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Abstract. The use of Type Ia supernovae as calibrated standard candles is one of the most powerful tools to
study the expansion history of the universe and thereby its energy components. While the analysis of some
∼50 supernovae at redshifts around z ∼ 0.5 has provided strong evidence for an energy component with negative
pressure, “dark energy”, more data is needed to enable an accurate estimate of the amount and nature of this
energy. This might be accomplished by a dedicated space telescope, the SuperNova / Acceleration Probe (2000;
SNAP), which aims at collecting a large number of supernovae with z < 2. In this paper we assess the ability
of the SNAP mission to determine various properties of the “dark energy.” To exemplify, we expect SNAP, if
operated for three years to study Type Ia supernovae, to be able to determine the parameters in a linear equation
of state w(z) = w0 + w1 z to within a statistical uncertainty of ±0.04 for w0 and +0.15

−0.17 for w1 assuming that the
universe is known to be flat and an independent high precision (σΩm = 0.015) measurement of the mass density
Ωm, is used to constrain the fit. A further improvement can be obtained if, in addition to the high-z events, a
large number of low-z supernovae are included in the sample.

Key words. cosmology: cosmological parameters – cosmology: dark matter – stars: supernovae: general –
gravitational lensing

1. Introduction

The description of the universe lies at the heart of cos-
mology, and it is not surprising that several methods aim-
ing at the determination of cosmological parameters cur-
rently are considered. For example, the power spectrum
of the cosmic microwave background radiation provides
means to determine the total energy content of the uni-
verse, for which recent results of the balloon-based CMB
measurements (Jaffe et al. 2001) quote the value Ωtot =
1.05± 0.041. Constraints on the matter energy density of
the universe, Ωm, can be derived, e.g., from galaxy cluster
abundances (Bahcall & Fan 1998; Carlberg et al. 1999),
and large-scale structure (Peacock et al. 2001). These tests
are consistent with Ωm ∼ 0.3, see however Blanchard
et al. (2000). Furthermore, studies of weak lensing effects
of background objects in mappings of the sky provides in-
formation about the mass distribution in the universe, and
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1 This value was derived assuming that the Hubble constant
is 71± 8 km s−1 Mpc−1.

thus measures Ωm. See, e.g., van Waerbeke et al. (1999)
for a discussion of the accuracy of this method.

On top of this, measurements of supernovae at var-
ious redshifts provide a simple way to estimate cosmo-
logical parameters (Goobar & Perlmutter 1995). In fact,
this is the aim of at least two collaborations (Riess et al.
1998; Perlmutter et al. 1999), both of which recently
have published data in favour of a large energy compo-
nent attributable to a cosmological constant, or an evolv-
ing scalar field such as “quintessence” (Ratra & Peebles
1988; Caldwell et al. 1998). The feasibility to determine
the properties of this “dark energy” component by using
supernova data has recently been considered by several
authors (see, e.g., Huterer & Turner 1999; Saini et al.
2000; Maor et al. 2001; Astier 2001; Weller & Albrecht
2000; Barger & Marfatia 2001; Chiba & Nakamura 2000,
just to list a few), and conclusions vary significantly.
For instance, Huterer & Turner (1999), and Saini et al.
(2000) devise methods for reconstructing the potential
of an acceleration-driving scalar field, using supernova
measurements. On the other hand, Maor et al. (2001)
assess the possibility to use supernovae to distinguish

Article published by EDP Sciences and available at http://www.aanda.org or 
http://dx.doi.org/10.1051/0004-6361:20011398

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20011398


M. Goliath et al.: Supernovae and the nature of the dark energy 7

between various cosmological models, allowing for an
evolving equation of state w(z) (which is equivalent to
scalar-field models). They conclude that the prospects for
determining the equation of state in this way are bleak.
Barger & Marfatia (2001) support this latter view, exem-
plifying how particular data realisations may give mislead-
ing conclusions regarding the dark energy. Again, Weller &
Albrecht (2000) are more optimistic regarding a determi-
nation of w(z), provided that accurate independent esti-
mates of the matter energy density Ωm are at hand. Chiba
& Nakamura (2000, 2001) have studied the reconstruction
of the quintessence potential (or equation of state) with
particular emphasis on ambiguities due to uncertainty in
the matter energy density. They conclude that reconstruc-
tion is feasible, given accurate independent constraints on
Ωm. As already emphasized by one of us (Astier 2001),
much of the discrepancies stem from differences in the ini-
tial assumptions, e.g., in the prior knowledge of Ωm.

In this paper we intend to study the extent to which
properties of the dark energy can be determined, assuming
that observations of a large number of supernovae at high
redshifts become available. Such data could be provided
by the projected SNAP satellite mission. In Sect. 2 we
establish our notation and give the expression for the lu-
minosity distance dL. Section 3 contains investigations of
different scenarios in line with the SNAP proposal (2000).
Confidence regions for cosmological parameters are ob-
tained for various situations. Section 4 considers the rel-
ative importance of events at various redshifts by inves-
tigating the effect of adding a small sample at various
specific redshifts. In Sect. 5, we analyse the systematic er-
rors in cosmological parameter estimation that are caused
by gravitational lensing. We end with a discussion of the
main conclusions in Sect. 6. Appendix A outlines the con-
struction of our log-likelihood functions in some detail.

2. Apparent magnitude and luminosity distance

We intend to investigate the feasibility to determine cos-
mological parameters θ = (Ωm,ΩX, w0, w1) by using ob-
servational data from supernovae at different redshifts z.
Here, Ωm and ΩX denote the present-day energy density
parameters of ordinary matter Ωm(z) and a “dark energy”
component ΩX(z), respectively. The equation of state w(z)
of the dark energy is parametrised by (w0, w1) to linear
order: w(z) ≈ w0 + w1 z.

The apparent magnitude m of a supernova at red-
shift z, assuming the cosmology θ, is given by

m(θ,M, z) =M+ 5 log10 [d′L(θ, z)] , (1)
M = 25 +M + 5 log10(c/H0), (2)

where M is the absolute magnitude of the supernova, and
d′L ≡ H0 dL is the H0-independent luminosity distance,
where H0 is the Hubble parameter2. Hence, the inter-
cept M contains the “unwanted” parameters M and H0

2 In the expression for M, the units of c and H0 are km s−1

and km s−1 Mpc−1, respectively.

that apply equally to all magnitude measurements (we
do not consider evolutionary effects M = M(z)). In a
Friedmann-Lemâıtre universe, the H0-independent lumi-
nosity distance d′L is given by

d′L =


(1 + z) 1√

−Ωk
sin(
√
−Ωk I), Ωk < 0

(1 + z) I, Ωk = 0
(1 + z) 1√

Ωk
sinh(

√
Ωk I), Ωk > 0

(3)

Ωk = 1− Ωm − ΩX, (4)

I =
∫ z

0

dz′

H ′(z′)
, (5)

H ′(z) = H(z)/H0 =√
(1 + z)3 Ωm + f(z) ΩX + (1 + z)2 Ωk, (6)

f(z) = exp
[
3
∫ z

0

dz′
1 + w(z′)

1 + z′

]
, (7)

where we consider an equation of state linear in z:

w(z) = w0 + w1 z. (8)

3. Statistical uncertainties for one year of SNAP
data

The SuperNova/Acceleration Probe (2000; SNAP) is
a proposed two-meter satellite telescope specifically
designed to discover and follow supernovae over a wide
redshift range. In particular, such an instrument would
be able to provide photometry and spectra of more
than 2000 SN Ia per year (SNAP proposal 2000). We
will investigate the accuracy of cosmological parameter
estimations based on one year of SNAP data. To this
end, we assume that 2000 supernovae are obtained in the
redshift interval z ∈ [0, 1.2], and an additional 100 at
high redshift z ∈ [1.2, 1.7]. The individual measurement
precision is assumed to be ∆m = 0.15 mag, including
the intrinsic spread of supernova brightnesses. We divide
the redshift interval into bins of equal size ∆z = 0.05. In
summary:

z range # SNe # bins # SNe/bin prec./bin
[mag]

[0.0, 1.2] 2000 24 83.33 0.0164
[1.2, 1.7] 100 10 10 0.0474

We will use the fiducial cosmology from the SNAP pro-
posal: θtrue = (0.28, 0.72,−1, 0). These assumptions ad-
here to the SNAP proposal (2000), except that we do not
include any systematic errors. However, in Sect. 5 we will
investigate the effects of gravitational lensing on cosmo-
logical parameter estimations.

Below, we consider several different scenarios and
present confidence regions for parameter estimates. The
methodology that has been employed is outlined in
Appendix A. The one-parameter one-sigma uncertainties
for the various cases are summarised in Tables A.1–A.3.
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3.1. Confidence regions for (Ωm,ΩX)

First, let us assume that it is known that the dark energy
corresponds to a cosmological constant, so that (w0, w1) =
(−1, 0). In this particular case, ΩX is often denoted ΩΛ.
Figure 1 shows confidence regions for (Ωm,ΩX) for vari-
ous situations. As regards Ωm, we assume either no prior
knowledge, or else prior knowledge with Ωm Gaussian
around the true value with σΩm−prior = 0.05. Concerning
the interceptM, we assume either exact knowledge ofM,
or no prior knowledge at all. The latter case involves the
expression χ2

M−int, given in Appendix A.1.

Under the assumption of exact knowledge of M, we
find the uncertainties in Ωm and ΩX to be σΩm ≈ 0.015,
σΩX ≈ 0.027. However, with no prior knowledge of M,
the uncertainty in ΩX grows almost by a factor of two.
Note that the uncertainty in Ωm is essentially unaffected.
Hence, imposing the prior knowledge of Ωm as outlined
above, does not significantly affect the size of the confi-
dence region. To emphasize the importance of obtaining
at least a few supernovae at high redshift, we perform the
same calculation excluding the events for which z > 1.2,
see Fig. 2. Even though there were only 100 such super-
novae in the original calculation, they result in about 25%
better determination of ΩX. Thus, it seems to be well-
worth the effort to devise a scheme for obtaining these
high-z events. On the other hand, in order to reduce the
sensitivity to uncertainty in the intercept M, it is impor-
tant to have supernovae at low redshifts. To illustrate this,
we have examined a situation where the redshifts of the
2000 supernovae at z ∈ [0, 1.2] are distributed according
to a constant rate per co-moving volume element (as op-
posed to the uniform distribution used before). The few
events for z ∈ [1.2, 1.7] are still considered to be uniformly
distributed. As seen in Fig. 3, this does hardly affect the
uncertainties whenM is exactly known. However, for the
worst-case scenario of no prior knowledge of M, the un-
certainty in ΩX grows almost by a factor of three. The
relative importance of events at various redshifts is fur-
ther discussed in Sect. 4.

3.2. Confidence regions for (Ωm,w0 ) or (ΩX,w0 )

Next, we assume that the equation of state of the dark
energy can be described by a constant w = w0, so that
w1 = 0. Figures 4–6 show confidence regions for (Ωm, w0)
or (ΩX, w0) under different assumptions that fix one pa-
rameter in the expression Ωtot = Ωm + ΩX: Fig. 4 fixes
the total energy density Ωtot = 1, which corresponds to
a flat universe; Fig. 5 assumes that the density of the
dark energy is known exactly, ΩX = 0.72; Fig. 6 as-
sumes that the energy density of ordinary matter is ex-
actly known, Ωm = 0.28. As before, we consider either
exact knowledge of M, or no prior knowledge. We also
consider prior knowledge of either Ωm or Ωtot, with spread
σprior = 0.05. It turns out that the (unrealistic) case where
ΩX is well-known gives the best determination of the other

Fig. 1. 68.3% confidence regions for (Ωm,ΩX) in the one-year
SNAP scenario. The filled region assumes exact knowledge
of M (solid and dashed lines approximately coincide). A full
three-parameter fit with no prior knowledge of M is assumed
for the two larger confidence regions: the region with a dotted
line assumes no prior knowledge of Ωm, while the dash-dotted
line assumes a prior knowledge with Ωm Gaussian around the
true value and σΩm−prior = 0.05.

Fig. 2. 68.3% confidence regions for (Ωm,ΩX) in the one-year
SNAP scenario without the 100 events for which z ∈ [1.2, 1.7].
The filled region (solid line) assumes exact knowledge of M,
and the dashed line within the filled region assumes also a
prior knowledge with Ωm Gaussian around the true value and
σΩm−prior = 0.05. A full three-parameter fit with no prior
knowledge of M is assumed for the two larger confidence re-
gions: the region with a dotted line assumes no prior knowledge
of Ωm, while the dash-dotted line assumes a prior knowledge
with Ωm Gaussian around the true value and σΩm−prior = 0.05.

parameters under consideration, and that a good knowl-
edge of Ωtot is preferred over a well-determined Ωm.

In Fig. 7, all three parameters (Ωm,ΩX, w0) are al-
lowed to vary, while both Ωm and Ωtot are independently
subject to Gaussian priors with σΩm−prior = 0.05 and
σΩtot−prior = 0.05. Comparing the case with exact M to
the situation with no prior knowledge, it can be noted that
the uncertainty of the latter mainly grows in w0.
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Fig. 3. 68.3% confidence regions for (Ωm,ΩX) in the one-year
SNAP scenario with a constant rate per co-moving volume
for z ∈ [0, 1.2], and the 100 z ∈ [1.2, 1.7] events uniformly
distributed. The filled region assumes exact knowledge of M
(solid and dashed lines approximately coincide). A full three-
parameter fit with no prior knowledge of M is assumed for
the two larger confidence regions: the region with a dotted line
assumes no prior knowledge of Ωm, while the dash-dotted line
assumes a prior knowledge with Ωm Gaussian around the true
value and σΩm−prior = 0.05.

Fig. 4. 68.3% confidence regions for (Ωm, w0) in the one-year
SNAP scenario with the flatness assumption Ωtot = 1. The
filled region (solid line) assumes exact knowledge of M, the
dashed line within the filled region assumes also a prior knowl-
edge with Ωm Gaussian around the true value and σΩm−prior =
0.05. The dotted and dash-dotted lines assume no prior knowl-
edge of M, without and with Ωm prior, respectively.

3.3. Confidence regions for (w0 ,w1 )

Recently, Maor et al. (2001; MBS) considered the prob-
lem of determining the equation of state of the dark en-
ergy using supernova measurements. In particular, they
investigated an idealised experiment with thousands of
supernovae in the redshift range z ∈ [0, 2], divided into
50 bins. The relative precision of the luminosity-distance
dL was taken to be 0.6% per bin, which corresponds to
a magnitude precision σi = 0.006 × 5/ ln(10) ≈ 0.0130

Fig. 5. 68.3% confidence regions for (Ωm, w0) in the one-year
SNAP scenario assuming exact knowledge of ΩX, i.e., no prior
knowledge on the geometry. The filled region (solid line) as-
sumes exact knowledge of M, the dashed line within the
filled region assumes also a prior knowledge with Ωm Gaussian
around the true value and σΩm−prior = 0.05. The dotted and
dash-dotted lines assume no prior knowledge of M, without
and with Ωm prior, respectively.

Fig. 6. 68.3% confidence regions for (ΩX, w0) in the one-year
SNAP scenario assuming exact knowledge of Ωm. The filled
region (solid line) assumes exact knowledge of M, the dashed
line within the filled region assumes also a prior knowledge with
Ωtot Gaussian around the true value and σΩtot−prior = 0.05.
The dotted and dash-dotted lines assume no prior knowledge
of M, without and with Ωtot prior, respectively.

for each bin. The equation of state is taken to be linear,
w(z) = w0 +w1 z. Confidence regions for (w0, w1) were de-
termined, using the cosmology θtrue = (0.3, 0.7,−0.7, 0).
The log-likelihood was determined both for an exact Ωm,
and with Ωm integrated over Ωm,true ± 0.1.

Figure 8 shows our calculation of the confidence re-
gions for this scenario. This figure should be compared
with Fig. 2 of MBS. (Since MBS present one- and two-
sigma contours, rather than the 68.3% and 95% confi-
dence regions, we have included both cases to facilitate
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Fig. 7. 68.3% and 95% confidence regions for (ΩX, w0) in the one-year SNAP scenario assuming prior knowledge with Ωm

and Ωtot independently Gaussian around their true values and σΩm−prior = 0.05 = σΩtot−prior. The first figure assumes exact
knowledge of M, while the second assumes no prior knowledge of M.

comparison.) There is a considerable discrepancy between
these figures and MBS3.

In conclusion, it seems to us that this scenario en-
ables a better constraining of (w0, w1) than was pre-
viously anticipated by MBS. However, the scenario
assumes that more than 6000 supernovae uniformly dis-
tributed over a rather optimistic redshift range are ob-
served. Consequently, in this section, we calculate (w0, w1)
confidence regions for the cosmology of MBS, using the
weaker precision and a smaller redshift range assumed in
the SNAP proposal (2000), see Fig. 12 below. However,
we focus our attention on the fiducial cosmology of SNAP:
θtrue = (0.28, 0.72,−1, 0) (see Figs. 9–11 and 13).

We consider the ability to determine the equation of
state of the dark energy to linear order, w(z) = w0 +w1 z.
We will assume flatness, Ωtot = 1, and impose some prior
knowledge of Ωm. Figure 9 shows confidence regions for
various assumptions regarding M and Ωm. We mainly
consider a Gaussian prior with σΩm−prior = 0.05. The uni-
form prior with Ωm ∈ Ωm,true ± 0.1 is considered in the
case of exact knowledge of M, since this is the situation
considered by MBS. In Fig. 10, the few high-z supernovae
have been excluded. WhenM is exactly known, these are
not so important in determining (w0, w1) as they are for
(Ωm,ΩX), basically because ΩX becomes less significant
with increasing redshift. However, note that the high-z
events make some difference when M is poorly known.
Figure 11 shows the situation when the supernovae at
z ∈ [0, 1.2] are distributed according to a constant rate
per co-moving volume element. As can be expected, un-
certainties are not affected when M is considered to be
exactly known, but degrade considerably with no prior
information of M. Figure 12 considers the same scenario
as in Fig. 9 as regards precision and priors for Ωm, but
uses the fiducial cosmology of MBS.

3 It has come to our attention that MBS used σi = 0.03 mag,
which corresponds to a relative precision in dL of about 1.4%,
and that their contours really correspond to 68.3% and 95%
confidence regions (Brustein, private communication). This
fully accounts for the discrepancy between figures.

With the priors for Ωm assumed in Figs. 9–12,
the equation-of-state parameters are rather poorly con-
strained by one year of SNAP data, especially whenM is
left unspecified. In order to see what SNAP can achieve
over its expected three years of operation, we calculate the
confidence regions for thrice as many supernovae. Priors
for Ωm are Gaussian with σΩm−prior = 0.05 as before, and
we also consider σΩm−prior = 0.015. The latter is consistent
with the estimated precision of a hypothetical ground-
based 10◦× 10◦ weak-lensing survey (van Waerbeke et al.
1999). (As discussed in this reference there is a weak de-
pendence of ΩX in these estimates of Ωm. We will not
pursue this further here.) Uncertainties when Ωm is ex-
actly known (elliptic contours) improve the expected fac-
tor 1/

√
3 as compared with the one-year scenario (com-

pare with Fig. 9). For an Ωm prior with σΩm−prior = 0.05,
confidence regions still span considerable parts of the pa-
rameter space. However, with the sharper prior, uncertain-
ties in w0 and w1 go down to w0 = −1±0.02, w1 = 0+0.13

−0.15

with an exactM, and are still reasonable when imposing
no prior knowledge of M: w0 = −1 ± 0.04, w1 = 0+0.15

−0.17.
Thus, it seems to us that three years of SNAP data backed
up with independent high-precision observations of Ωm

can constrain the nature of the dark energy quite well.
Note that in the above calculations we implicitly assume
that the universe is known to be flat with high accuracy,
since we have imposed Ωtot = 1.

Next, we turn our attention to the impact of differ-
ent redshift distributions of supernovae on the confidence
region in the (w0, w1) parameter space. The interval z ∈
[0, 2] is divided into 8 subsets containing 500 supernovae
each, uniformly distributed in redshift as: z1 = [0, 0.25],
z2 = [0.25, 0.5], z3 = [0.5, 0.75],.., z8 = [1.75, 2.0]. We
then compose 4 different experimental situations where
in each case 2000 supernovae are measured (∆m =
0.16 mag/SN) by sampling events from [z1, z2, z3, z4],
[z1, z2, z7, z8], [z2, z4, z6, z8] and [z5, z6, z7, z8]. The re-
sult is shown in Fig. 14 with the cosmology θtrue =
(0.3, 0.7,−1, 0), where the mass energy density is given
a uniform prior with ∆Ωm = 0.1. Clearly, a wide range of
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Fig. 8. a) 1σ and 2σ confidence regions for (w0, w1) using the
scenario of Maor et al. (2001). The elongated ellipses corre-
spond to the assumption of exact knowledge of Ωm, while the
larger, non-elliptic regions assume the prior knowledge that Ωm

is confined to the interval Ωm,true±0.1. Exact knowledge ofM
is assumed. b) 68.3% and 95% confidence regions for the same
cosmology.

supernova redshifts is more advantageous than only data
above or below z = 1.

4. Effect of adding a small sample of supernovae

To further illustrate the importance of a small number
of high-redshift events, we have performed Fisher analy-
ses (see Appendix A.2 and Astier 2001) to investigate the
effect of adding 100 supernovae to a large initial sample
at lower redshift. We do this for initially 2000 supernovae
uniformly distributed at z ∈ [0, 1.2]. To emphasize the im-
portance of events at very low redshift, we do the same ex-
ercise for initially 2000 supernovae uniformly distributed
at z ∈ [0.2, 1.2]. Since the effects depend significantly on
the underlying cosmological model, we investigate three
models: the fiducial model of the SNAP proposal (2000):
θtrue = (0.28, 0.72,−1, 0), a quintessence model derived
from supergravity considerations (Brax & Martin 1999)
θtrue = (0.28, 0.72,−0.8, 0.3), and the model used by Maor
et al. (2001) θtrue = (0.3, 0.7,−0.7, 0).

Fig. 9. 68.3 % confidence regions for (w0, w1) in the one-year
SNAP scenario. The elongated ellipses correspond to the as-
sumption of exact knowledge of Ωm: the dash-dot-dot-dotted
line is with exact M and the long-dashed line corresponds to
no knowledge of M. The larger, non-elliptic regions assume
prior knowledge of Ωm: the dash-dotted line assumes that Ωm

is known with a Gaussian prior for which σΩm−prior = 0.05; the
short-dashed line assumes the same prior and exact knowledge
ofM; finally, the solid line is with Ωm confined to the interval
Ωm ± 0.1 and exact knowledge of M.

Fig. 10. 68.3% confidence regions for (w0, w1) in the one-year
SNAP scenario without the 100 events for which z ∈ [1.2, 1.7].
The elongated ellipses correspond to the assumption of exact
knowledge of Ωm: the dash-dot-dot-dotted line is with exact
M and the long-dashed line corresponds to no knowledge of
M. The larger, non-elliptic regions assume prior knowledge of
Ωm: the dash-dotted line assumes that Ωm is known with a
Gaussian prior for which σΩm−prior = 0.05; the short-dashed
line assumes the same prior and exact knowledge ofM; finally,
the solid line is with Ωm confined to the interval Ωm ± 0.1 and
exact knowledge of M.

Figures 15 and 16 show the effect on the errors of
Ωm and ΩX when adding 100 supernovae to the samples
outlined above. As expected, high redshifts pay off when
determining Ωm and ΩX, but in case the knowledge of
M is poor, it is also important to fill the low-redshift re-
gion. Note that the curves for exactM have two minima
(zmax and one intermediate redshift), while those where
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Fig. 11. 68.3% confidence regions for (w0, w1) in the one-year
SNAP scenario with a constant rate per co-moving volume for
z ∈ [0, 1.2], and the 100 z ∈ [1.2, 1.7] events uniformly dis-
tributed. The elongated ellipses correspond to the assumption
of exact knowledge of Ωm: the dash-dot-dot-dotted line is with
exactM and the long-dashed line corresponds to no knowledge
of M. The larger, non-elliptic regions assume prior knowledge
of Ωm: the dash-dotted line assumes that Ωm is known with a
Gaussian prior for which σΩm−prior = 0.05; the short-dashed
line assumes the same prior and exact knowledge ofM; finally,
the solid line is with Ωm confined to the interval Ωm ± 0.1 and
exact knowledge of M.

Fig. 12. 68.3% confidence regions for (w0, w1) assuming the
precision of the one-year SNAP scenario, but the cosmology
of Maor et al. (2001). The elongated ellipses correspond to the
assumption of exact knowledge of Ωm: the dash-dot-dot-dotted
line is with exact M and the long-dashed line corresponds to
no knowledge of M. The larger, non-elliptic regions assume
prior knowledge of Ωm: the dash-dotted line assumes that Ωm

is known with a Gaussian prior for which σΩm−prior = 0.05; the
short-dashed line assumes the same prior and exact knowledge
ofM; finally, the solid line is with Ωm confined to the interval
Ωm ± 0.1 and exact knowledge of M.

M is unknown have three (zmin, zmax and one interme-
diate redshift). This is only a manifestation of the fact
that the optimum redshift distribution with n parame-
ters consists of n δ-functions (Huterer & Turner 1999; see
also Astier 2001). (When priors are imposed this may no

Fig. 13. 68.3% confidence regions for (w0, w1) in the three-
year SNAP scenario. The elongated ellipses correspond to
the assumption of exact knowledge of Ωm: the dash-dot-dot-
dotted line is with exact M and the long-dashed line cor-
responds to no knowledge of M. The larger, non-elliptic re-
gions assume Gaussian prior knowledge of Ωm: the dotted line
is with σΩm−prior = 0.05, while the dash-dotted line is with
σΩm−prior = 0.015. The solid and short-dashed lines assume
exact knowledge of M with the same Ωm priors as above.

longer be the case.) Furthermore, for each curve there are
two values of the redshift where it is totally ineffectual to
add more events.

Figures 17–20 assume a flat universe, and consider
(w0, w1) for the same initial distributions. In Figs. 17
and 18 Ωm is exactly known, while in Figs. 19 and 20
a Gaussian prior with σΩm−prior = 0.05 is imposed.
The pay-off with high-redshift events is not as great as
when determining (Ωm,ΩX). In particular, note that the
cosmological-constant model is the worst case of the sce-
narios we have considered.

5. Systematic effects

The emphasis of this work is to highlight the poten-
tial of the magnitude-redshift method for Type Ia super-
novae with respect to statistical uncertainties. However,
there are several possible mechanisms that can give rise
to redshift-dependent systematics. In order to match the
statistical uncertainties discussed here, the systematic un-
certainties should be kept below ∆m = 0.02 mag. The
sources of error are mainly:

– Malmquist bias: in a magnitude-limited SN search
there is a risk to miss a tail of faint objects, thereby bi-
asing the sample. Monte-Carlo simulations show that
this effect becomes negligible if all supernovae are dis-
covered at least 3.8 mag fainter than the maximum
brightness (SNAP 2000).

– Extinction: the light beam could be attenuated either
by ordinary dust in the host galaxy or Milky Way, or by
“grey dust” in the intergalactic medium. Thus, distant
sources would look fainter than they really are. The
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Fig. 14. 68.3% confidence regions for (w0, w1) with 2000 su-
pernovae. The importance of wide redshift coverage is demon-
strated by simulating four different synthetic experiments,
all consisting of 2000 SNe: 1234 includes SNe uniformly dis-
tributed in z ∈ [0, 1], experiment 5678 has only SNe uniformly
distributed in z ∈ [1, 2], experiment 1278 has supernovae in
uniformly distributed in two bins, z ∈ [0, 0.5] and z ∈ [1.5, 2].
Finally, experiment 2468 includes four bins: z ∈ [0.25, 0.5],
z ∈ [0.75, 1], z ∈ [1.25, 1.5] and z ∈ [1.75, 2]. Clearly, the two
experiments with the widest redshift coverage provide the best
constraints.

instrumental requirements to identify and measure this
potential bias is discussed in Goobar et al. (2001).

– K-corrections: a mission like SNAP will produce high-
quality spectra for several hundred supernovae at low
redshift, thus providing the necessary knowledge to ac-
curately correct for the broadening and redshifting of
the high-z SN spectra.

– Non-SN Ia contamination: near-infrared (NIR) wave-
length coverage is required to measure the Si II feature
of spectra even up to z ∼ 1.7.

– Brightness evolution: a possible diversity in the su-
pernova progenitor systems could lead to a redshift-
dependent brightness of Type Ia supernovae. Several
diagnostic tools are discussed in order to detect pos-
sible differences (lightcurve risetime, spectral features,
colours, host galaxy metallicity, position of SN with re-
spect to galaxy core, etc.). The idea is that one would
only derive distances from SNe with the same proper-
ties (SNAP 2000).

– Flux calibration: having an accurate absolute calibra-
tion over more than 10 astronomical magnitudes is
probably one of the most challenging tasks for the
SNAP mission.

Furthermore, the effects of gravitational lensing increase
with redshift, and the corresponding magnitude distribu-
tions become markedly non-Gaussian for sources at high
redshift, see, e.g., Mörtsell et al. (2001a) and Mörtsell et al.
(2001b).

We have investigated the effects from gravitational
lensing by using the method of Holz & Wald (1998), see
further (Bergström et al. 2000). The inhomogeneities are
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Fig. 15. The effect on σΩm and σΩX when 100 supernovae
are added at a specific redshift z ∈ [0, 2]. The original sam-
ple consists of 2000 supernovae uniformly distributed over
z ∈ [0, 1.2]. Solid lines correspond to the SNAP fiducial model
(Ωm,ΩX, w0, w1) = (0.28, 0.72,−1, 0), dashed lines correspond
to (Ωm,ΩX, w0, w1) = (0.28, 0.72,−0.8, 0.3), and dotted lines
correspond to (Ωm,ΩX, w0, w1) = (0.3, 0.7,−0.7, 0).

Effect of adding 100 SNe to initially 2000 uniformly in (0.2, 1.2)
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Fig. 16. The effect on σΩm and σΩX when 100 supernovae
are added at a specific redshift z ∈ [0, 2]. The original sam-
ple consists of 2000 supernovae uniformly distributed over
z ∈ [0.2, 1.2]. Solid lines correspond to the SNAP fiducial model
(Ωm,ΩX, w0, w1) = (0.28, 0.72,−1, 0), dashed lines correspond
to (Ωm,ΩX, w0, w1) = (0.28, 0.72,−0.8, 0.3), and dotted lines
correspond to (Ωm,ΩX, w0, w1) = (0.3, 0.7,−0.7, 0).
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Effect of adding 100 SNe to initially 2000 uniformly in (0, 1.2)
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Fig. 17. The effect on σw0 and σw1 when 100 supernovae
are added at a specific redshift z ∈ [0, 2]. The original
sample consists of 2000 supernovae uniformly distributed
over z ∈ [0, 1.2]. Ωm and ΩX are assumed to be exactly
known. Solid lines correspond to the SNAP fiducial model
(Ωm,ΩX, w0, w1) = (0.28, 0.72,−1, 0), dashed lines correspond
to (Ωm,ΩX, w0, w1) = (0.28, 0.72,−0.8, 0.3), and dotted lines
correspond to (Ωm,ΩX, w0, w1) = (0.3, 0.7,−0.7, 0).

modelled as halos with the density profile as proposed by
Navarro et al. (1997). We consider the cosmology exam-
ined by Maor et al. (2001), θ = (0.3, 0.7,−0.7, 0), and use
the redshift distribution given by Table 7.2 in the SNAP
proposal (2000). Note that this distribution is different
from the ones used previously. Figure 21 shows the lens-
ing effects in the (w0, w1) space. In this particular pa-
rameter space the lensing effects are negligible compared
with the intrinsic uncertainty in the (w0, w1) measure-
ments. However, sizable effects have to be considered for
the (Ωm,ΩX) parameter space, especially if Ωm contains a
significant fraction of point-like objects, such as MACHOs
(Amanullah et al. 2001).

6. Discussion

This analysis stresses the importance of combining inde-
pendent estimations of the cosmological parameters in or-
der to probe the nature of the dark energy as accurately
as possible. For instance, we conclude that a mission for
observing supernovae over a large redshift range, such as
the SuperNova/Acceleration Probe (SNAP), can give rea-
sonable constraints on the equation of state of the dark
energy, provided three years of observational data and
good prior knowledge of the geometry and matter den-
sity of the universe. To exemplify, we expect SNAP to
be able to determine the parameters in a linear equation

Effect of adding 100 SNe to initially 2000 uniformly in (0.2, 1.2)

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

z

σ(
w

0)

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

z

σ(
w

1)

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

z

σ(
w

0)
0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2

z

σ(
w

1)

M unknownM unknownM unknownM unknown M unknownM unknownM unknownM unknown

Fig. 18. The effect on σw0 and σw1 when 100 supernovae
are added at a specific redshift z ∈ [0, 2]. The original
sample consists of 2000 supernovae uniformly distributed
over z ∈ [0.2, 1.2]. Ωm and ΩX are assumed to be exactly
known. Solid lines correspond to the SNAP fiducial model
(Ωm,ΩX, w0, w1) = (0.28, 0.72,−1, 0), dashed lines correspond
to (Ωm,ΩX, w0, w1) = (0.28, 0.72,−0.8, 0.3), and dotted lines
correspond to (Ωm,ΩX, w0, w1) = (0.3, 0.7,−0.7, 0).

of state w(z) = w0 + w1 z to within ±0.04 for w0 and
+0.15
−0.17 for w1 (one-parameter one-sigma levels), assuming
a flat universe, the matter energy density known with
σΩm−prior± 0.015, but no prior knowledge imposed on the
interceptM. These estimates assume that the overall er-
ror budget is not dominated by systematic uncertainties.
With one year of SNAP data, w0 could be determined
within 10% provided that the equation of state is assumed
to be constant, w = w0.

It is important to realise that data at low as well as
high redshift is required for an optimal parameter esti-
mation. Events at very low redshift help to fix the inter-
ceptM, while a wide range of redshifts is needed to break
the degeneracy in the luminosity distance between differ-
ent cosmologies.
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Fig. 19. The effect on σw0 and σw1 when 100 supernovae are
added at a specific redshift z ∈ [0, 2]. The original sample con-
sists of 2000 supernovae uniformly distributed over z ∈ [0, 1.2].
ΩX is assumed to be exactly known, while Ωm is known within
σΩm−prior = 0.05. Solid lines correspond to the SNAP fiducial
model (Ωm,ΩX, w0, w1) = (0.28, 0.72,−1, 0), dashed lines cor-
respond to (Ωm,ΩX, w0, w1) = (0.28, 0.72,−0.8, 0.3), and dot-
ted lines correspond to (Ωm,ΩX, w0, w1) = (0.3, 0.7,−0.7, 0).

Appendix A: Methodology

We determine two-dimensional confidence regions for sub-
sets (θ1, θ2) ∈ θ of the parameters θ = (Ωm,ΩX, w0, w1),
while imposing various conditions on the remaining pa-
rameters. To this end, we construct log-likelihood func-
tions χ2 based on hypothetical magnitude measurements
at various redshifts:

χ2 =
n∑
i=1

[m(θ,M, zi)−m(θtrue,Mtrue, zi)]
2

σ2
i

, (A.1)

where m(θ,M, z) is the apparent magnitude of a super-
nova at redshift z in the cosmology θ (see Sect. 2 above),
and the sum is over bins at different redshifts. The sub-
script true denotes actual cosmological parameter values.
The precision σi of each bin is given by the individual mea-
surement precision ∆m and the number of supernovae ni
in the bin by σi = ∆m/

√
ni.

Often, we will impose prior knowledge of Ωm and/or
Ωtot = Ωm + ΩX. When the parameter θ of which we have
prior knowledge is one of the two we are interested in,
θ ∈ (θ1, θ2), a Gaussian prior knowledge of θ with spread
σθ−prior is easily added:

χ2 = χ2
0 +

(θ − θtrue)2

σ2
θ−prior

, (A.2)
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Fig. 20. Effect on σw0 and σw1 when 100 supernovae are added
at a specific redshift z ∈ [0, 2]. The original sample consists of
2000 supernovae uniformly distributed over z ∈ [0.2, 1.2]. ΩX

is assumed to be exactly known, while Ωm is known within
σΩm−prior = 0.05. Solid lines correspond to the SNAP fiducial
model (Ωm,ΩX, w0, w1) = (0.28, 0.72,−1, 0), dashed lines cor-
respond to (Ωm,ΩX, w0, w1) = (0.28, 0.72,−0.8, 0.3), and dot-
ted lines correspond to (Ωm,ΩX, w0, w1) = (0.3, 0.7,−0.7, 0).

Fig. 21. 68.3% confidence regions for (w0, w1) for one year of
SNAP data, assuming the the cosmology of Maor et al. (2001),
�true = (0.3, 0.7,−0.7, 0). The dotted curve incorporates the
bias effects from gravitational lensing magnification.

where χ2
0 denotes the χ2 obtained without imposing the

prior knowledge of θ. In case θ /∈ (θ1, θ2), we have to inte-
grate out θ from the likelihood L = exp(− 1

2χ
2) with some

prior π(θ) to obtain χ2
θ−int:

χ2
θ−int = −2 ln

[∫ ∞
−∞

dθ exp
(
−1

2
χ2

)
π(θ)

]
· (A.3)
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Table A.1. One-parameter one-sigma ranges for (Ωm,ΩX) in the one-year SNAP scenario. The quoted parameter ranges for a
parameter θ are obtained by finding the extremal values of θ for which χ2 = 1.

σΩm σΩX

(Ωm,ΩX) exact M, no prior Ωm ±0.015 ±0.027
exact M, Gaussian Ωm, σΩm−prior = 0.05 ±0.015 ±0.026
no prior M, no prior Ωm ±0.017 ±0.047
no prior M, Gaussian Ωm, σΩm−prior = 0.05 ±0.016 ±0.045

(Ωm,ΩX) (no z ∈ [1.2, 1.7] events) exact M, no prior Ωm ±0.020 ±0.033
exact M, Gaussian Ωm, σΩm−prior = 0.05 ±0.019 ±0.031
no prior M, no prior Ωm ±0.024 ±0.058
no prior M, Gaussian Ωm, σΩm−prior = 0.05 ±0.021 ±0.053

(Ωm,ΩX) (constant rate/volume at z ∈ [0, 1.2]) exact M, no prior Ωm ±0.016 ±0.030
exact M, Gaussian Ωm, σΩm−prior = 0.05 ±0.015 ±0.028
no prior M, no prior Ωm ±0.017 +0.079

−0.087

no prior M, Gaussian Ωm, σΩm−prior = 0.05 ±0.016 +0.077
−0.084

Table A.2. One-parameter one-sigma ranges for (Ωm, w0) or (ΩX, w0) in the one-year SNAP scenario. The quoted parameter
ranges for a parameter θ are obtained by finding the extremal values of θ for which χ2 = 1, with the additional requirement
w0 ≥ −1.

σΩm σΩX σw0

(Ωm, w0), fixed Ωtot = 1 exact M, no prior Ωm
+0.003
−0.019 – +0.048

exact M, Gaussian Ωm, σΩm−prior = 0.05 +0.003
−0.017 – +0.045

no prior M, no prior Ωm
+0.007
−0.023 – +0.078

no prior M, Gaussian Ωm, σΩm−prior = 0.05 +0.007
−0.021 – +0.071

(Ωm, w0), fixed ΩX = 0.72 exact M, no prior Ωm
+0.006
−0.017 – +0.030

exact M, Gaussian Ωm, σΩm−prior = 0.05 +0.006
−0.016 – +0.028

no prior M, no prior Ωm
+0.010
−0.021 – +0.055

no prior M, Gaussian Ωm, σΩm−prior = 0.05 +0.010
−0.019 – +0.052

(ΩX, w0), fixed Ωm = 0.28 exact M, no prior ΩX – +0.15
−0.010 +0.12

exact M, Gaussian ΩX, σΩX−prior = 0.05 – +0.048
−0.010 +0.045

no prior M, no prior ΩX – +0.15
−0.026 +0.12

no prior M, Gaussian ΩX, σΩX−prior = 0.05 – +0.048
−0.024 +0.049

(ΩX, w0), Gaussian Ωm, σΩm−prior = 0.05 and Gaussian Ωtot, σΩtot−prior = 0.05, exact M – +0.06
−0.02 +0.07

(ΩX, w0), Gaussian Ωm, σΩm−prior = 0.05 and Gaussian Ωtot, σΩtot−prior = 0.05, no prior M – +0.06
−0.03 +0.09

Note that the form of (A.3) implies that a constant ad-
ditive to χ2 simply adds to the integrated log-likelihood
χ2
θ−int:

−2 ln
[∫

dθ exp
(
−1

2
(χ2 +A)

)
π(θ)

]
= χ2

θ−int +A.(A.4)

Thus, χ2
θ−int − χ2

θ−int,min is unaffected by any such con-
stant.

Consequently, we can equally well define

χ2
θ−int ≡ −2 ln

[∫
dθ exp

(
−1

2
(χ2 − χ2

min)
)
π(θ)

]
· (A.5)

We will use Gaussian priors

π(θ) =
1√

2πσ2
θ−prior

exp

[
− 1

2σ2
θ−prior

(θ − θtrue)2

]
, (A.6)

but also uniform priors π(θ) = 1 with θ confined to an
interval θ ∈ θtrue ±∆θ. A special case is the treatment of

the intercept M, for which we assume both exact knowl-
edge, but also no prior knowledge at all. Now, integrating
M over all possible values M ∈ (−∞,∞), we obtain an
analytic expression for χ2

M−int, see Appendix A.1.
Given the appropriate χ2 function, 68.3% and 95%

confidence regions are defined by the conventional two-
parameter χ2 levels 2.30 and 5.99, respectively. Similarly,
one-parameter one- and two-sigma levels correspond to
χ2 = 1 and 4, respectively. In some cases we need to cal-
culate χ2 for three parameters, and subsequently project
onto the (θ1, θ2) plane of interest. This can be done by
setting χ2 = min [χ2(· · · , θ3)], where the minimisation of
χ2 is performed with respect to variation of θ3. Confidence
regions for (θ1, θ2) can then be determined using the usual
two-parameter χ2 levels.

A.1. Integration over the intercept M

When the intercept is assumed to be exactly knownM =
Mtrue, it will cancel in the expression for χ2, so that we
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Table A.3. One-parameter one-sigma ranges for (w0, w1) in the one-year SNAP scenario. Note that the two last sections instead
refer to the three-year SNAP scenario and the scenario of Maor et al. (2001), respectively, also discussed in Sect. 3.3. The quoted
parameter ranges for a parameter θ are obtained by finding the extremal values of θ for which χ2 = 1.

σw0 σw1

(w0, w1), Ωtot = 1 exact M, exact Ωm ±0.031 ±0.14
exact M, Ωm ∈ Ωm,true ± 0.1 +0.13

−0.066
+0.48
−0.76

exact M, Gaussian Ωm, σΩm−prior = 0.05 +0.065
−0.052

+0.31
−0.46

no prior M, exact Ωm ±0.064 ±0.18
no prior M, Gaussian Ωm, σΩm−prior = 0.05 +0.077

−0.074
+0.35
−0.53

(w0, w1), (no z ∈ [1.2, 1.7] events) exact M, exact Ωm ±0.034 ±0.16
exact M, Ωm ∈ Ωm,true ± 0.1 +0.13

−0.085
+0.50
−1.03

exact M, Gaussian Ωm, σΩm−prior = 0.05 +0.068
−0.059

+0.32
−0.48

no prior M, exact Ωm ±0.070 ±0.21
no prior M, Gaussian Ωm, σΩm−prior = 0.05 +0.085

−0.083
+0.36
−0.54

(w0, w1), (constant rate/volume at z ∈ [0, 1.2]) exact M, exact Ωm ±0.038 ±0.16
exact M, Ωm ∈ Ωm,true ± 0.1 +0.13

−0.066
+0.50
−0.96

exact M, Gaussian Ωm, σΩm−prior = 0.05 +0.065
−0.054

+0.33
−0.53

no prior M, exact Ωm
+0.14
−0.15

+0.27
−0.26

no prior M, Gaussian Ωm, σΩm−prior = 0.05 +0.14
−0.15

+0.42
−0.66

(w0, w1) (Maor et al. cosmology) exact M, exact Ωm ±0.028 ±0.11
exact M, Ωm ∈ Ωm,true ± 0.1 +0.10

−0.10
+0.26
−0.63

exact M, Gaussian Ωm, σΩm−prior = 0.05 +0.054
−0.052

+0.16
−0.22

no prior M, exact Ωm ±0.057 ±0.16
no prior M, Gaussian Ωm, σΩm−prior = 0.05 +0.070

−0.072
+0.20
−0.25

(w0, w1), Ωtot = 1, (three-year SNAP) exact M, exact Ωm ±0.018 ±0.081
exact M, Gaussian Ωm, σΩm−prior = 0.05 +0.060

−0.038
+0.29
−0.36

exact M, Gaussian Ωm, σΩm−prior = 0.015 +0.023
−0.024

+0.13
−0.15

no prior M, exact Ωm ±0.036 ±0.11
no prior M, Gaussian Ωm, σΩm−prior = 0.05 +0.062

−0.047
+0.31
−0.42

no prior M, Gaussian Ωm, σΩm−prior = 0.015 +0.038
−0.039

+0.15
−0.17

(w0, w1) (Maor et al. scenario) exact M, exact Ωm ±0.014 ±0.044
exact M, Ωm ∈ Ωm,true ± 0.1 +0.094

−0.051
+0.21
−0.34

obtain the log-likelihood χ̂2 as

χ̂2 ≡
n∑
i=1

∆2

σ2
i

, (A.7)

∆ = 5 log10 [d′L (θ, zi)]− 5 log10 [d′L (θtrue, zi)] . (A.8)

Note that χ̂2
min = χ̂2(θtrue) = 0 by construction.

If no prior knowledge ofM at all is assumed, we can in-
tegrate the general χ2 function (A.1) overM∈ (−∞,∞)
to obtain an analytic expression for χ̃2 ≡ χ2

M−int:

χ̃2 = −2 ln
[∫ ∞
−∞

dM exp
(
−1

2
χ2

)]
(A.9)

= χ̂2 − B2

C
+ ln

(
C

2π

)
, (A.10)

B =
n∑
i=1

∆
σ2
i

, (A.11)

C =
n∑
i=1

1
σ2
i

· (A.12)

Note that this expression is independent of Mtrue, and
that we imposed a uniform prior π(M) = 1 in the inte-
gration. It is also worth pointing out that

χ̃2
min = χ̃2(θtrue) = ln

(
C

2π

)
· (A.13)

More importantly,

χ̂2 − χ̂2
min = χ̂2, (A.14)

χ̃2 − χ̃2
min = χ̂2 − B2

C
, (A.15)

so that

χ̃2 − χ̃2
min ≤ χ̂2 − χ̂2

min, (A.16)

where the equality holds when B = 0. Note that this is
the case not only when θ = θtrue, but in general also on
a hypersurface in parameter space. The inequality (A.16)
ensures the intuitive notion that χ̃2−χ̃2

min contours always
should lie outside corresponding χ̂2 − χ̂2

min contours.
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A.2. Fisher matrix analysis

For efficient estimators (i.e., in the large sample limit), we
can obtain the Fisher matrix by finite-difference evalua-
tion of the expression

Fjk = − ∂2 log(L)
∂θj∂θk

∣∣∣∣
θ=θ̂

=
1
2

∂2χ2

∂θj∂θk

∣∣∣∣
θ=θ̂

, (A.17)

where, with negligible bias, we can take θ̂ = θtrue. The
covariance matrix is now given by the inverse of F .

In the quadratic approximation of χ2 (with χ2 based
on the luminosity distance dL, rather than the apparent
magnitude m), the Fisher matrix is obtained as

Fjk =
∑
i

hj(zi)hT
k (zi), (A.18)

hj(zi) =
1
σi

∂dL
∂θj

∣∣∣∣
θ=θ̂;z=zi

, (A.19)

where the precision can be expressed in terms of the rela-
tive precision p as σi = p dL(zi). It is straight-forward to
add prior knowledge of any combination of the parame-
ters θ. Imposing no prior knowledge ofM corresponds to
letting the scale of dL be unknown: dL = Qd′L.

It should be noted that, even though Eq. (A.18) is an
approximation, it gives uncertainties in accordance with
the analysis in Sect. 3 (compare, for instance, maximum
values in Figs. 15–20 with relevant cases in Tables A.1
and A.3). In addition, for inefficient estimators (i.e., non-
ellipsoidal confidence regions), the approximate Fisher
analysis roughly gives the mean errors of parameters.
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