be-
tween redshift uncertainty and the associated magnitude uncer-
tainty (with zi being the redshift in the rest frame of the CMB).
This is appropriate because σz is only important for the low-
est redshift SNe in our sample. Future surveys which make use
of more uncertain photometric redshifts may have to use the full
form for the redshift uncertainty, which depends on the cosmo-
logical parameters. The lensing term represents the statistical
uncertainty caused by gravitational lensing (Section 3.4), and
the host correction term relates to the statistical uncertainty in
the host-galaxy correction (Section 3.2).

3.2. Correcting for Host-galaxy Properties

Sullivan et al. (2010) explore various approaches for includ-
ing host-galaxy information in the cosmological fits to correct
for the dependence of SN residual from the Hubble relationship;
see that paper for the details of how we measure host-galaxy pa-
rameters using broadband photometry and the Z-PEG package
(Le Borgne & Rocca-Volmerange 2002). Without a clear phys-
ical understanding of the cause, or even which descriptive host
parameter best accounts for the variation (metallicity, host mass,
or star formation rate), they find that simply splitting the sample
on one of these parameters and allowing the absolute magnitude
(M in our analysis) to be different between the two samples is
sufficient to describe the observations. It seems likely that the
true relationship is both more complex and more continuous,
but the current data do not require a more sophisticated model.
Therefore, we adopt this approach here. This is the first analysis
to incorporate these corrections.

Since all that is available for the vast majority of the SN
hosts in our combined sample is broadband photometry, the
host-galaxy parameters can have considerable measurement
correlations, and there is little evidence to favor one over the
others. Therefore, we split our sample based on host-galaxy
stellar mass at 1010 M⊙, since it is the most directly constrained
parameter. The effects of changing this selection are included
as a systematic as described in Section 5.8. For systematic tests,
instead of allowing M to vary based on host type, α and β
might be allowed to differ between subsamples, as explored in
Sullivan et al. (2010) and Lampeitl et al. (2010). Because the
SNe light-curve properties are physically correlated with host
type (i.e., higher stretch SNe are preferentially found in star-
forming hosts), these approaches are almost entirely degenerate
with theMmodel for our purposes, although they have different
physical implications.

Not including this correction has a substantial effect on
the measured cosmological parameters. The difference in M

between the two samples is ∼0.075 mag (Sullivan et al.

Table 4

σint and rms Values for Various Samples

Sample σint rms

Low-z 0.113 0.153
SDSS 0.099 0.143
SNLS 0.068 0.156
HST 0.082 0.242

Note. The uncertainty in each value is about 0.005 mag, and
the rms is around the best-fit cosmology.

2010). In addition to the systematic uncertainties discussed
in Section 5.8, we include the statistical uncertainties in the
measured host masses by multiplying this magnitude difference
by the probability that a given SN host is assigned to the wrong
subsample due to measurement uncertainties. The overall mass
scale does not affect our correction since it will affect all host
masses identically.

3.3. Combining SALT2 and SiFTO

We fit all SNe using both SiFTO and SALT2. Since our
analysis gives us no clear reason to choose either fitter, we
combine results from both in our final analysis, although we
show the results from each. The details are discussed in Section 5
of G10. We also include the difference between the two fitters
in our systematic uncertainty budget (Section 5.2). We give the
parameters from each fitter an equal weight in the combination.
It would be incorrect to treat the parameters from each as
independent since they are fit to the same data; this would
unjustifiably reduce our uncertainties by ∼1/

√
2. One approach

would be to treat the relative distance moduli from each fitter as
perfectly correlated. However, this has the side effect of making
it impossible to ask questions like what the uncertainty on the
combined peak magnitude is, and is complicated to extend to
the systematics analysis. We have therefore adopted a simpler
approach, which is to average the covariance matrices for each
statistical and systematic term derived for SiFTO and SALT2.
This satisfies our requirement that the final uncertainty should be
larger than the minimum of the SALT2 and SiFTO uncertainties
for each SN for every individual term.

3.4. Statistical Results

As mentioned previously, we add some additional, intrinsic
scatter (σint) to the peak magnitudes of SNe Ia to match
observations. This value will include both true intrinsic scatter,
related to our imperfect understanding of SN physics, and
any mis-estimates of the photometric uncertainties, uncorrected
selection biases, etc. We have no way to distinguish between
these contributions. Therefore, we allow different values of σint
for each sample (e.g., SNLS, low-z, SDSS), as is supported by
the data. The σint values are derived by requiring the χ2 of the
best-fitting Ωm, w cosmological fit to a flat universe to be one per
degree of freedom for each sample, including systematic effects,
and are given in Table 4. The cost is that we weaken our ability to
detect any deviations from our cosmological parameterization
that are much smaller than the intrinsic scatter—but such
deviations would be difficult to detect in any case. The σint
are held fixed at these values for all other fits (e.g., Ωm, ΩΛ). If
the data turn out to be inconsistent with a flat universe, fixing
these values unduly penalize some data sets—see S11 for fits
that allow for spatial curvature.
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Table 5

Light-curve Parameters of the Combined SN Sample

Name zcmb
a mB

b s C log10 Mhost
c MJDmax Filters Reference

sn2004s 0.010(0.000) 14.183(0.042) 0.973(0.026) 0.035(0.025) 12.07 53039.56(0.60) BVR 1
sn1999ac 0.010(0.000) 14.130(0.030) 0.987(0.009) 0.056(0.018) 9.92 51249.82(0.07) BVR 2
sn1997do 0.011(0.000) 14.317(0.036) 0.983(0.023) 0.056(0.025) 12.07 50765.81(0.14) BVR 2
sn2006bh 0.011(0.001) 14.347(0.021) 0.814(0.008) −0.045(0.019) 10.91 53833.01(0.06) BgVr 3
sn2002dp 0.011(0.000) 14.597(0.030) 0.973(0.029) 0.113(0.024) 10.47 52450.45(0.20) BVR 4

Notes. Combined SiFTO and SALT2 light-curve parameters for full data sample, with uncertainties in parentheses. Note that the individual variables are
correlated, as are the values for different SNe due to systematic and light-curve fitter training uncertainties.
a Uncertainty does not include residual peculiar velocity uncertainty.
b Includes the lensing term and the effects of the statistical uncertainty in log10 Mhost.
c Host stellar mass in solar masses.
References. (1) Krisciunas et al. 2007; (2) Jha et al. 2006; (3) Contreras et al. 2010; (4) Hicken et al. 2009b; (5) Altavilla et al. 2004; (6) Krisciunas et al. 2000;
(7) Hamuy et al. 1996; (8) Krisciunas et al. 2004b; (9) Krisciunas et al. 2001; (10) Riess et al. 1999; (11) Pastorello et al. 2007; (12) Krisciunas et al. 2004a;
(13) Leonard et al. 2005; (14) Krisciunas et al. 2006; (15) Strolger et al. 2002; (16) Kowalski et al. 2008; (17) Holtzman et al. 2008; (18) G10; (19) Riess et al.
2007.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)
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Figure 4. Statistical SN only constraints on Ωm, w assuming a flat universe and
constant dark energy equation of state.

(A color version of this figure is available in the online journal.)

All SNe are corrected for Galactic extinction using the
maps of Schlegel et al. (1998), including the estimated 10%
random uncertainty for each SN (there is also a correlated
systematic uncertainty discussed in Section 5.6). We correct
for peculiar velocities in the nearby sample (Section 2.8),
Malmquist bias effects (Section 2.7) for all samples, and assign
a random peculiar velocity uncertainty of 150 km s−1, as is
appropriate after the peculiar velocity correction. Our statistical
uncertainties also include the random uncertainty in the SN
model, as described in Appendix A.3 of G10; this means that
the statistical covariance matrix between SNe is not diagonal:
Cstat �= 0. We include the measurement uncertainties in the
host-galaxy masses as described in Section 3.2, and random,
uncorrelated scatter due to lensing following the prescription of
Jönsson et al. (2010): σlens = 0.055 z.

We perform two types of fits: one in which we compute
probabilities over a grid and then report the mean value of
the marginalized parameters, and a χ2 minimization routine
that reports the best fit. We should not expect the two to
agree as they have different meaning, but as such it is useful
to provide both—see Appendix B for further details. The
light-curve parameters for the combined sample are given in
Table 5. The luminosity-distance integral does not converge for
Ωm < 0, so both fits effectively have the (very reasonable)
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Figure 5. Hubble diagram of the combined sample. The residuals from the best
fit are shown in the bottom panel.

(A color version of this figure is available in the online journal.)

Table 6

Results from SN-only Fits

Uncertainties Ωm w α β

Marginalization Fits

Stat only 0.19+0.08
−0.10 −0.90+0.16

−0.20 1.45+0.12
−0.10 3.16+0.10

−0.09

Stat plus Sys 0.18 ± 0.10 −0.91+0.17
−0.24 1.43+0.12

−0.10 3.26+0.12
−0.10

χ2 minimization fits

Stat only 0.19+0.09
−0.12 −0.86+0.17

−0.19 1.397+0.085
−0.083 3.152+0.095

−0.093

Stat plus Sys 0.17+0.10
−0.15 −0.86+0.22

−0.23 1.371+0.086
−0.084 3.18 ± 0.10

prior of Ωm � 0. Our statistical constraints on Ωm, w in
a flat universe for a constant dark energy equation of state
are shown in Figure 4 using the marginalization approach
and are summarized in Table 6. We find w = −0.90+0.16

−0.20,
consistent with a cosmological constant (w = −1). The Hubble
diagram is shown in Figure 5. The error introduced by using a
simplified treatment of the nuisance parameters α and β (such
as holding them fixed at their best-fit values) is described in
Section 4.6.

The σint and rms values for each sample are summarized in
Table 4. The rms residuals are similar for the low-z, SNLS, and
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SiFTO vs. SALT2
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Figure 6. Comparison of SN-only statistical constraints for SiFTO and SALT2
Ωm, w assuming a flat universe and constant dark energy equation of state.

(A color version of this figure is available in the online journal.)

SDSS samples, which is impressive considering the range in
flux densities from z = 0.01 to z = 1. That of the HST sample
is larger, but this is unsurprising due to the larger photometric
uncertainties for such distant and difficult to observe SNe. K09
carry out the same analysis (Tables 11 and 15) and find a
similar rms for the SDSS sample as we do (0.15 versus 0.16
mag), but a smaller σint (0.08 versus 0.10 mag). However, they
find significantly larger values of both measures for the other
samples. Note that the SNLS data in this paper benefit from
improved calibration and photometry, and both the low-z and
SNLS samples are not the same as those in K09.

Comparing the individual light-curve fitters, for SiFTO we
find Ωm = 0.173+0.095

−0.098 and w = −0.85+0.14
−0.20 and for SALT2

Ωm = 0.214+0.072
−0.097 and w = −0.95+0.17

−0.19 (all uncertainties
statistical only). The contours are directly compared in Figure 6.
We include the difference between the light-curve parameters
from the two fitters in our systematic uncertainty budget as
described in Section 5.2.

The value for β is larger than that found by A06 (who found
β = 1.57 ± 0.15), although it remains inconsistent with a
value of 4.1 expected if SN colors are primarily caused by
Milky Way (MW)-like dust in the host galaxies. There are
several reasons for the increase. First, our current light-curve
fitting frameworks handle the intrinsic variation between SNe
Ia much better than in A06, particularly the observed scatter
in the relations between different rest-frame wavelengths—see
Appendix A.2 of G10 for details. This causes a significant
increase in the measurement uncertainties for SN colors and
deweights high-z SNe which are primarily measured in the
near-UV. These SNe, coupled with a simpler near-UV model,
were driving the fits in A06 to low values of β. Modeling
the uncertainty in the intrinsic uncertainty in the SN color
relations is a complicated subject which can also present itself
as apparent evolution in β; see Section 5.7 for more details.
Second, the method used to marginalize over α and β in A06
was intrinsically biased toward low values, as shown in Kowalski
et al. (2008).

4. COSMOLOGICAL RESULTS INCLUDING
SYSTEMATIC UNCERTAINTIES

The SNLS search and analysis proceeds through two inde-
pendent pipelines, one in France and one in Canada, which
can then be checked against each other. This has resulted in

many improvements to both pipelines. In this section, we explain
the methodology we use for analyzing systematic uncertainties
and how they impact our measurements (Section 4.1), present
the combined results including both statistical and system-
atic effects (Section 4.4), explore tension between subsamples
(Section 4.5), and discuss the consequences of simplified treat-
ments (Section 4.6). The detailed descriptions of individual sys-
tematic terms are given in Section 5.

A difficulty in estimating systematic uncertainties is how to
handle effects for which there is no clear physical model. The
obvious example for SNe Ia is the possibility of undetected and
uncorrected evolution in the SN population. While considerable
effort and ingenuity have been devoted to making specific
theoretical predictions for what form evolution might take and
what signatures it might produce, currently these predictions
frequently disagree with each other even as to the sign of
possible effects. In the absence of a physical model, it will
always be possible to imagine an evolutionary scenario which
will pass all available tests, yet which will bias the cosmology by
an arbitrary amount. We could artificially add some uncertainty
in w to try to take this into account, but this is highly unsatisfying
because the adopted value would be essentially arbitrary. In this
paper, we will concentrate on systematic effects for which we
have some sort of model, which includes some simple models
of evolution (Section 5.7).

4.1. Systematics Methodology

The difference between statistical and systematic uncertain-
ties is not always entirely clear—what one author labels a sys-
tematic another may label a statistical uncertainty. Here we
(mostly) adopt an effective definition which is that terms whose
effects on our final uncertainty budget could be simply reduced
by increasing the SN sample size are statistical uncertainties.
Thus, for example, the uncertainty in the redshift of a particular
SNLS SN is a statistical uncertainty, while the uncertainty in
our zero points is a systematic uncertainty, since it affects mul-
tiple SNe in a correlated fashion and its importance cannot be
reduced by simply observing more SNe.

There is no standard method for handling SN systematic
effects, but the most common approach works as follows: first, a
fit without any systematic effects is performed. Then, the effect
under consideration (e.g., a zero-point offset) is applied to the
SN sample and the cosmological parameters are re-measured.
The difference in each parameter is taken as the systematic
uncertainty in that parameter. Finally, the values for all of the
known effects are then added in quadrature to form the final
systematic uncertainty; we shall therefore refer to this shift-
and-add approach as the quadrature method. Not all SN papers
follow this approach, but with a few exceptions noted below, the
alternatives have generally been even less sophisticated.

The main advantage of this method is that it is simple to
implement once one has a list of systematic effects and estimates
of their size (in reality, of course, this is by far the most difficult
part of the analysis), but it has several disadvantages. One is that
individual effects can be shown graphically, but the combined
effects of multiple terms and their interrelations are difficult to
visualize, relying on many-panel plots or graphical distortions
that may not capture the full effects (see Knop et al. 2003; Conley
et al. 2006a; K09 for examples). A more serious disadvantage is
that it is difficult for others to include these systematics in their
analyses. Even were the individual modified distance moduli
made available, to apply this information to a new cosmological
parameter space, or to include additional data sets, an entirely
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new cosmological fit has to be carried out for each systematic
term, which can be prohibitively expensive. The result has been
that SN papers themselves include systematic uncertainties,
but most subsequent analyses ignore them; for example, the
WMAP7 analysis of Komatsu et al. (2010) provides constraints
that do not include SN systematics because they had no simple
way to do so. Because systematic effects induce correlations
between different SNe, in principle the best-fit point should be
modified by their presence, so ignoring these effects not only
underestimates the uncertainties, but can lead to biased results.
Additional criticism of the quadrature approach can be found in
Barlow (2003).

One way to overcome both problems is to marginalize over
all of the systematic terms during the fit. This marginalization
can be carried out explicitly (using the uncertainty estimates for
each term of the following sections as priors), or by adding
a systematics covariance matrix to the statistical covariance
matrix as in Equation (4). We have used both methods in this
analysis, but only the results of the latter are presented here.
This separation of the covariance matrix has been used before
in the SN literature, although in abbreviated form. In Perlmutter
et al. (1999) and Knop et al. (2003) a similar approach was used
for the zero-point uncertainties and their effects on mB, with all
other systematic effects handled via the quadrature method.

The statistical and systematic covariance matrices, Cstat and
Csys of Equation (4), are generally not diagonal, which have also
been neglected in most SN analyses. We compute them using
standard techniques (e.g., Aharmim et al. 2005):

Csys, ij =
K

∑

k=1

(

∂mmod i

∂Sk

) (

∂mmod j

∂Sk

)

(∆Sk)2 , (6)

where the sum is over the K systematics Sk, ∆Sk is the size
of each term (for example, the uncertainty in the zero point),
and mmod is defined as in Equation (2). A similar expression
is used for Cstat. An example of such a term in Cstat is the
uncertainty in the SN model. Since these uncertainties could be
reduced with more SNe, they are a statistical uncertainty rather
than a systematic one, but are correlated between different SNe
and therefore cannot be included in Dstat. Note that all of the
components of C are functions of the nuisance parameters α
and β, but not M because the relative distance moduli are
independent of its value. Since Dstat is diagonal and the off-
diagonal pieces of C have the right form, we can take advantage
of the Sherman–Morrison–Woodbury formula (Golub & van
Loan 1996) to compute C−1 in N2 steps.

This approach must be modified slightly for effects which
cannot be smoothly parameterized. An example is contamina-
tion by non-SNe Ia, which has the effect of removing an SN from
the sample rather than changing mB, s or C. In such cases, we
resort to studying SNe in redshift bins, where there are enough
objects in each bin that the effect is sufficiently continuous for
our purposes, and then reproject the systematic onto the individ-
ual SNe (e.g., non-Ia contamination Section 5.5) by determining
what systematic uncertainty, assumed perfectly correlated be-
tween all SNe in that bin, would produce the same uncertainty
in the mean bin parameters as the specified effect and then as-
signing it to those SNe.

Kowalski et al. (2008) have recently presented an alternative
to the standard scheme for handling systematic effects which
shares some characteristics with that adopted here. They treat
all systematic effects as offsets between the peak magnitudes of
nearby and distant SNe on a sample-by-sample basis. This could

be replicated in our scheme by forcing Csys to consist of blocks
of identical values when ordered by SN sample, and in fact this
transformation was used in Amanullah et al. (2010). This is a
good approximation when each SN sample covers a very small
range in redshift, since it does not allow for any effects within a
sample, but this is not true of current high-z SN samples. Both
papers also hold α and β fixed while calculating Csys, which
both biases their values, and more importantly underestimates
the uncertainty on w, as discussed in Section 4.6.

4.2. Light-curve Training

All current light-curve analysis frameworks are trained on
SN data which share systematics in common with the data used
to derive the cosmological constraints. While many previous
analyses have included some estimates of the uncertainty in the
light-curve models, none have properly considered the interplay
of systematic effects with the training process, and hence have
underestimated their systematic uncertainties. A unique feature
of the current analysis is that both of the frameworks used for
SNLS3 (SiFTO and SALT2) are trained on high-redshift SN
data. This is only practical because the training process for both
does not assume any relationship between redshift and distance
(and, in fact, makes no use of distance information), and so are
completely independent of the cosmological parameters. The
benefit of including the high-redshift data in the training process
is that it allows us to probe further into the blue, where the SNLS
calibration of rest-frame near-UV data is much more secure than
the corresponding low-z data. Because SNLS systematics affect
the light-curve model, they will affect the derived parameters of
even nearby SNe, and vice versa. Excluding high-z data from
the training sample would only increase the overall uncertainty
budget.

We proceed in two steps for each systematic effect. First, we
calculate the effect on the light-curve model. We then apply the
modified model to all of the data, deriving a new set of light-
curve parameters. A similar procedure could easily be applied
to other light-curve techniques (e.g., MLCS2k2 or ∆m15).

4.3. Method for Presenting Systematic Effects

There are 134 individual systematic terms considered in this
paper. Attempting to compare the importance of each term is
difficult, and we have not found any entirely satisfactory method.
In the parameter space studied in this paper (i.e., Ωm, w for
a flat universe with a constant dark energy equation of state)
the size of the uncertainties on the cosmological parameters
depends strongly on the values of those parameters. Therefore,
introducing a correlated uncertainty which shifts the results
can actually reduce the uncertainties. This effect is mitigated
when we combine SN data with external constraints such as
Wilkinson Microwave Anisotropy Probe (WMAP) because they
are nicely orthogonal to the SN ones, and therefore prevent
the constraints from shifting too much. Therefore, some effects
which seem very large when only SNe are considered are minor
when combined with WMAP and Baryon Acoustic Oscillations
(BAO) results (see S11). Also, some systematic effects appear
minor simply because the SNe they affect have little weight in
the fits considered in this paper, which may not be the case for
a different cosmological model.

With those caveats in mind, we present the effects of our
systematics in three ways: first, in terms of the effects on
Ωm, w for SNe only, and second in terms of the effects on w
with Ωm fixed. The latter approximates the effects of including
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Table 7

Identified Systematic Uncertainties

Description Ωm w Rel. Area a w for Ωm = 0.27 Section

Stat only 0.19+0.08
−0.10 −0.90+0.16

−0.20 1 −1.031 ± 0.058

All systematics 0.18 ± 0.10 −0.91+0.17
−0.24 1.85 −1.08+0.10

−0.11 Section 4.4

Calibration 0.191+0.095
−0.104 −0.92+0.17

−0.23 1.79 −1.06 ± 0.10 Section 5.1

SN model 0.195+0.086
−0.101 −0.90+0.16

−0.20 1.02 −1.027 ± 0.059 Section 5.2

Peculiar velocities 0.197+0.084
−0.100 −0.91+0.16

−0.20 1.03 −1.034 ± 0.059 Section 5.3

Malmquist bias 0.198+0.084
−0.100 −0.91+0.16

−0.20 1.07 −1.037 ± 0.060 Section 5.4

Non-Ia contamination 0.19+0.08
−0.10 −0.90+0.16

−0.20 1 −1.031 ± 0.058 Section 5.5

MW extinction correction 0.196+0.084
−0.100 −0.90+0.16

−0.20 1.05 −1.032 ± 0.060 Section 5.6

SN evolution 0.185+0.088
−0.099 −0.88+0.15

−0.20 1.02 −1.028 ± 0.059 Section 5.7

Host relation 0.198+0.085
−0.102 −0.91+0.16

−0.21 1.08 −1.034 ± 0.061 Section 5.8

Notes. Results including statistical and identified systematic uncertainties broken down into categories. In each case, the constraints
are given including the statistical uncertainties and only the stated systematic contribution. The importance of each class of systematic
uncertainties can be judged by the relative area compared with the statistical-only fit.
a Area relative to statistical-only fit of the contour enclosing 68.3% of the total probability.
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Figure 7. Effects of changing the iM zero point by 6.1 mmag on various light-
curve parameters and the corrected peak magnitude mcorr = mB +α (s − 1)−βC,
as a function of redshift. Note that because this affects our SN models (SALT2
and SiFTO), as the training sample includes SNLS data, this alters the corrected
peak magnitudes of all SNe, not just those in the SNLS sample. Furthermore,
because of the changes in the light-curve model, the offset in the derived color
can actually be larger than the shift in the zero point.

(A color version of this figure is available in the online journal.)

the BAO and WMAP constraints, which mostly improve the
measurement by constraining Ωm. In both cases, we compare
the uncertainties on the cosmological parameters from a fit that
only includes statistical uncertainties with one that includes
statistical uncertainties plus only that systematic term. We
also provide the relative size of the contour that encloses
68.3% of the probability, compared with the statistical-only
contours. This is similar in spirit to the Dark Energy Task
Force figure of merit (Albrecht et al. 2006), and is perhaps
the simplest way of expressing the importance of each term.
Because of the curvature of the SN-only constraints, the area of
the inner contour can actually increase while the marginalized
uncertainties decrease. We caution against the practice of
comparing the shifts in the best fit as a useful method of
measuring systematic effects, as it can be misleading. An
updated version of the effects on the cosmological parameters is
given in S11 combined with external constraints such as baryon
acoustic oscillations and CMB measurements. An example of
the effects of one systematic (the iM SNLS zero point, discussed
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Figure 8. Ωm, ΩΛ (i.e., w = −1, but allowing for non-zero spatial curvature)
contours including all identified systematic uncertainties.

(A color version of this figure is available in the online journal.)

in Section 5.1.1) on the light-curve parameters as a function of
redshift is shown in Figure 7.

4.4. Combined Statistical and Systematic Results

Including all identified systematic effects, the results for
an Ωm, ΩΛ fit are shown in Figure 8. The SN data alone
require acceleration at high significance. The results for a flat
universe with a constant dark energy equation of state are
summarized in Table 6, and the contours are shown in Figure 9.
We find w = −0.91+0.16

−0.20 (stat)+0.07
−0.14 (sys), again consistent with

a cosmological constant. An overview of the importance of
each class of systematic effect is given in Table 7—calibration
effects are by far the dominant type of identified systematic
uncertainty. Overall, the systematic uncertainties degrade the
area of the uncertainty ellipse by a bit less than a factor of two
relative to the statistical-only constraints. Excluding the SDSS
and CSP SNe (calibrated to a USNO system) increases the area
of the uncertainty ellipse by about 10%; the improvement from
including this data should be increased once the full benefits of
cross calibrating these two samples with SNLS are realized.

It is interesting to compare the constraining power of the
low-z, SDSS, and SNLS samples. This was also explored in
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Figure 9. Constraints on Ωm, w in a flat universe including all identified
systematic uncertainties.

(A color version of this figure is available in the online journal.)
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Figure 10. Comparison of the constraints on Ωm, w in a flat universe excluding
various samples. First, in the left panel, we exclude the SDSS sample (so
the included samples are SNLS, HST, and low-z), in the middle the low-z
sample, and on the right the SNLS data. The fits include all identified systematic
uncertainties. The filled contours are the constraints with all samples, and the
dashed contours exclude the labeled sample.

(A color version of this figure is available in the online journal.)

K09, but with a smaller low-z sample (33 versus 123 SNe).
The resulting constraints without each sample are shown in
Figure 10; as can be seen, the first year of SDSS data is not
a good replacement for the nearby sample, although the full
three year sample may alter this situation. Excluding the SNLS
sample has a significant negative impact on the cosmological
constraints.

4.5. Tension Between Data Sets

As a test of whether our estimates for systematic effects are
reasonable, we compute the mean offsets in the residuals from
the cosmological fit between different samples. We compute
the weighted mean residual for each sample, including the
statistical and systematic covariance matrices and assuming
the best-fit values of α and β. The results are summarized in
Table 8 and show no significant evidence for any disagreement
between samples (the apparent increase with z is not statistically
significant). Note that our estimates for each systematic term
were constructed before this test was carried out. We have also
compared the rms around the best fit for different sources of the

Table 8

Tension Between Different SN Samples

Sample Mean Offset (mag) Uncertainty N

Low-z −0.027 0.024 123
SDSS 0.020 0.027 93
SNLS 0.023 0.023 242
HST 0.043 0.072 14

Calán/Tololo −0.027 0.046 17
CfAI 0.064 0.062 7
CfAII 0.051 0.049 15
CfAIII −0.047 0.034 58
CSP 0.052 0.057 14
Other 0.052 0.057 12

low-z sample. Generally, these are consistent, with the exception
of the CfAII sample (which has an rms of 0.20 mag, compared
with 0.153 mag for the other samples). This is mostly due
to a single SN which just barely passes our outlier rejection,
SN 1999dg. Without this SN, the rms of the CfAII sample is
0.163 mag. The CfAI, CfAIII, and CSP samples show slightly
below average rms (about 0.14 mag), but this is not statistically
significant. Note that the relative weights of the samples in this
comparison should not be taken too seriously because of the
somewhat arbitrary way in which systematics were attributed
to particular samples, although test for tension is meaningful.
Specifically, the systematic uncertainties in the cross-calibration
between the low-z and other samples are always assigned to
the latter (SDSS, SNLS, etc.) which decreases their apparent
weight; it would be just as valid to assign the cross-calibration
uncertainties to only the low-z sample, which would make the
other samples appear to have much more weight. The actual
weights should be judged in terms of the consequences of
removing each sample, as in Figure 10.

4.6. The Consequences of Simplified Treatments

In this section, we describe the consequences of various
simplifying assumptions in the analysis. Figure 11 shows the
effects of not including uncertainties related to the light-curve
models, specifically omitting the model statistical uncertainty
and the effects of the systematic effects on the model training.
The consequences are not as severe as the effects of fixing the
nuisance parameters, but still will obviously underestimate the
uncertainties. The general effects are to underestimate the total
uncertainty budget, although the size of the effect depends on
the simplification.

α and β are correlated with the cosmological parameters, with
correlation coefficients of about 0.2 for the Ωm, w fit; dropping
the assumption of flatness or investigating time varying w
generally increases these correlations. Therefore, the treatment
sometimes found in the literature of fixing α and β at their best-
fit values and not fitting for them explicitly both underestimates
the uncertainties and results in biased parameter estimates.
A related simplification is allowing α and β to vary for the
statistical uncertainty (Dstat of Equation (5)), but holding it fixed
when computing the systematics, as in Kowalski et al. (2008)
and Amanullah et al. (2010). This simplification also biases α
and β, and therefore the cosmological parameters, as shown
in the right-hand panel of Figure 11, and underestimates the
uncertainties; for this sample, it amounts to underestimating the
size of the inner uncertainty contour by ∼40%, although the
effects on the marginalized uncertainties are modest.
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Figure 11. Effects of simplified systematic and statistical treatments of SN
data. In the left panel, the statistical uncertainties with (filled contours) and
without (dashed contours) the model statistical uncertainties are shown. In the
center panel, the results of not including the effects of systematics on the light-
curve model are shown for the combined statistical and systematic errors using
the same labeling scheme. Finally, the right panel shows the consequences of
holding α and β fixed when computing the systematics covariance matrix. The
center panel is for SiFTO only, since it is easier to separate the retraining effects,
but the other two panels show combined SALT2 and SiFTO results. The dashed
contours are smaller than the filled contours indicating that each simplification
will underestimate the errors by some amount.

(A color version of this figure is available in the online journal.)

5. INDIVIDUAL SYSTEMATIC TERMS

In this section, we discuss the individual systematic terms in
detail, also presenting their effect on the parameter estimates.
Different categories of systematic effects are summarized in
Table 7. The systematic correlation matrix is shown in Figure 12
to convey some of the sample- and redshift-dependent structure
of the systematic effects. When summarizing individual terms,
for brevity we only provide the effects on a fit for w assuming a
flat universe and Ωm = 0.27 and the area relative to statistical-
only fit of the contour enclosing 68.3% of the total probability.

5.1. Calibration

The calibration of the SNLS data onto a standard photometric
system is described in detail in R09. Achieving the target
accuracy of ≈1% has proven quite difficult, and remains the
major source of systematic uncertainty in our measurement.
In addition to the SNLS calibration, we also consider the
calibration of the external samples included in our analysis.
It is useful to separate the effects into a number of categories.
Calibration can be considered to consist of two steps: first, the
observations are standardized onto some photometric system,
and second, they are converted from the standard system into
(relative) fluxes in order to compare SNe at different redshifts.
Items related to the first step are hereafter referred to as
zero-point uncertainties, and those related to the second as
flux calibration uncertainties, which includes both bandpass
uncertainties and uncertainties in the magnitudes and SED of
our fundamental flux reference, BD 17◦ 4708. In many other
treatments these two terms are lumped together into a single
“calibration error” term.

The details of how most of these uncertainties are derived
are given in Section 12 of R09. Here we present them in
a somewhat different (but equivalent) form, breaking them
down into various contributions in order to highlight which

Figure 12. Combined correlation matrix (Cstat + Csys of Section 4.1) for the
best-fit values of α, β sorted by sample and by redshift within each sample.
The purely diagonal statistical uncertainty term of Equation (5) is not included.
The redshift- and sample-dependent structure of the covariance information is
quite complicated and is not well represented by simple (1 + z)n-type models.

(A color version of this figure is available in the online journal.)

Table 9

Calibration Systematics

Description w for Ωm = 0.27 Rel. Area Section

Stat only −1.031 ± 0.058 1
All calibration −1.06 ± 0.10 1.79 Section 5.1

Colors of BD 17◦ 4708 −1.075 ± 0.075 1.31 Section 5.1.7
SED of BD 17◦ 4708 −1.026 ± 0.073 1.23 Section 5.1.8
SNLS zero points −1.030 ± 0.069 1.21 Section 5.1.1
Low-z zero points −1.044 ± 0.065 1.13 Section 5.1.2
SDSS zero points −1.028 ± 0.060 1.02 Section 5.1.4
MegaCam bandpasses −1.017 ± 0.066 1.20 Section 5.1.5
Low-z bandpasses −1.027 ± 0.059 1.04 Section 5.1.6
SDSS bandpasses −1.026 ± 0.059 1.02 Section 5.1.6
HST zero points −1.027 ± 0.058 1.03 Section 5.1.3
NICMOS nonlinearity −1.029 ± 0.059 1.05 Section 5.1.3

Note. Individual calibration systematics.

particular items cause the largest effect on the cosmological
parameters. In addition to the effects discussed in R09, we also
present calibration uncertainties for the external samples and
uncertainties in the bandpasses. The various contributions are
summarized in Table 9. Calibration is the largest component of
our systematics uncertainty budget. This is not due to the fact
that we train our light-curve fitters on our own data, as can be
inferred from the center panel of Figure 11. The most important
subterms are the colors and SED of BD 17◦ 4708 and the SNLS
zero points.

5.1.1. SNLS Zero Points

Since SNLS observes in four filters and there are four fields
which each have their own zero point, there are 16 zero-point
terms to consider. However, most of the important terms are
strongly correlated between different fields, and in fact in some
cases between different filters. These are described in the first
section of Table 12 of R09 in combination with the uncorrelated
random uncertainties of Table 8 of that paper. The net effect is an
uncertainty of around 2.5, 2.4, 5.9, and 3.2 mmag in gMrMiMzM ,
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Table 10

Zero-point Uncertainty Systematics

Description Uncertainty (mag) w for Ωm = 0.27 Rel. Area

Stat only . . . −1.031 ± 0.058 1

SNLS zero points . . . −1.031 ± 0.070 1.21
gM only 0.0028 −1.030 ± 0.059 1.00
rM only 0.0028 −1.012 ± 0.060 1.12
iM only 0.0061 −1.034 ± 0.064 1.10
zM only 0.0035 −1.049 ± 0.060 1.02

Low-z zero points . . . −1.044 ± 0.065 1.13
CfAIII only . . . −1.047 ± 0.061 1.08
CSP only . . . −1.033 ± 0.059 1.01
B 0.015 −1.027 ± 0.060 1.03
V 0.015 −1.024 ± 0.060 1.01
R 0.015 −1.030 ± 0.059 1.00

SDSS zps . . . −1.028 ± 0.060 1.02
g only 0.003 −1.029 ± 0.058 1.00
r only 0.004 −1.029 ± 0.059 1.01
i only 0.007 −1.030 ± 0.059 1.00
Scale from V 0.0062 −1.030 ± 0.059 1.00

HST zero points . . . −1.027 ± 0.058 1.03

Notes. The SNLS zero points do not include the transformational uncertainties
for BD 17◦ 4708, which are given in Table 12. The combined uncertainties are
given in Table D.2 of R09. SDSS values do not include the effects of the filter
mean wavelength uncertainties on the conversion to AB magnitudes, given in
Table 11. The HST zero-point uncertainties do include the effects of passband
uncertainties. The zero-point uncertainties for the CSP sample are not broken
down into individual terms because it constitutes a small fraction of the overall
sample.

with correlations. These uncertainties are fairly small, as benefit
the considerable effort involved in the SNLS calibration; this
is an advantage of large, single instrument surveys, which can
devote considerably more effort to internal calibration than is
practical for small surveys or those which make use of many
instruments. In addition to these uncertainties, there is a small
additional uncertainty of about 2 mmag in each filter arising
from the differences between the point-spread function and
aperture photometry used on the SNe and stars, as discussed
in Section 3.2 of G10.

The net effect on the measured parameters is given in Table 10.
Because of the correlations, the breakdown by individual filter
should only be considered approximate, but the largest effect
stems from the iM filter, which maps to rest-frame B near the
redshift range where SNe are most sensitive to w.

5.1.2. Low-z Data Set Zero Points

The zero-point uncertainties of the nearby SN samples are
generally not as well understood as those of SNLS. These
samples are generally less homogenous than the SNLS sample,
and are frequently not reported in the natural system of the
telescope/detector. On the other hand, since the data come
from many sources, both in terms of the telescope/detector
systems and the techniques applied to reduce the data, some of
the calibration errors may partially average out across multiple
samples, resulting in a smaller uncertainty. We are not in a
position to model the zero-point uncertainties of the low-z data
at the same level of sophistication as the SNLS zero points as
we do not have access to the raw data, and the inhomogeneity
would make this quite difficult in any case.

As discussed previously, the nearby SN sample is dominated
by five large data sets. The observations for each of these sets
are generally from 1–3 instruments at a single site, with a few

exceptions. In addition to the raw measurement uncertainties in
the calibrations, we expect uncertainties from at least two other
sources. First, three of the five samples present photometry in
the Landolt system rather than the natural system by applying
linear transformations to the natural system magnitudes. These
linear transformations are derived using stars, and therefore
are not entirely appropriate for SNe. This introduces an error
in the resulting magnitudes, one that is determined by the
mismatch between the actual instrumental passbands and the
Landolt system. Since the passbands are shared across many
observations, and because these surveys cover a fairly limited
redshift range, these uncertainties will be correlated between
different SNe. Second, and less importantly, uncertainties in the
modeling of atmospheric extinction will be shared between most
observations for a given survey.

However, in contrast to the earliest low-z samples, the CfAIII
and CSP samples provide data in their natural systems. Since
what we are really doing is comparing SN fluxes observed
through low-z natural systems with SN fluxes in the MegaCam
natural system, both of which are much more accurately
measured, using the natural system frees us of the uncertainty
related to the effective passbands of the Landolt system, which
is a significant advantage.

Hamuy et al. (1993) discuss the photometric transformations
used to calibrate the Calán/Tololo sample, giving a typical
uncertainty of ∼0.02 mag. For the CfAI sample, Riess et al.
(1999) quote an rms of 0.02 mag for the typical residuals for
the calibration stars around the mean. No specific zero-point
uncertainty is given by Jha et al. (2006) for the CfAII sample,
but uncertainties in the color terms are estimated as 0.5%–2%.
Together, these estimates suggest that the zero points of the
nearby data are quite well known. However, the treatments in
these papers are generally focused on the contribution of zero-
point uncertainties to individual observations, not the overall
zero-point uncertainty. To estimate this value, we consider
photometry of the same SNe from different sources. Riess et al.
(1999) perform this comparison for two SNe, while Jha et al.
(2006) carry out a similar analysis for 10 SNe and Hicken
et al. (2009b) do so for 7. However, the latter is done in
the Landolt system, and hence does not directly apply to the
natural system magnitudes we use in this analysis. Some of
these SNe do not have extensive enough coverage to allow a
detailed comparison. Considering these results, we estimate a
global zero-point uncertainty of about 0.015 mag in BVR. We
therefore adopt these values for the three samples on the Landolt
system.

Hicken et al. (2009b) quote zero-point systematic uncertain-
ties of 0.03 mag in BVRIr′i ′, and 0.07 mag in U for the CfAIII
sample. However, this refers to the Landolt transformed mag-
nitudes, not the natural system magnitudes, which removes a
substantial part of the uncertainty. The second major contribu-
tion comes from a comparison of the pipeline reductions with
those of an earlier version used in Jha et al. (2006). They note
that the scatter in the reduced magnitudes from object to object
is typically about 0.02 mag, and adopt this as their system-
atic uncertainty. However, the pipeline offset varies randomly
from object to object, and therefore is properly a statistical un-
certainty for our purposes. The mean offsets between the two
pipelines, however (0.005 mag), are systematic uncertainties,
since their effects do not average down by combining distances
to many SNe. The appropriate systematic uncertainty from this
term is therefore 0.005 mag in each filter. In addition, we in-
clude the transformational uncertainties for the magnitude of our
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fundamental flux standard. While it is likely that these are actu-
ally smaller at the color of this standard than at color zero, we
take the conservative approach of assuming that the measure-
ment uncertainties are smallest for zero color and extrapolat-
ing. Putting these contributions together, we arrive at zero-point
uncertainties of 0.011, 0.007, and 0.007 mag for BVR on the
4Shooter camera, and essentially identical values for BVr′ on
Keplercam.

The zero-point uncertainties of the CSP sample have not
been analyzed in detail. Comparison with photometry of SNe
in common is complicated because of the different photometric
systems, but suggests the uncertainties are on the order of 1%
or less. The CSP quotes zero-point uncertainties including the
effects of bandpass uncertainties, which we treat separately;
removing these results in 0.8% zero-point uncertainties. There
are seven well-observed SNe in common between the CSP and
CfAIII samples, so we can compare the photometry. Because
they are in different systems, this comparison must be mediated
by an SN model. We perform SiFTO fits to each SN and use
the resulting model SEDs to K-correct the photometry from one
system to another. We are interested in mean offsets between
the two systems, so calculate the weighted mean difference and
uncertainty, including the estimated calibration correlations. We
find good agreement in Bg′V i ′, and somewhat poorer in r ′

(with differences of 0.8, 0.9, 1.5, 1.0, and 2.2σ , respectively),
after outlier rejection (which actually increases these values),
although the precision is only about 2%. The i value should
be treated with some caution, as at the low redshift of the
comparison objects it lies beyond the wavelength range we
normally consider in SiFTO and SALT2. It is not clear how
seriously to take the disagreement in r ′, but fortunately the r ′

zero point has virtually no impact on our results.
The effects are broken down into individual terms in Table 10.

The B and V filters can be seen to have the largest effects,
but overall the low-z sample zero points are not a major
contributor to our final uncertainty budget. Unsurprisingly,
including the SDSS SNe significantly reduces the importance
of these terms by providing an independent absolute magnitude
anchor—without the SDSS sample, the combined statistical and
systematic uncertainty from the low-z zero-point uncertainties
is ±0.074 rather than ±0.064.

5.1.3. HST Calibration

In addition to the zero-point uncertainties, NICMOS suffers
from multiple types of nonlinearity: an expected exposure length
nonlinearity probably due to charge trapping, and a poorly
understood nonlinearity related to the count rate of the observed
object (plus sky). The NICMOS pipeline attempts to correct for
both nonlinearities. However, these corrections, particularly for
the latter effect, are not perfect, and therefore we include related
terms in our uncertainty budget. The second nonlinearity is
described in de Jong et al. (2006a, 2006b) and Shaw & de Jong
(2008) and the scheme used to correct the SN data applied by
Riess et al. (2007) is described in de Jong (2006).

The correction model is parameterized by a power law such
that count rate ∝ fluxαN with measured values (for NICMOS
chip 2) of αN = 1.025 ± 0.002 for the F110W filter and
αN = 1.012 ± 0.006 for F160W. Here the flux should include
both the object and background, which is important for faint
sources such as high-z SN. It is interesting that this effect
seems to be wavelength dependent. Note that this correction
is not based on a physical model, and so may not be the most
appropriate parameterization. Furthermore, this nonlinearity has

only been tested down to count rates of a few per second, while
z > 1 SN plus background observations are typically an order
of magnitude fainter.

The count rate nonlinearity affects the observations of bright
standard stars differently than faint SNe, which means that un-
certainty in each αN affects how the NICMOS calibration prop-
agates to SN observations, and hence introduces a systematic
uncertainty in the light-curve parameters. The NICMOS zero
points are based on observations of P330e, which is ∼11.5 mag
in F110W and F160W. The proper way to measure the impact of
this effect would be to go back to the original SN and standard
star images and re-extract the photometry for different values of
αN . However, we can obtain a decent estimate simply by con-
verting the magnitudes of the standard stars and SNe to counts
rates and comparing the flux ratio for different values of αN .

Carrying out this program (and including the appropriate
typical background levels for the two passbands), the average
uncertainty for observations in the F110W and F160W filters
induced by the uncertainties in αN are 0.022 and 0.060 mag,
respectively, for HST SN with data in those filters; the exact
values depend on the flux level of a particular photometry
point, and so vary both from SN to SN and with epoch for
a particular SN. Because the effects of the uncertainties in the
αN are correlated across all of the SNe observed with NICMOS,
they have a quite substantial impact on the weight of these SNe
in the cosmological fits. Furthermore, these uncertainties may
be optimistic, since they assume the power-law model is valid
at such low flux levels. Because of the high background levels,
these numbers are fairly constant as a function of epoch, do not
change much for different SNe in the HST sample, nor are they
strongly affected by the possible presence of a host galaxy.

Changes in αN make SNe either simultaneously fainter and
redder or bluer and brighter, so that correction for the brighter-
bluer relation partially cancels the effects of this systematic term.
However, the residual effect is still substantial. The effect on w
is small because the HST SNe have relatively little weight in this
fit, but this is not necessarily true of fits for other cosmological
parameters such as time-varying w. We can roughly estimate
the importance of this effect by calculating the change in the
inverse variance of the mean corrected magnitude of the HST
sample with and without this systematic—this is essentially the
weight of the sample. This shows that the uncertainty in the
nonlinearity correction reduces the weight of the HST sample
by 17%, approximately equal to removing three SNe; reducing
the uncertainties in αN by a factor of two would be equivalent to
adding two more SNe. Fortunately, only the four highest redshift
SNe are strongly dependent on NICMOS F160W observations,
where the nonlinearity correction is the most uncertain.

In addition to the uncertainty in the NICMOS nonlinearity
corrections, we assign zero-point uncertainties of 2% for the
ACS bands longward of 7000 Å following Bohlin (2007),
and 1% below that. For NICMOS, we additionally include an
uncertainty of 0.009 and 0.0145 mag for F110W and F160W
following the information on the NICMOS Web site. The above
terms nominally include the uncertainty in the bandpasses, so
we do not include separate terms for those.

5.1.4. SDSS Zero Points

The calibration adopted by the SDSS SN team is based on
observations of solar analogs with CALSPEC HST measured
SEDs. There are no Landolt magnitudes available for these
stars, so we take a slightly less direct route by comparing
their SEDs with that of BD 17◦ 4708 (which, fortunately, is
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calibrated onto the same system). For the uncertainty in each
zero point, we adopt values given in Section 3.2 of K09, which
are 0.4%, 0.4%, and 0.7% in gri.28 In addition to the individual
filter terms, because this calibration is not linked directly to the
Landolt system, the inter-calibration is subject to an additional
“gray” uncertainty of 0.6% arising from the uncertainty in the
V magnitude of BD 17◦ 4708 on the Landolt system, including
transformational uncertainties. This additional term is the price
paid for not calibrating the SDSS (and CSP) observations to
the same system as the low-z SNe, although the net calibration
uncertainty is still small compared to some other samples.

There are a small number of well-observed SNe in common
between the SDSS and low-z samples, in particular two with
the CSP and one from the CfAIII sample. Comparing the
photometry as between the CSP and CfAIII samples, we find
good agreement in gr but not in i, with mean offsets of 1.2, 0.5,
and 2.1σ , respectively. It is even less clear how to interpret these
numbers due to the very small sample size. Fortunately, there
should be many more objects in common between years two
and three of the CSP and SDSS samples, so it will be possible
to carry out much more stringent comparisons in the future.

5.1.5. System Bandpasses: SNLS

We next turn to uncertainties in the SNLS system bandpasses.
The four MegaCam filters used by SNLS for the first three years
of operation were manufactured by SAGEM. The filters scans
show clear evidence of variation with radial position in the array,
which we account for in our analysis (R09; Section 7). The
largest systematic effect on our measurements arises from shifts
in the mean wavelengths of the bandpasses, since this changes
which portion of the SN SED is sampled at different redshifts.
Alternative prescriptions, such as adding white noise to the
bandpasses (as in Wood-Vasey et al. 2007), have little effect
on the cosmological parameters and therefore underestimate
the importance of accurate bandpass measurements. The mean
bandpass can shift both from measurement uncertainties, and
from the effects of the dry environment on Mauna Kea on the
interference films.29 Therefore, we parameterize our bandpass
uncertainties here and in Section 5.1.6 in terms of shifts in the
mean wavelengths. Other effects, such as changing the width
of the bandpasses, have a much smaller effect. There have been
several filter scans made of the MegaCam filters. These are
consistent, once the radial and angular dependence of the filters
is taken into account.

Two of the SNLS fields overlap with the footprint of SDSS,
so we can calculate accurate linear transformations between the
two systems as discussed in Appendix G of R09. We can then
compare these transformations against the results of synthetic
photometry to estimate the size of any shifts in the mean
bandpasses. We perform synthetic photometry on a library of
stellar SEDs and try to reproduce the slope of the relation, but
not the offset. The latter is important because by ignoring the
offset these results are independent of effects such as zero-point
uncertainties.

There is some variation in the results depending on which
spectral library is used; we considered Oke & Gunn (1983),
Pickles (1998), and Stritzinger et al. (2005). The uncertainties in
the transformation coefficients are of roughly equal importance.

28 These do not include the effects of the uncertainty in the SDSS bandpasses
on the conversion from SDSS to AB magnitudes which we include in
Section 5.1.6.
29 Fortunately, our filters do not sit in a vacuum, and hence should not
experience the large shifts seen in the SDSS camera.

Table 11

Bandpass Systematics

Description Uncertainty (Å) w for Ωm = 0.27 Rel. Area

Stat only . . . −1.031 ± 0.058 1

MegaCam bandpasses . . . −1.017 ± 0.066 1.20
gM only 7 −1.030 ± 0.058 1.01
rM only 7 −1.037 ± 0.059 1.01
iM only 7 −1.030 ± 0.059 1.02
zM only 15 −1.032 ± 0.060 1.04

Low-z bandpasses . . . −1.027 ± 0.059 1.04
CfAIII only 7 −1.031 ± 0.058 1.00
CSP only . . . −1.031 ± 0.058 1.00
B only 12 −1.029 ± 0.059 1.02
V only 12 −1.028 ± 0.059 1.01
R only 12 −1.031 ± 0.058 1.00

SDSS bandpasses . . . −1.026 ± 0.059 1.02
g only 7 −1.030 ± 0.059 1.00
r only 16 −1.026 ± 0.058 1.00
i only 25 −1.030 ± 0.059 1.01

For gM we find a best-fit shift of 3 ± 4 ± 4 Å, where the
first uncertainty derives from the spread of results from the
different SED libraries, and the second from the uncertainty in
the measured color term between SDSS and MegaCam. For rM

we derive a shift of 1 ± 1.5 ± 7 Å, and for iM 12 ± 6 ± 5 Å. The
SED libraries do not extend far enough to the red to allow us to
test zM . While the different SED libraries agree best in rM , this
bandpass is particularly sensitive to uncertainties in the color
term. Taken together, the probability of finding these shifts or
larger due to measurement uncertainties in the case of no shifts
is 46%. We therefore interpret the results of the above test as
being consistent with the SAGEM filter scans having the correct
mean wavelengths.

These limits are conservative for several reasons. First, they
do not distinguish between uncertainties in the SDSS bandpasses
and the SNLS ones. Furthermore, the SAGEM filter scans are
thought to be much more accurate than these uncertainties,
and the other contributions to the system bandpass all vary
fairly slowly with wavelength. We therefore roughly average
the above tests and adopt uncertainties of 7 Å in gMrM iM . For
zM , where we have not been able to carry out the above test, we
assume a bandpass uncertainty of 15 Å by scaling up the value
from the other filters to include variations in the CCD response,
which set the red-side cutoff for this filter. The consequences
are summarized in Table 11. We also considered varying the
width of the bandpasses, and the effects of using the mean air
mass when computing our bandpasses instead of the air mass
for a particular observation. We find little effect from either, so
do not include them in our uncertainty budget. At an air mass
of 2 the mean air mass effects are less than 0.001 in the width
of the light-curve and 0.003 in color in the most extreme case.
Since SNLS doesn’t observe above air mass 1.6 in practice, this
effect is completely negligible.

5.1.6. System Bandpasses: Other Samples

As described in Appendix A, we have applied small shifts to
the Bessell (1990) passbands to represent the Landolt system.
There are uncertainties associated with these shifts, as described
in Appendix A, and here we include them in our uncertainty
budget. We adopt mean wavelength uncertainties of 12 Å in
the mean wavelength for B and V and 25 Å for R. In addition
to the Landolt system, we also include terms representing the
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uncertainties in the CfAIII natural system passbands. As we
did for the SNLS filters, we adopt uncertainties of 7 Å for
these passbands, which again are probably conservative. The
uncertainties in the mean wavelength of the CSP filters are
described in Contreras et al. (2010). These are limited by
the number of spectrophotometric standards available, and are
probably much larger than the real uncertainties. Due to the
way in which the calibration is constructed, the CSP bandpasses
affect the zero points strongly, but because this is currently such
a small sample, the cosmological effects are negligible.

For the SDSS bandpass uncertainties, we use the values given
in Table 1 of K09. These systematic effects have very little effect
in fits where the SDSS SNe are included, although they do also
affect the SDSS to AB conversion and therefore the effective
zero points. The effects of these shifts on the final uncertainty
budget are given in Table 11.

5.1.7. The Colors of the Flux Reference on the Landolt System

As part of our analysis, we convert between magnitudes on
the Landolt system and fluxes. This is necessary because we
are comparing SNe at a range of redshifts, and so the same
regions of the rest frame SN SEDs are sampled by different
filters for different objects. Fortunately, our measurement is
not sensitive to the absolute flux scale, so more precisely we
convert the magnitudes to relative fluxes. A major influence
in our decision to calibrate MegaCam to the Landolt system
was the insensitivity to absolute calibration. Were we to, for
example, calibrate our observations onto an AB system, we
would have included the uncertainty in the absolute flux scales
of both systems when comparing them. This is the case for the
SDSS sample.

Contrary to some statements found in the literature, the Lan-
dolt system is not defined in terms of any particular magnitudes
for any particular star (i.e., Vega), nor is the Johnson & Morgan
(1953) system on which it is based. Instead, both are defined
based on particular observations of multiple stars—Vega is one
of the stars contributing to U − V and B − V for the Johnson
& Morgan (1953) system. We are free to choose any star (or
set of stars) with a known SED as long as we know its mag-
nitudes in the Landolt system and on the Landolt calibrated
MegaCam system. Ideally, we would be able to observe this star
directly with MegaCam. We have not yet been able to fully re-
alize this goal, and have instead settled on the star BD 17◦ 4708
as our fundamental flux standard. This star has a high-quality
CALSPEC STIS SED (Bohlin & Gilliland 2004) and Landolt
magnitudes from Landolt & Uomoto (2007). Because it has
colors similar to the “average” Landolt star we have high confi-
dence that its magnitudes have been accurately transferred to the
Landolt (1992) catalog system, which most nearby observations
are calibrated onto. This is probably not true of the CALSPEC
white-dwarfs also observed by Landolt & Uomoto (2007)—due
to the steepness of their SEDs, their magnitudes are offset from
the Landolt (1992) system by a non-negligible but not perfectly
known amount, rendering them unsuitable as fundamental flux
standards for the Landolt system. For a more extensive discus-
sion of all of these issues, see Section 8 of R09 and S11. We use
the 2010 February update to the BD 17◦ 4708 SED available on
the CALSPEC Web site.30

The uncertainties in the magnitudes of BD 17◦ 4708 in
both the Landolt system and the SNLS measurements are a
significant contribution to the final uncertainty budget, as seen

30 http://www.stsci.edu/hst/observatory/cdbs/calspec.html

Table 12

Flux Standard (BD 17◦ 4708) Uncertainties

Description Uncertainty (mag) w for Ωm = 0.27 Rel. Area

Stat only . . . −1.031 ± 0.058 1

Colors . . . −1.075 ± 0.075 1.31
U − V only 0.0026 −1.031 ± 0.058 1.00
B − V only 0.0015 −1.030 ± 0.059 1.01
R − V only 0.0011 −1.030 ± 0.058 1.00
I − V only 0.0013 −1.031 ± 0.060 1.05
gM − V only 0.0022 −1.030 ± 0.059 1.01
rM − V only 0.0042 −1.006 ± 0.062 1.13
iM − V only 0.0022 −1.039 ± 0.062 1.06
zM − V only 0.0178 −1.094 ± 0.071 1.15

SED . . . −1.027 ± 0.073 1.23

Notes. The UBVRI values have a correlated effect on gMrM iMzM via the linear
transformation equations of R09, which are not included in the above numbers,
but are included in the overall uncertainty budget.

in Table 12. The largest effects arise from the magnitudes
of BD 17◦ 4708 in the SNLS filters, which is partially due
to the fact that BD 17◦ 4708 is a subdwarf, and hence may
transform slightly differently between photometric systems
than the average Landolt standard star. This transformational
uncertainty is the most significant for the zM filter, which is
reflected in this term having the single largest effect on w.

Most previous SN analyses make use of Vega as their
fundamental flux standard. This is a poor choice because the
magnitudes of Vega on the Landolt system are in fact poorly
known, and it is too bright to observe directly with almost any
modern imager. The uncertainties in the Landolt magnitudes
of BD 17◦ 4708 are the largest single identified systematic
uncertainty in our current analysis, and they would be several
times larger were we to use Vega instead. These uncertainties
have been significantly underestimated in previous analyses that
use Vega. If we were able to replace the nearby SN sample with
the one calibrated onto a system similar to the natural MegaCam
one (e.g., the USNO or SDSS system), these uncertainties would
be much smaller. Since BD 17◦ 4708 effectively defines the
USNO/SDSS system, this should be practical in the future and
significantly reduce this contribution to the final uncertainty
budget.

5.1.8. The SED of BD 17◦ 4708

In addition to the uncertainty in the magnitudes of BD
17◦ 4708, we also consider the uncertainties in the SED itself.
These are essentially set by the quality of the reductions and
the repeatability of STIS in Bohlin & Gilliland (2004). This
is discussed in R09 (Section 12.8 and Table D.3), and the
cosmological effects are given in Table 12.

5.2. Comparisons of Different Light-curve Fitters

Section 5 of G10 discusses comparisons between different
light-curve fitting packages and shows that when SALT2 and
SiFTO are trained using the same incidental settings (such
as the Landolt filter functions, colors of BD 17◦ 4708, etc.
that are discussed elsewhere in this paper), the resulting fits
on the same data are very similar. We consider this to be a
very encouraging result. However, differences remain, which
should not be surprising given the very different approaches
taken to train the two models. In essence, the SN data are not
yet high-enough quality to clearly prefer a particular modeling
approach. We therefore include the differences in the derived
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Table 13

Light-curve Fitter Systematics

Description w for Ωm = 0.27 Rel. Area

Stat only −1.031 ± 0.058 1

Combined −1.027 ± 0.059 1.02
SALT2 vs. SiFTO −1.027 ± 0.059 1.01
Color uncertainty model −1.030 ± 0.058 1.00

light-curve parameters between the two fitters for each SN as a
systematic in our analysis. In addition, there is some uncertainty
in how to parameterize the model for the intrinsic uncertainty
in the color model. We also include the difference between two
parameterization choices (the sigmoid and exppol models of
Section 4.4 in G10) in our systematic uncertainty; the effects on
the cosmological parameter uncertainties are given in Table 13.

We do not carry out any comparisons with the other publicly
available light-curve fitting package, MLCS2k2 (Jha et al.
2007), as discussed in Section 5 of G10. Unlike SALT2 and
SiFTO, MLCS2k2 explicitly attempts to separate intrinsic and
extrinsic SN colors from photometric data, and then assumes
that the extrinsic colors arise purely from dust, and that the
remaining intrinsic color not related to the shape of the light-
curve does not affect SN luminosity. SiFTO and SALT2 do not
make this distinction. The merits of the two approaches depend
critically on how well this separation can be performed and how
well SN intrinsic color can be predicted by the light-curve shape.
The former depends on accurate models of the distribution of
extinction with redshift and how they combine with selection
effects (Wood-Vasey et al. 2007).

If the two conditions are met, then MLCS, by incorporating
additional information beyond SN photometry, may be able
to give tighter statistical constraints on SN relative distances.
A test of how well this procedure works is to check if the
MLCS2k2 predictions of AV and ∆ (the MLCS2k2 light-
curve shape parameter) correlate with residual from the Hubble
diagram, since in principle the MLCS2k2 model should already
apply these corrections based on training with low-z SNe.
Taking the MLCS2k2 fits from K09, we find that the Hubble
residuals exhibit 7σ (statistical uncertainties only) evidence for
a linear relation with AV and 6σ with ∆. This suggests either a
problem with the MCLS2k2 training sample, or with the detailed
extinction prior used. Additionally, the issues with observer-
frame U-band data of low-z SNe are a serious problem for
MLCS2k2 because it is currently not feasible to train it on
high-z data; therefore, we would effectively have to abandon
most of our data for SN at z > 0.7 where the rest-frame U is
measured by rM and iM . While we fully expect that this situation
will be addressed, especially in light of the improved low-z data
sets that are becoming available, this means that comparing
MLCS2k2 fits to SiFTO and SALT2 at the current time is not
productive. Note that the SALT2 and SiFTO models are capable
of reproducing the MLCS2k2 assumptions if SN colors are
dominated by normal dust extinction. The fact that the SiFTO
and SALT2 derived color laws do not match the Galactic color
law, assumed in MLCS2k2, for any value of RV suggests that
this assumption is incorrect.

5.3. Peculiar Velocities, zcut, and the “Hubble Bubble”

Hui & Greene (2006) discuss methods to calculate the
correlated uncertainty in SN luminosity distances due to peculiar
velocities given a survey geometry and radial selection function.
This method is applicable as long as the survey geometry does
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Figure 13. Variation of w with zcut, the minimum redshift low-z SN included.
The dashed line is the result when zcut = 0.01, the value used in our analysis.
The points are highly correlated. Taking this into account via Monte Carlo
simulation, we find that this trend is not statistically significant and is consistent
with shot noise. The gray lines are a sample of 30 independent Monte Carlos
simulations illustrating the shot noise as discussed in the text.

(A color version of this figure is available in the online journal.)

not contain a large number of holes. Unfortunately, for the
current low-z sample, the survey geometries consist almost
entirely of holes, so this formalism is not currently practical.

The flow model used in this analysis (Section 2.8) is param-
eterized by a quantity βI = Ω0.55

m /bI , where bI is a “biasing”
parameter for IRAS-selected galaxies. βI should not be con-
fused with the color–luminosity nuisance parameter for SNe, β.
Pike & Hudson (2005) give βI = 0.49 ± 0.04 (statistical uncer-
tainties only). We adopt this value, but conservatively take the
uncertainty in βI to be five times larger, σβI

= 0.2 to reflect the
spread in values derived from other surveys and to account for
simplifications in the modeling, and therefore compare models
with βI = 0.3, 0.5, 0.7 to estimate the systematic effect on our
sample. The results are given in Table 7. This is not a major
contributor to our uncertainty budget.

A related issue is the possibility of a monopole term in the
local expansion—a so-called Hubble bubble. Recently, Jha et al.
(2007) found evidence for such an effect using light-curve fits
to nearby SNe Ia. As discussed in Conley et al. (2007), this
is related to the interpretation of SN colors. The result is that
when the same data are analyzed in a framework in which the
relation between SN color and luminosity is determined from
SN data—as is used here—we see no evidence for a Hubble
bubble, and therefore we do not include this in our analysis.

Still, we can investigate the dependence of our results on
the minimum redshift. K09 study this issue with a smaller
nearby sample (their Section 9) and include the variation as
a systematic uncertainty. We find a similar trend, as shown for
w in Figure 13. In order to determine if this trend is significant,
or is caused by shot noise from removing SNe from the sample,
we have carried out a set of Monte Carlo simulations where
we note the number of nearby SNe removed by each redshift
cut and try randomly removing the same number from the
sample and refitting the cosmological parameters. Neighboring
points are extremely correlated because zcut = 0.02 will also
remove all of the SNe that, for example, zcut = 0.016 does.
Including these correlations in our simulation, we find no
evidence for a significant trend (a χ2of 10.16 for 11 degrees of
freedom). Therefore, we find that the observed effect is entirely
consistent with shot noise, and therefore is already included in
our statistical uncertainty budget.
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5.4. Malmquist Bias

As noted previously, we apply a redshift-dependent correction
for the Malmquist bias to each SN sample. Therefore, the
uncertainty in this correction should be included in our total
uncertainty budget. There are a large number of individual
terms, although only a few have significant effects. The SNLS
Malmquist bias simulations and their systematic uncertainties
are described in Perrett et al. (2010). The systematic uncertainty
on the Malmquist bias for SNLS is about 20% of the correction,
with some redshift dependence. The dominant terms are the
uncertainty in the input σint and the value of β used in the
calculation.

For SDSS, we follow the prescription of Section 9 of K09
in varying the spectroscopic selection model. For the Calán/
Tololo, CfAI, and CfAII samples, we assign 0.01 mag uncer-
tainty in the mean Malmquist bias, while for the CfAIII sample,
we double the estimated uncertainties for our model of the spec-
troscopic selection function (σγ = 0.62; see Section 2.7.1) in
order to compensate for the crudity of our model. Within the
redshift limits we have set, the HST sample suffers from very
small amounts of the Malmquist bias, so we do not include this
as a systematic.

Some of the terms in the Malmquist bias corrections affect
multiple samples simultaneously. The bias estimates for the
SNLS, SDSS, and CfAIII samples depend on the assumed val-
ues of α, β, and M. We assign uncertainties of 0.22, 0.22, and
0.05 mag to these, which are twice the formal uncertainties (Ta-
ble 6), and affect all three samples in a correlated fashion. Each
simulation also depends on σint, and this is varied separately
for each sample by 0.01. In total there are 22 individual terms
in our Malmquist uncertainty; the combined effect is given in
Table 7. Malmquist correction is one of the larger terms in our
overall uncertainty budget, ranking only behind calibration and
the relation between host type and SN absolute magnitudes.
About 80% of the effect on the cosmological parameters comes
from the low-z sample, which is not surprising because the se-
lection effects of the higher redshift samples are much better
characterized.

5.5. Contamination by Other Types of SNe in the SNLS Sample

All of the SNe used in our cosmological analysis are spec-
troscopically typed, so contamination by non-SNe Ia should
be fairly minimal. However, some is inevitable, particularly at
the highest redshifts where the signal to noise of the spectra
can be quite low. The principle contaminants are expected to
be SN Ib/c, which are brighter than other core-collapse SNe
and whose spectra can be difficult to distinguish from SN Ia
at certain phases with low signal-to-noise. Unfortunately, we
know relatively little about the demographics of this popula-
tion, which makes contamination effects difficult to estimate.
Non-Ia contamination is also discussed in Balland et al. (2009).

Our spectroscopic typing scheme is described in detail in
Howell et al. (2005). In this scheme, SN candidates are typed
into various classes. Those that concern this paper are SNIa,
which represent objects which are essentially certain SNe Ia, and
SNIa⋆, which probably are, but other types can’t be conclusively
ruled out. The false positive rate for SNIa is expected to be
negligible, but it is difficult to estimate the rate for SNIa⋆.
Approximately 20% of the SNLS sample presented here are
SNIa⋆ (50 out of 242), with the fraction increasing with redshift.

It is tempting to compare the corrected peak magnitudes of the
SNIa⋆ sample to the SNIa sample, and to use this comparison

to estimate the systematic uncertainty on the cosmological
parameters. However, this test is severely flawed because
luminosity affects our ability to type spectra, so SNIa⋆ will be
fainter even in the absence of contamination. Ideally, fainter
SNe would be compensated for with longer spectroscopic
exposure times, but in practice this was rarely realized at the
0.1–0.2 mag precision required due to weather, the amount
of time remaining in the queue, and the fact that exposure
times were estimated from a few pre-maximum points using
preliminary, real-time photometry. Furthermore, the intrinsic
luminosity of the SN is correlated with the relative amount of
host-galaxy contamination in the spectra (the %-increase of the
SN+host relative to the host), which is not as easy to compensate
for, especially in poorer seeing conditions. We do not have a
good model for predicting the odds of a given SN candidate
getting an inconclusive spectroscopic type, and attempts to
develop one based on the observed demographics of the SNIa
versus SNIa⋆ were somewhat circular, naturally explaining
away any observed difference in the apparent luminosity. Note
that this implies that simply excluding all SNIa⋆ from our
analysis would bias our measurement in a fashion we would
not know how to correct for very well.

Therefore, we adopt a simple model to estimate the con-
tamination bias. The critical factors in such a model are the
number of contaminants that can be confused with SN Ia and
the mean difference in magnitude between the contaminants
and SNe Ia at that redshift. There are a few aspects of SNLS
that help reduce the contamination. First, we have high-quality
spectroscopic redshifts for all objects considered in these fits.
Second, the majority of our SN have firm spectroscopic types.
Combined, these two features mean that the outlier rejection we
apply (described in Section 2.1) is highly effective at removing
any contaminants with a different magnitude distribution than
SN Ia—and if the magnitude distributions were identical (after
the shape and color corrections are applied), there would be no
bias even if the contamination rate were high. In addition, we
reject SNe that are very poorly fit by the light-curve template
and preselect candidates for spectroscopic follow up based on
early-time light-curve points (Sullivan et al. 2006a). Finally, re-
call that SNIa⋆ are probably SNe Ia—spectra which are truly
uninformative are not used in this analysis. While the final three
items have considerable power at rejecting candidates, for our
simple model we will conservatively assume that they are com-
pletely ineffective, significantly increasing the bias.

The basic ingredients for our model are the relative rate of SNe
Ia and SNe Ib/c and the SN Ib/c luminosity distribution. We
assume that the SN Ib/c rate is proportional to the star formation
rate, which we base on Hopkins & Beacom (2006); this is a good
approximation because the progenitor systems are massive stars,
and the delay time between formation and explosion should be
negligible for our purposes. We take the SN Ia rate from K.
Perrett et al. (2011, in preparation). The most critical, but most
uncertain, ingredient is the assumed luminosity function of SN
Ib/c. Recently, Li et al. (2010) have studied the luminosity
function of various SN types using the galaxy targeted KAIT
survey. They find that SNe Ib/c are, on average, 2.4 mag fainter
than SNe Ia, and that the SN Ib/c rate is about 80% of the
SN Ia rate at low redshift. If we take their luminosity function
at face value, the resulting bias is utterly negligible because
they essentially find no bright SN Ib/c that could be confused
with SN Ia; that is, all SNe from their sample would be rejected
as outliers. In contrast, Richardson et al. (2002) suggest the
existence a bright component of the SN Ib/c population which
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Table 14

Bias from Non-Ia Contamination

z Raw Bias (mag) SNIa⋆ (%) Effective Biasa (mag)

0.1 0.015 0 0.0
0.26 0.024 6 0.001
0.41 0.024 14 0.003
0.57 0.024 17 0.004
0.72 0.023 24 0.006
0.89 0.026 50 0.013
1.04 0.025 NA NA

Note. a Includes the actual fraction of SNIa⋆ in each bin. There are no SNLS
SNe above z = 1.04.

would be more easily confused with SNe Ia. It is difficult to be
sure if this disagreement is significant given the sample sizes,
but we note that the KAIT result is based on a galaxy targeted
survey which avoids low-luminosity host galaxies, so if there
is any relation between SN Ib/c luminosity and host type, as
there is for SN Ia, it could miss this portion of the sample. We
will therefore conservatively assume that there is an additional
bright SN Ib/c population missed by KAIT. Combined with the
KAIT sample, the bright sample is <15% of the total SN Ib/c
population. The magnitude distribution of core-collapse SN has
also been investigated photometrically by Bazin et al. (2009),
although this paper includes other types of core-collapse SNe
which are easier to distinguish from SNe Ia.

The method is then to generate a simulated sample of a
few hundred thousand SN of both types, include observational
uncertainties representative of SNLS, apply the outlier rejection,
assume that all SN of any type which survive the outlier rejection
are included in the sample, and finally compute the difference
between the mean magnitude and the assumed cosmology in
redshift bins as the bias. This is then multiplied by the actual
fraction of SNIa⋆ in the corresponding real sample to estimate
the contamination bias (really, a conservative upper limit on the
bias).

To describe this bright population, we use a Gaussian distribu-
tion characterized by its mean offset from the SN Ia population
and its width, ∆bc and σbc. Richardson et al. (2002) estimate
∆bc = 0.7 and σbc = 0.33 mag, after color correction. How-
ever, these parameters are quite uncertain. The amount of bias
is maximized for ∆bc = σbc mag (for smaller values of ∆bc
the amount of contamination increases, but the bias decreases,
and for larger values the contamination rapidly falls), increases
with the fraction of bright SN Ib/c, and weakly increases as σbc
decreases. We therefore tune these parameters to maximize the
bias while remaining vaguely plausible, adopting ∆bc = 0.25,
σbc = 0.25, and also conservatively assume that the bright com-
ponent is 25% of the total SN Ib/c population. The results,
including the effects of multiplying by the actual fraction of
SNIa⋆ in each bin, are given in Table 14. The effects on the
cosmology are smaller than we can measure. The bias increases
with redshift, both because the larger observational uncertainties
make it harder for sigma clipping to reject contaminants, and
because the fraction of SNe with SNIa⋆ increases. Because our
outlier rejection is based on the cosmological fit, the fact that
the SNIa⋆ fraction is large in the highest redshift bin does not
affect this process, since these SNe have little influence on the
cosmological models considered here. However, if this data set
is used to investigate models where the Hubble relation changes
sharply above z = 0.9, these results should be treated with some
caution.

The predicted contamination is 0% at low redshift, rising
to ∼10% above z = 0.9. However, this model is deliberately
conservative, and does not match the observed properties of
the SNLS data very well. For example, it predicts that >60%
of the candidates sent for spectroscopic typing would either be
identified as SN Ib/c or SNIa⋆, while we actually find <25%,
and that is only because we deliberately targeted some objects
not expected to be SN Ia. It also predicts that >20% of the
candidates sent for spectroscopy would be identified as bright
SN Ib/c, whereas there are only a handful in reality.

While we find that for the SNLS3 sample the effects are small,
this may not be true for future surveys that will predominantly
rely on photometric rather than spectroscopic typing. In this
case, where contamination may be large, the effects of sigma
clipping are no longer as simple or as beneficial, since the mean
magnitude in a bin may be severely affected when the types
of most the SNe are potentially uncertain. This becomes even
more complicated if only photometric redshifts are available.
Such efforts will require a more precise understanding of the
properties and demographics of SNe Ib/c if they are to compete
with spectroscopically typed surveys.

5.6. Milky-Way Extinction Correction

We correct all SNe for Milky-Way extinction. In addition to
the random uncertainty in the E(B −V ) values, there is a corre-
lated uncertainty in the conversion from dust column density to
extinction of 10%, as discussed in Schlegel et al. (1998). This
affects the nearby and distant SNe differently because distant
SN searches generally target regions of low galactic extinction
and observe at longer rest-frame wavelengths. The overall effect
is given in Table 7, and is one of the larger contributions to our
final uncertainty budget.

5.7. Evolution

The general lack of firm theoretical predictions makes it diffi-
cult to quantify the effects of potential SN evolution. Evolution
in the absolute magnitude of SNe Ia with redshift is not con-
strainable without a detailed physical model because it can in
principle mimic any cosmology. Here we consider only models
that we can put some constraints on, in particular the possibil-
ity of evolution in the stretch–luminosity and color–luminosity
relations with redshift. There is considerable evolution in the
demographics of the SN population between z = 0 and z = 1
(Howell et al. 2007), but this does not bias the results as long as
the demographic evolution is in parameters that are corrected for.
If there are any differences in the width- and color-luminosity
corrections between different subgroups, we would expect there
to be some evolution in the mean values of α and β with redshift.
In particular, a change in the relative mixture of SN intrinsic col-
ors and external effects such as dust would affect β.

Recently, K09 (Section 10.2.3) have presented evidence for
a strong decrease in β with redshift using SALT2 (although not
the version used here—see Appendix A of G10 for details).
They find that β decreases from ∼2.5 at z = 0 to 1 by z = 0.7,
but this evolution is only seen in ESSENCE and first year SNLS
samples. They also carry out MLCS2k2 fits, but do not analyze
them in the same fashion. The relation between light-curve
shape, color, and distance modulus for MLCS2k2 has already
been discussed in Section 5.2. If we extend this model to allow
for evolution in the width- and color-corrections with redshift,
we find dα/dz = 0.25 ± 0.07 and dβ/dz = −1.86 ± 0.43,
where the modified distance modulus is μ⋆ = μ + α∆ − βAv .
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Figure 14. Evolution of α and β with redshift in the SiFTO/SALT2 combined
light-curve fits. The solid lines are the best-fit values assuming no evolution,
including systematic effects, and simultaneously fitting the cosmological pa-
rameters, while the point in each redshift bin is evaluated with the same fixed
cosmology. The dashed line is the best linear fit to the points.

(A color version of this figure is available in the online journal.)

Hence, for the K09 sample, both SALT2 and MLCS2k2 show
strong evidence for evolving β with redshift in the SDSS
analysis, with MLCS2k2 showing more evolution.

As shown in Section 5.5 of G10, we find much weaker
evidence for such a trend in our data with SiFTO and an
updated version of SALT2. This is probably related to the
more sophisticated color-uncertainty modeling compared with
that used in K09. Here we extend this analysis to include
external data sets and the combined SiFTO/SALT2 distances
(Figure 14). We find dα/dz = 0.021 ± 0.07 and dβ/dz =
0.588 ± 0.40, marginal evidence of evolution. Also note that
the β evolution has the opposite sign than the SDSS results,
increasing slightly with redshift. Furthermore, SALT2 and
SiFTO show small and opposite trends, with SiFTO increasing
while SALT2 decreases.

It is unlikely that the observed evolution in β is real.
Section 5.5 of G10 presents several lines of evidence to support
this: the opposite trends for SALT2 and SiFTO, the fact that
artificially adding selection effects at a different redshift moves
the evolution to that redshift, and the dependence on the assumed
parameterization of uncertainties in the light-curve intrinsic
color model. However, while we can construct a plausible model
that explains these trends, we cannot completely rule out α,
β evolution. Therefore, the conservative approach is to treat
this effect as real and include it in our systematic uncertainty
budget. Since we find no evidence for α evolution, we adopt the
uncertainty in the slope as our systematic. As in G10, for β we
conservatively adopt dβ/dz = 1.0. The effects of doing so are
given in Table 15.

Based on a model of intergalactic dust, Ménard et al. (2010)
predict a slow change in mean SN color with redshift without
affecting the absolute magnitudes that appears as a change in
β over a long enough redshift interval. Unfortunately, over a
small redshift range, such as one of the redshift bins we use
above, their model manifests as a change in the offset in the
color–luminosity relation but does not change the slope (β),
and therefore our test is not sensitive to their model. However,
the dβ/dz value assumed in our systematic is larger than that
predicted by their model for our data, so it is effectively included
in our uncertainty budget.

Table 15

Evolutionary Systematics

Description dX/dz w for Ωm = 0.27 Rel. Area

Stat only . . . −1.031 ± 0.058 1

Combined . . . −1.028+0.059
−0.058 1.02

α evolution 0.07 −1.030 ± 0.058 1.00
β evolution 1.0 −1.028+0.059

−0.058 1.02

5.8. Environmental Dependence of SN Properties

As discussed in Section 3.2, in our analysis we correct for the
recently discovered relationship between host-galaxy properties
and peak magnitude by splitting the sample on host-galaxy mass
and allowing M to be different for the two samples. Because
we do not have a physical model for this phenomenon, the cut
point is not well understood. Furthermore, we are not certain
if mass is the best parameter, or if metallicity or star-formation
rate are more relevant. Therefore, we consider systematic effects
related to this split. Sullivan et al. (2010) investigate the effects
of changing the split mass and find that the effects on the
cosmological parameters are largest between 109 and 1011 M⊙.
We therefore estimate this systematic by comparing which SNe
change subsamples as we move the cut to these extremes from
our default cut at 1010 M⊙.

In addition, we consider changing variables to metallicity and
similarly compute which SNe change subsamples. Clearly it is
unreasonable to assume that both the appropriate cut differs from
our nominal mass cut and that mass is not the right variable, so
we equally weight each term (changing the cut and the two other
host variables) so that the total weight is 1. The final effects are
given in Table 7, and are one of the larger contributions to our
final uncertainty budget (much less than calibration, however).
If we do not apply this correction, as in all previous analyses,
but apply the difference purely as a systematic uncertainty, the
effect is approximately the same size as all other uncertainties
(statistical and systematic) combined.

5.9. Gravitational Lensing

Gravitational lensing is expected to cause increased disper-
sion in the Hubble diagram of high-redshift SNe. While the mean
amount of magnification is unity at all redshifts, when there are
a small number of SNe in each redshift bin, the asymmetric na-
ture of the lensing probability (there is a long tail extending to
high magnifications, but a lower limit on the de-magnification),
coupled with selection effects, can produce biases in the peak
luminosities. For surveys over very small areas, lensing will
also induce correlations between different SNe. These issues
are studied in Holz & Linder (2005), who find that for surveys
such as SNLS, the number of SNe in each redshift range and the
survey area are large enough that these issues are minor. Lensing
does induce additional, almost uncorrelated, scatter in the peak
magnitudes, which we already include in our statistical uncer-
tainty budget using the model of Jönsson et al. (2010), which
gives σ = 0.055z. This term is largely degenerate with σint, but
we keep track of it separately because it has a redshift depen-
dence while σint does not. Substituting a different model for the
intrinsic scatter, such as Holz & Linder (2005; σ = 0.088z) has
almost no effect because σint changes to compensate. Therefore,
besides including the statistical term, we do not include any
additional lensing systematics in our uncertainty budget.
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6. COMPARISON OF UNCERTAINTY BUDGET WITH
OTHER ANALYSES

It is somewhat difficult to compare our systematic uncertain-
ties directly with those of previous analyses because, in general,
they do not take into account that systematic uncertainties will
usually shift the measured cosmological parameters, which in
turn affects the marginalized uncertainties on each parameter.
For example, the potential α, β evolution actually shrinks the
marginalized uncertainties slightly for fixed Ωm, although the
area of the Ωm, w contour increases. We shall first present two
examples of the classic form of systematics analysis discussed
in Section 4.1. Note that we do not restrict ourselves to the same
data samples as the other papers in these comparisons. As noted
previously, all previous papers have not included the effects of
systematic uncertainties on the training of light-curve fitters.
The principal effect of including these effects is to increase
the importance of any systematic uncertainty that affects SN
colors.

The systematic contributions from the first year SNLS anal-
ysis are given in Table 6 of A06 in terms of the effects on
each cosmological parameter while holding all other parame-
ters fixed at their best-fit value. We can use the same technique
to compare our results. For fixed Ωm, we find σw = 0.067 (sys),
which is in reasonable agreement with the 0.07 value estimated
by A06. Examining individual terms in detail, the fact that the
values are similar in fact represents considerable progress, as
the A06 values were somewhat optimistic, particularly regard-
ing calibration. We include a large number of terms not con-
sidered in the first year analysis, although most of these are
subdominant. Our Malmquist bias uncertainty is much smaller,
as benefits the much more detailed simulations carried out
for the 3-season sample. Many of the individual uncertainty
terms have gone down, such as the SNLS zero-point uncer-
tainty which has shrunk from σw = 0.05 to 0.02. However,
A06 significantly underestimated the uncertainties related to
the flux standard, giving σw = 0.03 while we have 0.045.
This is particularly significant because the A06 analysis was
based on Vega, which has far less certain magnitudes on the
Landolt and MegaCam systems than the standard adopted here,
BD 17◦ 4708.

Wood-Vasey et al. (2007) discuss the systematics of the
three year ESSENCE sample. Hicken et al. (2009a) use a very
similar analysis and obtain similar results. They find a total
systematic uncertainty in w for ESSENCE of 0.13, compared
with 0.11 here. However, their value is combined with the
BAO constraint of Eisenstein et al. (2005), which reduces the
importance of systematic effects that move the SN contours
along their longest axis. When this combination is carried out,
the equivalent value for SNLS3 is ∼0.06, about a factor of
two smaller—see S11 for further discussion. This reduction is
despite the fact that we again include many additional systematic
terms not considered by these authors, such as the magnitudes
of the flux standard, the low-z zero points and filters, shifts in the
mean passbands of our survey, Malmquist uncertainties of the
nearby sample, etc. The major difference arises from two terms:
first, Wood-Vasey et al. (2007) include a systematic related to
the “Hubble bubble” discussed in Section 5.3 which we find no
evidence for, and second, they have significant systematic effects
related to the prior on extrinsic SN colors used in their MLC2k2
fits, which does not apply to SiFTO or SALT2. Without these
two terms, their systematic uncertainty on w (with the BAO
measurement) is 0.054, similar to our value.

As discussed previously, MLCS2k2 trades sensitivity to an
assumed prior on the distribution of extinction for reduced
statistical uncertainties. A major portion of the Wood-Vasey
et al. (2007) systematic uncertainty budget arises from the
uncertainty in this prior, and the fact that survey selection effects
cause it to evolve strongly with redshift. This tradeoff makes
comparing our systematic uncertainty budgets difficult. SALT2
and SiFTO do not use such priors, and Monte Carlo studies of
our selection biases indicate that these have a very small effect
on our color modeling.

We next consider the analysis of Kowalski et al. (2008). As
noted in Section 4.1, these authors use a more sophisticated
framework for including systematic uncertainties than the clas-
sic quadrature method. Their method is a good approximation to
the one used here when there is no structure in the covariances
within a given data set, and no significant redshift-dependent
correlations between data sets. As shown in the right panel of
Figure 12, the first is a reasonable assumption in some cases,
but not in others, particularly for surveys which cover a large
redshift range such as SNLS. The second assumption neglects
the highly redshift-dependent correlations caused by calibration
uncertainties related to the fundamental flux standard, which
are not treated. One advantage of Kowalski et al. (2008) is that,
unlike this paper, it is a blind analysis, which helps limit ob-
server bias. Combining SN data with the BAO measurement
as above, they find a systematic uncertainty in w of 0.085,
significantly larger than our value of 0.067. This difference
mostly arises from the extremely heterogeneous nature of their
high-z SN sample and the large uncertainties in relative zero
point assigned between them.

The analysis of Kowalski et al. (2008) was extended to a larger
sample and refined to allow for more subtle redshift dependence
within each sample in Amanullah et al. (2010). In both cases,
the authors fix α and β at their best-fit values when computing
systematic uncertainties, which will underestimate the final un-
certainties because of the correlation between the cosmological
and nuisance parameters, as discussed in Section 4.6. Their cal-
ibration is based on Vega rather than BD 17◦ 4708, adopting a
magnitude uncertainty of 0.01 mag in each of six bands. As dis-
cussed in Section 10 of R09, the uncertainties in the magnitude
of Vega on the Landolt system are much larger, especially in
V − R, so it seems likely that the effects of calibration on their
uncertainty budget are underestimated by at least a factor of two
to three. In general, the systematic uncertainty as a function of
redshift of this paper has a much simpler structure than that pre-
sented here, although it is still a large improvement over most
treatments.

K09 is probably the most extensive treatment of system-
atic uncertainties in the literature, although the authors use
the classical quadrature method. They include many of the
terms considered here, although several are omitted (e.g., band-
pass uncertainties for SNLS, correlated peculiar velocities, the
NICMOS nonlinearity). They present results for both MLCS2k2
and SALT2 (although not the improved version used here), but
do not explicitly include the comparison in their uncertainty
budget. Their largest source of uncertainty is due to the rest-
frame low-z U band, while we exclude this data entirely based
on the evidence presented in Section 2.3. They also find evi-
dence for a large variation of β with redshift, but only include
this term for SALT2. Our analysis shows that this is present
in their data for both fitters, and more strongly for MLCS2k2.
As shown in Section 5.7, our analysis does not support evolu-
tion in β. Finally, they also include a large uncertainty for the
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minimum zcut, which we have shown is consistent with shot
noise and therefore implicitly included in our statistical uncer-
tainty. If we exclude these three terms, which we do not find
evidence for, the total systematic uncertainty budget for K09
is about 0.07 in w when combined with non-SN constraints,
similar to the value for our sample.

7. HOW THESE SYSTEMATICS WILL BE REDUCED

The dominant systematic uncertainties in our analysis are
due to calibration, specifically the colors of BD 17◦ 4708.
Other important terms include the relationship between SN peak
magnitudes and host-galaxy properties and corrections for the
Malmquist bias. A careful reading of R09 will reveal that many
of the important calibration systematic effects are related to the
necessity of cross-calibrating SNLS data to the current low-z
SN sample on the Landolt system. We expect that a number of
significantly improved low- and intermediate-z samples should
become available in the next few years (a partial listing includes
the SNfactory sample, the KAIT sample, and the other 2 years
of SDSS data), and so it is worth examining exactly what aspects
of these samples will help us reduce these uncertainties.

The uncertainties related to the color of BD 17◦ 4708 include
large terms related to how well the Landolt magnitudes of this
star can be transferred to the MegaCam system; see Section
10.2 of R09. Because it is a slightly unusual star (a subdwarf),
and because the MegaCam bandpasses are very unlike the
Landolt ones, these uncertainties are large. Furthermore, the
effective bandpasses of the Landolt system are simply not well
understood, and likely never will be, putting a fundamental
limit on how well we can characterize this uncertainty. Were the
low-z sample replaced with one observed on a better understood
system more similar to the MegaCam one, such as the USNO
or SDSS systems, these transfer effects would be reduced,
substantially reducing our calibration uncertainties.

Improved lower-z samples may allow us to understand
various degeneracies between intrinsic and extrinsic SN color,
possibly by studying SNe in a variety of environments or
incorporating near-IR observations. Such samples may also
lead to better luminosity predictors beyond stretch and color,
such as the spectral flux ratio feature of Bailey et al. (2009).
Either possibility could lead to qualitative improvements and
not simply quantitative ones in SN models.

The differences between light-curve models will also be
reduced with better training samples, or else it will become
clear which model is a good description of SN properties. While
including high-z SN data in the training has been very useful,
especially in the near-UV, improved low-z samples can improve
the situation even further. A particular weakness of the current
high-z data is the lack of multiple epochs of spectroscopy at
different phases of the light-curve, especially in the near-UV.
This deficiency can be remedied with STIS or COS spectroscopy
of nearby SNe. The low-z sample zero points can obviously be
improved by better nearby samples. The effects on the MegaCam
zero points are more subtle, but if SNLS is calibrated directly
against a similar system, they will also be improved.

Since so many of these considerations relate directly to the
calibration of the nearby sample, we expect to obtain the best
results with low-z SNe calibrated to an observing system that
is closer to the MegaCam one. Therefore, we expect the best
results in the near term will be obtained when SNLS is properly
combined with the SDSS SN sample and the CSP samples,
both of which are approximate implementations of the USNO
system. In particular, due to the large number of faint standard

stars that have been observed with the SDSS telescope (Ivezić
et al. 2007), the inter-calibration of SNLS and SDSS should be
extremely powerful.

We also hope that the CALSPEC calibration can be refined
and extended to more stars, particularly faint ones that can be
observed directly by survey telescopes (BD 17◦ 4708 is too
bright for both MegaCam and SDSS), and to stars of normal
spectral types in the color range well sampled by standard
star catalogs, which will significantly improve the reliability
of the transformations between natural systems. This program
should be carried out while the natural USNO and MegaCam
systems still exist (although it is too late for the iM filter
used in this paper, which was destroyed in an unfortunate
filter jukebox malfunction, and for the SDSS imager, which
has been decommissioned, but there were many stars already
observed by both); a major problem with the Landolt system is
that the original system no longer exists, so there will always
be limitations as to how accurately any given flux standard
can be tied to this system. This finding has implications for
future absolute calibration programs. From the standpoint of
SN observations, how well the calibrated flux standard can be
tied to the magnitude system in use is currently the limiting
factor rather than how well the SED itself is calibrated, so
good quality spectroscopic observations of fainter (and hence
directly observable) standards are vastly preferable to improved
observations of very bright standards such as Vega.

For z > 0.7 SNe, SNLS essentially observes in rest-frame U
and B and then relies on the relationship between U − B and
B − V to compare with lower redshift SNe. A survey which
measures rest-frame B − V out to higher redshifts using the
near-IR should be able to reduce the importance of some of the
calibration systematic effects discussed here for high-z SNe.
This would be particularly useful for testing time-varying w
models. However, such a survey then becomes sensitive to the
problems of inter-calibrating near-IR and optical data, which
are non-trivial.

8. CONCLUSIONS

We have presented measurements of the cosmological param-
eters from the first three years of the SNLS, combining them
with external SN data sets at higher and lower redshifts and
including a correction for host-galaxy mass. This is the largest,
highest-quality moderate-to-high-redshift SN Ia sample to date.
From SN data only, we find w = −0.91+0.16

−0.20 (stat)+0.07
−0.14 (sys),

consistent with a cosmological constant. The data require an ac-
celerating universe at >99.999% probability including all iden-
tified systematics. The combination with non-SN constraints is
given in S11 and yields considerable additional precision as well
as allowing us to put constraints on time variations in w.

We model systematic uncertainties using a covariance matrix,
including their effects on our empirical SN models. This ap-
proach should allow these uncertainties to be properly included
in future analyses.31 For SNe only, our current uncertainty bud-
get is statistics dominated; when external, non-SN constraints
are included, which we simulate by fixing Ωm, statistical and
systematic uncertainties are comparable. The dominant iden-
tified systematic uncertainties are related to calibration. This
limitation can best be addressed with improved nearby SN data

31 The statistical and systematic covariance matrices used in this paper, as
well as the light-curve parameters, are available at
https://tspace.library.utoronto.ca/snls
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sets, particularly if they are calibrated onto more modern, bet-
ter understood photometric systems such as USNO/SDSS. In
this analysis, we have included external SNe samples calibrated
onto both the Landolt and USNO-like systems without tak-
ing full advantage of the inter-calibration possibilities. Future
papers in collaboration with the SDSS and CSP teams will
address this point. The next most important systematic term,
the relation between host mass and SN peak magnitudes, can
also be addressed with improved nearby samples to ascertain
whether the peak magnitude subsample effect correlates best
with metallicity or some other variable. Solid-angle, rather than
galaxy-targeted searches, will be the most useful for this purpose
because they will sample the underlying host-galaxy population
in a less biased fashion.

In agreement with K09, we find that there are significant prob-
lems with current low-z observer-frame U-band observations,
although we are unsure where the issue lies; we have therefore
excluded these observations in our fits. Interestingly, u′ obser-
vations of low-z SNe, which are calibrated to the USNO instead
of the Landolt system, but probe the same wavelength range,
do not show any problematical behavior. We also note that the
sign of the effect we observe is opposite that predicted by the
spectral studies of Cooke et al. (2010) and Foley et al. (2010).

In general, the systematic uncertainties of the SNLS3 sample
are smaller than those of previous analyses, even after correcting
for the fact that we do not find evidence for a number of
pathologies found by other authors, such as β evolution of
the Hubble bubble, and therefore do not include them in our
analysis. The improvement in the final uncertainty budget,
despite the many additional effects we consider, represents
a significant advance and makes clear the benefits of large,
homogenous SN samples.
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APPENDIX A

PASSBANDS FOR THE LOW-z SAMPLE

Determining the natural system response of the Landolt
system, which is the system of much of the low-z data, is
non-trivial. Fortunately, this affects less than half of the nearby
sample, and has no effect on the SNLS, SDSS, or HST samples
except indirectly through the light-curve training.32 There have
been many attempts to reconstruct the Landolt passbands, which
are nominally a realization of the Johnson–Morgan and Cousins
systems. These are natural systems, so it is useful to attempt to
reconstruct them. The standard work on this subject is Bessell
(1990), which has been used in many previous SN cosmological
analyses. Notable exceptions are A06, who used these filters
responses but shifted them by 41, 27, 21, and 25 Å blueward
(for BVRI, respectively), and K09 (Appendix B) who use shifts
of 15, −12,−7, 45 Å (blueward).33 The former was based on a
comparison of synthetic photometry of Landolt standard stars
from Hamuy et al. (1992, 1994) to their actual magnitudes, and
the latter on CALSPEC STIS standards using magnitudes from
Landolt & Uomoto (2007).

We have carried out a similar analysis to that of A06 for this
paper, but using a more recent spectrophotometric library of
Landolt stars (Stritzinger et al. 2005). The CALSPEC library is
attractive, but unfortunately, as discussed in Section 10.1 of R09,
the magnitudes of these stars from Landolt & Uomoto (2007)
are probably not on the Landolt system to the required accuracy
because the linear transformations derived from normal stars
were not appropriate to the extremely blue CALSPEC white
dwarfs. The Stritzinger et al. (2005) compilation is essentially
an extension of that of Hamuy et al. (1992, 1994) to a much
larger data set by many of the same authors.

Using this sample, we find the best fits if we shift the Bessell
BVRI by 9, 3, 21, and 14 Å to the red. Using bootstrap with
replacement, and folding in the uncertainty in the colors of the
fundamental flux standard, the uncertainties are about 12 Å.
Except possibly in R, we find shifts which are consistent with
zero. Our results are in agreement with the analysis presented in
Stritzinger et al. (2005) using the same data, and those of Maı́z
Apellániz (2006), who performed a similar test using an HST-
based spectrophotometric library. Repeating this test with the
Hamuy et al. (1992, 1994) libraries, we find general agreement
with the values used in A06. Note that neither the Hamuy nor
the Stritzinger libraries have enough wavelength coverage to
enable this test for U.

A fraction of the Landolt standard stars also have magnitudes
on the USNO system (Smith et al. 2002). Since the bandpasses of
the USNO system have been determined much more accurately,
we can use the spectrophotometry of these stars to test the
Stritzinger et al. (2005) library. We find shifts of 4,−8, and
26 Å for g′r ′i ′, with uncertainties of about ±16 Å. Except
for i ′, this library does an excellent job reproducing the USNO
magnitudes. We cannot apply this test to the Hamuy et al. (1992,
1994) libraries because there is no overlap with the USNO
sample. Again, we find marginal evidence for problems in the
red, which may explain the shift found for R, since the Landolt/

32 Although we report the peak B-band magnitude, because we work in SED
space for both fitters, we are free to define this filter to be anything we want.
Therefore, any uncertainty on the Landolt filters only affects SNe whose
observations are reported directly in that system.
33 In fact, filter shifts were not used, but instead linear transforms were applied
to bring Landolt system photometry onto the Bessell system. These are
equivalent because the implied shifts are small. For larger shifts, using linear
transforms is inadvisable.
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Cousins R filter has a much redder response than r ′. This is
particularly interesting because the synthetic photometry tests
agree well with the other libraries in our tests of the MegaCam
filters(Section 5.1.5). Fortunately, the R filter plays a very minor
role in our analysis. We therefore adopt the best-fit values as
shifts applied to the Bessell filters in our analysis and treat the
uncertainties in Section 5.1.6.

In order to construct natural system bandpasses for the Hicken
et al. (2009b) sample, which combines Landolt-like and USNO-
like filters, we multiply the telescope/detector responses by an
assumed atmospheric transmission. We were unable to obtain
an atmospheric absorption curve specific to Mt. Graham, so
substituted that of Kitt Peak, which is at a similar altitude and
shares a similar climate. This substitution is included in the filter
bandpass systematics discussed in Section 5.1.6.

APPENDIX B

COSMOLOGICAL FITTING TECHNIQUES

We consider two different techniques for fitting the cosmo-
logical parameters.34 In the first, we calculate the relative prob-
ability of each value of the parameters over a grid and report the
expectation value of the resulting distribution for each param-
eter (the marginalization approach). In the second, we attempt
to find the value of the parameters that minimizes the χ2(the
minimization approach). In the first case, the uncertainties are
derived by directly computing the bounds that contain the de-
sired fraction of the total probability on each marginalized pa-
rameter. In the second, we make standard assumptions about
the relation between the χ2 and the parameters (namely, that
the uncertainties are Gaussian and the model is approximately
linear in the parameters over the uncertainties) to estimate the
confidence limits. The Markov-Chain Monte Carlo results now
used in most CMB analyses are ideologically equivalent to the
first approach.

The results reported from these two approaches will generally
not agree because they do not have the same meaning mathe-
matically. This does not imply that either approach is incorrect;
while it would be comforting to be able to clearly choose one
method as more desirable, reality is not so kind. Further dis-
cussion of the differences between these two approaches can be
found in Upadhye et al. (2005).

In the grid-based approach, the χ2 is converted into a relative
probability via P ∝ exp(−1/2 χ2). An evenly spaced grid
is used, which is equivalent to assuming a flat prior on all
parameters. Properly speaking, since C (the total covariance
matrix of Equation (3)) is a function of α, β, we should have
P ∝ exp(−1/2 χ2)/

√
det C, where det is the determinant

operator. However, including this term results in large negative
biases on α and β that are worse for larger samples, whereas
if it is omitted the biases are negligible for data sets similar to
ours. See Kelly (2007) for more discussion of the det C factor.

A weakness of the χ2 minimization approach is that the
usual method of estimating uncertainties (by searching for the
boundary where the χ2 increases by a certain amount) depends
on the assumption that the model is close to linear in the
parameters over the size of the uncertainties. While this is
true for the fits presented in this paper, it is not necessarily
accurate for more poorly constrained parameters, such as the
derivative of w, and can lead to significant underestimates of
the uncertainties.
34 Both codes are available from
http://casa.colorado.edu/∼aaconley/Software.html

APPENDIX C

ANALYTIC MARGINALIZATION OVER M

Because the uncertainties of individual SN do not depend
on M, it is possible to remove this parameter from our fits
by analytically marginalizing over it, following the technique
described in Goliath et al. (2001). Here we trivially extend this
treatment to the case of non-diagonal uncertainties and to the
case of two values of M split by some additional variable (such
as host-galaxy stellar masses).

We marginalize by converting the χ2 to a relative probability,
integrating it over a prior π , and then converting back to a χ2.
For the case of a single M:

χ2
Mmarg = −2 log

[∫ ∞

−∞
dM exp

(

−1

2
χ2

)

π (M)

]

.

In our code we assume a flat prior on M (as we do implicitly on
all other parameters). Following the discussion in Section 4.1, if
we define the vector of residuals between the model magnitudes
and the observed magnitudes ∆ �m, but this time omitting M

from mmod, then

χ2 = (∆ �m − M�1)T · C−1 · (∆ �m − M�1),

where C−1 is the inverse covariance matrix. Carrying out the
integral,

χ2
Mmarg = a + log

e

2π
− b2

e
, (C1)

where a ≡ ∆ �mT ·C−1·∆ �m, b ≡ ∆ �mT ·C−1·�1, and e ≡ �1T ·C−1·�1.
Note that the determinant of C does not appear in these relations.
We do not analytically marginalize over α and β because
the uncertainties of each SN depend on their values; such a
procedure was carried out in A06 by holding their values fixed
in C, but this approach causes a significant bias in the recovered
values. Note that a, b, and c all depend on parameters that we
are fitting.

The formula is more complicated in the presence of two
values of M. If we define two vectors �K1 and �K2 so that �K1 is
one where the SN is in set 1 and 0 in set 2, and vice versa for
�K2, then a remains the same, but the expressions for b and e

are modified to b ≡ ∆ �mT · C−1 · �K1 and e ≡ �K1
T · C−1 · �K1.

Further introducing c ≡ ∆ �mT · C−1 · �K2, d ≡ �K1
T · C−1 · �K2,

f ≡ �K2
T · C−1 · �K2, and g ≡ ef − d2 then

χ2
Mmarg = a + log

e

2π
+ log

g

2πe
− b2f

g
− c2e

g
+ 2

bcd

g
. (C2)

Estimates for the two values of M are given by M1 =
(bf − cd)/g and M2 = (ce − bd)/g.

Often there is a desire to evaluate the likelihood of some cos-
mological parameters without fitting the nuisance parameters.
One technique for doing this is to find the value of the nuisance
parameters that minimize the χ2 for a given set of cosmological
parameters and then evaluate the likelihood by substituting those
nuisance parameters. So, for example, the M that minimizes the
χ2 is M = b/e. The resulting χ2 on substituting this value into
Equation (3) is equal to that of Equation (C1) to within an offset
that depends on α and β, but not M. This trick is commonly
used (e.g., in CosmoMC, Lewis & Bridle 2002), but unfortunately
significantly biases the cosmological results because the χ2 for
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different values of α and β can no longer be compared. At-
tempting to avoid fitting explicitly for α and β following this
approach is also quite biased because the uncertainties depend
on the nuisance parameters. For the χ2 minimization fits, the
results are not biased, but the uncertainty estimates are incor-
rect, while for the marginalization fits both the results and the
uncertainties are biased. Therefore it is important to explicitly
fit α and β along with the cosmological parameters.
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