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Magnetic properties of nanoparticle systems and spin glasses have been investigated
theoretically, and experimentally by squid magnetometry.

Two model three-dimensional spin glasses have been studied: a long-range
Ag(11 at% Mn) Heisenberg spin glass and a short-range Fe0.5Mn0.5TiO3 Ising spin
glass. Experimental protocols revealing ageing, memory and rejuvenation phenomena
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evidences of significantly different exponents describing the nonequilibrium dynamics
of the two samples. In particular, non-accumulative ageing related to temperature-
chaos is much stronger in Ag(11 at% Mn) than in Fe0.5Mn0.5TiO3.

The physical properties of magnetic nanoparticles have been investigated with focus
on the influence of dipolar interparticle interaction. For weakly coupled nanoparti-
cles, thermodynamic perturbation theory is employed to derive analytical expressions
for the linear equilibrium susceptibility, the zero-field specific heat and averages of
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Chapter 1

Introduction

The research on spin glasses started in the 70’s after the discovery of Cannella
and Mydosh [1] of a peak in the ac susceptibility of diluted gold-iron alloys.
Several different materials with various interaction mechanisms were soon found
to exhibit this “new” magnetic behaviour, all with two properties in common
– disorder and frustration. Spin glasses have since been widely studied, partly
because they are excellent model systems of materials with quenched disorder.
An understanding of spin glasses can thus contribute to the understanding of
other, more complex and useful disordered systems, such as ceramic supercon-
ductors, polymers, gels and dense nanoparticle systems.

Magnetic nanoparticles are important examples of how a reduction in size
changes the properties of a ferromagnetic material. For small enough parti-
cles it is energetically favourable to avoid domain walls and to form only one
magnetic domain. The magnetism of such single-domain particles has been
an active field of research since the pioneering work of Stoner and Wohlfarth
[2] and Néel [3] in the late 40’s. Due to new fabrication methods and charac-
terisation techniques, the understanding and interest in nano-sized materials
have increased explosively in the last years within the disciplines of physics,
chemistry, material science and medicine. The development is also driven by
a large number of applications: Nano-sized magnetic materials are used in,
e.g. magnetic recording media, ferrofluids, catalysts and refrigerators. How-
ever, the interest in these systems is also of fundamental nature. Nanoparticles
made up of a small number of spins can be used to study quantum tunnelling
of magnetisation, and due to the interparticle dipolar interaction, which can
be tuned by the particle concentration, nanoparticle systems may change their
magnetic behaviour from superparamagnetic to spin-glass like.

The outline of this thesis is the following: In chapter 2 we survey some ba-
sic properties of classical spin systems and magnetism. Experimental protocols
used in the study of disordered magnetism are also presented. Chapter 3 deals
with spin glasses and nonequilibrium dynamics in the glassy phase. Two model
spin glasses are compared, the long range Ag(11 at% Mn) Heisenberg spin glass
and the short-range Fe0.50Mn0.50TiO3 spin glass. In chapter 4 we discuss basic
properties of non-interacting particle systems, and thermodynamic perturba-
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CHAPTER 1. INTRODUCTION 9

tion theory is used to study weakly interacting particle systems. In chapter 5
we analyse the dynamics of a Fe1−xCx nanoparticle system of different particle
concentrations. The magnetic behaviour of the most concentrated samples is
analysed in terms of spin-glass dynamics.



Chapter 2

Fundamentals

2.1 Spin systems

In order to explain magnetism one needs to use a quantum mechanical descrip-
tion. In this thesis we will study macroscopic manifestations of magnetism
and only consider model spin-Hamiltonians. One such Hamiltonian, based on
the quantum mechanical analysis of two hydrogen atoms, was proposed by
Heisenberg in 1928 [4]:

H = − 1
2

∑

i,j

Jij~si · ~sj −H
N

∑

i=1

szi , (2.1)

where ~si is the spin which we will hereafter assume to be a classical unit vector,
Jij is the exchange coupling constant and the first summation is over nearest
neighbours only. The N spins in the system are assumed to lie on a regular
lattice. The second term in Eq. (2.1) is the Zeeman energy due to the coupling
with the magnetic field H in the ẑ direction. An even simpler model is due to
Ising [5]. In this model the Hamiltonian is given by Eq. (2.1), but the spins
only have discrete orientations ~si = siẑ, with si = ±1. The Ising system is a
model system for strong uniaxial anisotropy.

If Jij = J > 0, parallel orientation of the spins is favoured and at low
temperatures all spins will be aligned ferromagnetically. For Jij = J < 0, the
low temperature phase is antiferromagnetic with the spins aligned antiparal-
lel. If Jij = 0 the Hamiltonian describes a system being paramagnetic at all
temperatures.

In 1975 Edwards and Anderson (EA) [6] showed that the simple model
spin Hamiltonian Eq. (2.1) with nearest-neighbour interaction could reproduce
the cusp in the susceptibility versus temperature, which had been observed in
experiments on spin glasses [1], provided that the coupling constants Jij are
chosen from a distribution fulfilling

∑

i,j Jij = 0. For such symmetric spin
glasses the two most common distributions are the Gaussian distribution

P (Jij) = [2πJ2]−1/2 exp[−J2
ij/(2J

2)] , (2.2)

10



CHAPTER 2. FUNDAMENTALS 11

with variance J2 and the ±J distribution

P (Jij) = 1
2δ(Jij − J) + 1

2δ(Jij + J) . (2.3)

Sherrington and Kirkpatrick (SK) proposed in 1975 a model which is the
infinite-range version of the EA-model [7]. It is assumed that any pair of spins
interact with each other irrespective of their distance, with coupling constants
chosen from a Gaussian distribution. To ensure a reasonable thermodynamic
limit it is necessary that the variance scales with the number of spins in the
system (J2 ∝ N).

In the EA-model not all the exchange interactions can be satisfied simulta-
neously, leading to frustration [8]. An example of frustration in the Ising ±J
EA-model is given in Fig. 2.1. Here the frustration arises due to bond disorder,
but it may also arise from randomness in spin positions (site disorder).

+

_

+

+

+_

+ ?

_(a) (b)

Figure 2.1: Examples of (a) an unfrustrated and (b) a frustrated spin configuration.

Magnetic nanoparticles, which will be discussed in chapter 4 and 5, have a
macroscopic magnetic moment consisting of 102 − 105 approximately parallel
atomic spins acting coherently. In that context, we will describe the total
magnetic moment as a classical spin (sometimes referred to as a super spin).
The Hamiltonian of an ensemble of such spins can be given by Eq. (2.1) with an
additional term due to magnetic anisotropy and Jij determined by the dipolar
interparticle interaction.

2.2 Thermodynamics

The partition function of a magnetic system is defined as

Z =
∑

states

exp(−βH) ,

where β = 1/kBT and T is the temperature. In chapter 4 we will define the
partition function for ensembles of magnetic nanoparticles and use it to calcu-
late various thermodynamic quantities. The free energy, which for magnetic



CHAPTER 2. FUNDAMENTALS 12

systems is the Helmholtz free energy

F = U − TS (2.4)

where U is the internal energy and S is the entropy, can also be defined from
the partition function

F(T,H) = −kBT lnZ(T,H) . (2.5)

All macroscopic thermodynamic properties can be obtained from differentiating
the free energy (or equivalently the partition function). The internal energy
and specific heat cv are expressed in terms of the partition function as,

U = − ∂

∂β
(lnZ) ,

cv
kB

= − β2 ∂U

∂β

∣

∣

∣

∣

V

= β2 ∂
2

∂β2
(lnZ) . (2.6)

The magnetisation in the direction of the applied field Mz = 〈 ~M · ẑ〉 and the
susceptibility χ are given by

Mz = − 1

µ0

∂F
∂H

∣

∣

∣

∣

T

, χ =
1

N

∂Mz

∂H

∣

∣

∣

∣

T

= − 1

µ0N

∂2F
∂H2

∣

∣

∣

∣

T

. (2.7)

Here 〈 ~M〉 stands for the statistical-mechanical average, i.e. the macroscopically
accessible magnetisation in contrast to the magnetisation of a particular spin-
state ~M =

∑

~si. The susceptibility can be related to the fluctuations in the
magnetisation and equally to the spin-spin correlation function Γij

χ =
µ0β

N

∑

ij

ẑ · Γij · ẑ, Γij = 〈~si~sj〉 − 〈~si〉 〈~sj〉 . (2.8)

The susceptibility obtained from the fluctuations corresponds to the linear
response. The magnetic response to a small probing field ∆H, can be expanded
as

〈Mz〉 − 〈Mz〉(∆H=0) = χ∆H + χ(2)∆H2 + χ(3)∆H3 + · · · , (2.9)

where χ is the linear susceptibility and χ(n) defines the nonlinear susceptibility
of order n.

Although we have so far discussed only thermodynamic equilibrium proper-
ties, the spin-spin correlation function is in general a time dependent quantity,
and hence, so are the susceptibility and the magnetisation.

2.3 Phase transitions

A phase transition is signalled by a singularity in the thermodynamic potential
– which for magnetic systems is the free energy F defined by Eq. (2.4). If
there is a finite discontinuity in the first derivative of the appropriate poten-
tial, the transition is of first-order. On the other hand, if the first derivative
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is continuous, but second or higher-order derivatives are discontinuous or infi-
nite, the transition is termed continuous (alternatively higher-order or critical).
Most magnetic phase transitions are continuous and they are associated with
an order parameter. The order parameter is zero in the disordered (param-
agnetic) phase and becomes non-zero at the transition temperature Tc due to
a spontaneous symmetry breaking. For a ferromagnet the order parameter is
the magnetisation (

∑

i s
z
i ), while for antiferromagnets it is the sublattice mag-

netisation. For spin glasses the magnetisation is zero at all temperatures and
an appropriate order parameter was proposed by Edwards and Anderson [6] as
the average value of the autocorrelation function

qEA = lim
t→∞

〈~si(0) · ~si(t)〉 . (2.10)

Close to a continuous phase transition different thermodynamic quantities
follow power laws of the reduced temperature ǫ, defined as

ǫ =
T − Tc
Tc

, (2.11)

with exponents called critical exponents (see some definitions in table 2.1). The
critical exponents are related through scaling laws, see e.g Refs. [9, 10]. The
critical exponents are important since they classify the phase transition; while
Tc depends sensitively on the microscopic details of the system, the critical
exponents are essentially universal, depending only on a few fundamental pa-
rameters. For models with short range interaction these parameters are the
spatial dimension d and the symmetry of the order parameter. This concept
of universality classes is one of the most important outcomes of the renormal-
isation group theory [11, 12]. The lower critical dimension defines the lowest
dimension at which a system belonging to a certain universality class exhibits
a phase transition at Tc > 0. For ferromagnets, Ising and Heisenberg systems
belong to different universality classes; e.g. while the 2d Ising system exhibits
a finite temperature phase transition, the Heisenberg system does not.

Table 2.1: Definition of some critical exponents

Zero-field specific heat C ∼ |ǫ|−α
Order parameter q ∼ (−ǫ)β
Correlation length ξ ∼ |ǫ|−ν
Order parameter susceptibility χ ∼ |ǫ|−γ

2.4 Magnetic measurements

The aim of the experimental work in this thesis has been to study the time
dependent magnetisation, m(t), of spin glasses and magnetic nanoparticle sys-
tems. It has often been important to study m(t) in a wide time window. The
typical observation times for different measurement techniques are presented
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in table 2.2. Measurements of both ac and dc magnetisation have been per-
formed in a non-commercial low-field superconducting quantum interference
device (squid) magnetometer [13]. The squid technique allows magnetisation
measurements with high accuracy (10−8 emu).

Table 2.2: Characteristic observation times for various experimental techniques

Experimental technique observation time

dc magnetisation 10−1 - 106 s

ac magnetisation 10−6 - 102 s

Mössbauer 10−9 - 10−7 s

Ferromagnetic resonance 10−9 s

Neutron scattering 10−12 - 10−8 s

From measurements of the magnetisation versus temperature, it is possible
to determine if the system is in thermodynamic equilibrium or if irreversibil-
ity exists on the observed time-scale. In ac susceptibility measurements the
magnetisation is probed by a small sinusoidal field of angular frequency ω.
The dynamic susceptibility has one component in-phase (χ′) and one out-of-
phase (χ′′) with the applied field. For dc magnetisation measurements, different
(H,T)-protocols can be used to probe a magnetic system.

Zero-field-cooled (ZFC) magnetisation: the sample is cooled in zero mag-
netic field, a field is applied at the lowest temperature, and the magneti-
sation is recorded on reheating.

Field-cooled (FC) magnetisation: the sample is cooled in the measurement
field, and the magnetisation is recorded either on cooling or heating.

Thermoremanent (TRM) magnetisation: the sample is cooled in a field
and the magnetisation is recorded on reheating in zero field.

In thermodynamic equilibrium χZFC = χFC = χ′ while χ′′ = χTRM = 0. In an
irreversible regime χZFC is different from χFC, χ′ is frequency dependent and
both χ′′ and χTRM are non-zero. For an example see Fig. 2.2.

We are however also interested in performing experiments that can disentan-
gle nonequilibrium dynamics of disordered magnets from equilibrium dynamics
of ergodic systems (e.g. independent nanoparticles). The nonequilibrium prop-
erties of glassy systems can be investigated by ZFC-relaxation experiments:
The sample is quenched from a temperature in the paramagnetic state to a
temperature in the nonstationary regime, and it is subsequently aged a wait
time tw before a probing field is applied and the magnetisation is measured as
function of time. In a glassy system, the response of the system will depend
on tw - the system ages. No wait time dependence exists in an ergodic system.
ZFC-relaxation curves for the canonical spin glass Ag(11 at %Mn) are shown
in Fig. 2.3. It is convenient to plot the relaxation rate, S(t) = 1/h dm(t)/d ln t,
which more clearly reveals nonequilibrium effects. Ageing can also be observed
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Figure 2.2: Dc and ac susceptibility for the canonical spin glass Ag(11 at% Mn).
The inset shows the out-of-phase component of the ac susceptibility at frequencies
ω/2π = 0.51, 5.1, 55 Hz.

in the TRM-relaxation, as well as in isothermal ac susceptibility vs time ex-
periments, where χ(t) relaxes only in a non-stationary regime. Additional
information about the nonequilibrium properties can be obtained with more
sophisticated (H,T,t)-protocols, which will be extensively discussed in this the-
sis.
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Chapter 3

Spin glasses

3.1 Introduction

Since Cannella and Mydosh in 1972 discovered a peak in the ac susceptibility,
and predicted the existence of a phase transition to a low temperature spin-
glass phase, a large amount of work has been devoted to the existence of such
a phase transition [14]. For 3d Ising spin glasses both experiments [15, 16, 17]
and numerical simulations on the EA-model [18, 19, 20] clearly indicate the ex-
istence of a phase transition at a finite temperature Tg 6= 0. From experiments,
it is clear that a finite temperature phase transition exists also for Heisenberg
spin glasses [21, 22], while most numerical simulations indicate that Tg = 0
in 3d [23, 24, 25]. It has been proposed that the phase transition observed
experimentally in Heisenberg systems is due to the chiral mechanism [24]; in
the presence of weak random anisotropy the spins will couple to the chirality,
inducing a phase transition at finite temperature, which belongs to a different
universality class than the Ising spin glass [25, 26]. Also simulations on vector
spin glasses with weak anisotropy support the existence of a phase transition
at finite temperature [27, 28]. The critical exponents associated with the spin-
glass phase transition derived from experiments are systematically scattered
supporting the existence of different universality classes for spin glasses [29].

A question, still not solved, is how to adequately model the nonequilibrium
dynamics in the spin-glass phase. The nonequilibrium properties are not unique
for spin glasses [30, 31], but other materials have been shown to exhibit similar
ageing, memory and rejuvenation phenomena. Examples of such materials are
polymers [32], orientational glasses [33], gels [34], ceramic superconductors [35],
and strongly interacting nanoparticle systems (see chapter 5). One important
issue, now under hot debate, is the existence of temperature-chaos, predicted
by the droplet model, and its relevance to the time scales of experiments and
numerical simulations [36, 37, 38, 39, 40, 41].

In this chapter, we present specific experimental protocols that can be used
to investigate the non-equilibrium dynamics of spin glasses and other glassy
systems. We compare two model 3d spin glasses (one short-range Ising spin
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CHAPTER 3. SPIN GLASSES 17

glass and one long-range Heisenberg-like spin glass) concerning non-equilibrium
dynamics. Particular interest is taken in the growth of the coherence length
for equilibrium spin-glass order and non-accumulative effects revealing the ex-
istence of chaos with temperature. Quantitative investigations of model pre-
dictions are restricted to the droplet model.

3.2 Spin glass systems

The canonical spin-glass materials are noble metals (Au, Ag, Cu or Pt) weakly
diluted with transition metal ions, such as Fe or Mn. The magnetic interaction
in such systems is due to the scattering of the conduction electrons at the spins,
leading to an indirect exchange interaction – the RKKY (Ruderman and Kittel
[42], Kasuya [43] and Yosida [44]) interaction, which oscillates strongly with
distance r between the spins:

J(r) = J0
cos(2kFr + ϕ0)

(kFr)3
. (3.1)

Here J0 and ϕ0 are constants and kF is the Fermi wave vector of the host metal.
Since the distances between the spins are random, some spin-spin interaction
will be positive and favour parallel alignment while other will be negative thus
favouring antiparallel alignment. This may result in a symmetric distribution
P (J) = P (−J) of bond strengths J .

The pure RKKY-interaction is isotropic and the canonical spin-glass sys-
tems are therefore often referred to as Heisenberg spin glasses. However, some
anisotropy is present also in these systems originating from dipolar interaction
and interaction of the Dzyaloshinsky-Moriya (DM) type [45]. The latter is due
to spin-orbit scattering of the conduction electrons by non-magnetic impurities
and reads,

EDM = − ~Dij · (~si × ~sj), ~Dij ∝ ~ri × ~rj , (3.2)

where ~Dij is a random vector due to the randomness of the spin positions
~ri. The dipolar interaction is, as will be discussed in Sec. 4.2.4, weak for
spin systems, while the DM interaction is enhanced by the presence of non-
magnetic transition-metal impurities [46, 45]. The Heisenberg system studied
in this thesis is a polycrystalline sample of Ag(11 at% Mn) (AgMn).

A model system for a symmetric Ising spin glass is FexMn1−xTiO3 with
x ≈ 0.5 [47, 48, 49]. Single crystals can be grown by the floating-zone method.
Both FeTiO3 and MnTiO3 are antiferromagnets having easy-axis anisotropy
along the hexagonal c-axis of the ilmenite structure (see Fig. 3.1). The Fe2+

spins in FeTiO3 are coupled ferromagnetically within a c-layer and antiferro-
magnetically between adjacent c-layers. In MnTiO3, on the other hand, both
the intra-layer and inter-layer coupling of Mn2+ spins are antiferromagnetic.
The compound FexMn1−xTiO3 behaves as a spin glass for 0.4<∼x<∼ 0.57, due
to the mixing of ferromagnetic and antiferromagnetic interaction [49]. The
perpendicular magnetisation is much smaller than the parallel magnetisation
and does not show a cusp, which confirms the Ising-nature of this compound.
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In Fe0.5Mn0.5TiO3 the nearest-neighbour exchange interaction is the domi-
nating interaction. The interaction is hence short-ranged in contrast to the
long-ranged RKKY-interaction in canonical spin glasses.

Fe  , Mn
� 2+        2+

c−axis

MnTiO
✁

3FeTiO
�

3

4+
✂

Ti
✄

Figure 3.1: Hexagonal structure of the ilmenite-type compounds FeTiO3 and
MnTiO3. The O−2 ions are omitted. From Ref. [50].

3.3 Spin glass theory

The basis for most numerical and analytical modelling of spin glasses is the
spin Hamiltonian presented in Sec. 2.1 with either short-range interaction (the
EA-model) or infinite-range interaction (the SK-model).

There are two main theories: the “droplet” theory [51, 52, 53, 54, 55] based
on renormalisation group arguments for the Ising EA-model, and the replica
symmetry breaking theory of Parisi [56, 57, 58] providing a mean-field solu-
tion to the SK-model. We will here restrict our interpretations of experimental
observations to real-space models (the original droplet model and some exten-
sions [59, 38]). One basic property of a real-space model is to provide a means
for converting the experimentally accessible parameters temperature and time
into the coherence length for equilibrium spin-glass order. A knowledge of
the domain growth law will allow further quantitative investigations of various
properties of the spin-glass phase.

3.3.1 Critical dynamics

Close to the transition temperature Tg, the dynamics of a spin-glass system
will be governed by critical fluctuations, but critical fluctuations are also of
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importance on experimental time scales quite far from Tg. At temperatures
both below and above Tg, length scales shorter than the coherence length of
the critical fluctuations

ξ ∼ L0|ǫ|−ν , (3.3)

will be dominated by critical fluctuations. Here L0 is a microscopic length scale
and the reduced temperature ǫ is defined in Eq. (2.11). The coherence length
can be transformed into a time scale according to conventional critical slowing
down; the critical correlation time is given by

τc ∼ τm(ξ(T )/L0)z ∼ τm|ǫ|−zν , (3.4)

with τm being a microscopic time scale. For T > Tg, the system is in equilibrium
on length (time) scales longer than ξ (τc) and hence the magnetic response is
paramagnetic. At temperatures below Tg, there is a crossover between critical
dynamics on short length (time) scales and activated dynamics on long length
(time) scales. The length scale of critical dynamics as a function of temperature
is illustrated in Fig. 3.2. Activated dynamics and the crossover from critical
dynamics will be discussed in detail below.

T
g
 

Critical dynamics 

Activated dynamics Paramagnetic behaviour 

Temperature 

Coherence length 

ξ
−
 ∼  (1−T/T

g
)−ν ξ

+
 ∼  (T/T

g
−1)−ν

Figure 3.2: Illustration of length (time) scales in spin glasses.

3.3.2 The droplet model

The starting point of the droplet model is the Ising EA-model with a con-
tinuous distribution of independent exchange. Temperatures in the spin glass
phase not too close to Tg are considered. At each temperature the equilibrium
state is considered to consist of a ground state plus thermally activated droplet
excitations of various size. It is assumed that there exists exactly one ground
state (and its global spin reversal). A droplet is a low-energy compact cluster
of spins with a volume Ld and a fractal surface area Lds . The fractal exponent
ds fulfils d− 1 < ds < d and has been estimated to ds ≈ 2.58 in 3d [60].
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The typical droplet free energy scale as

F typ
L ∼ Υ(T )(L/L0)θ , Υ(T ) ∼ Jǫθν , (3.5)

where θ is the stiffness exponent and Υ(T ) ∼ Jǫθν is the stiffness. Fisher
and Huse argued that θ < (d − 1)/2 [54]. The droplet free energy is broadly
distributed, and due to the presence of configurations which are almost degen-
erate with the ground state, the distribution of FL will have weight down to
zero energy,

ρL(FL) ≈ ρ̃(FL/F
typ
L )/F typ

L , ρ̃(0) > 0. (3.6)

If θ < 0 large droplets can be flipped at a low energy cost so that the large
droplets will not be stable against small fluctuations and the system will be
paramagnetic. Hence, a negative value of θ indicates that the system is below
its lower critical dimension dl [61, 51]. On the other hand, if θ > 0 very few
of the large scale droplets will be thermally activated since F typ

L > kBT . Since
ρL(FL) has non-zero weight near zero a certain fraction of droplets will be
thermally active and dominate most of the equilibrium physics. For Ising spin
glasses θ ≈ −0.3 in 2d [62, 63] and θ ≈ 0.2 in 3d [61, 64, 65], which tells us
that 2 < dl < 3 for Ising spin glasses within the droplet model.

The dynamics of droplets is considered to be a thermally activated process.
The energy barrier for annihilation of a droplet will scale as

Btyp
L ∼ ∆(T )(L/L0)ψ , ∆(T ) ∼ Jǫψν , (3.7)

where ∆(T ) sets the free-energy scale of the barriers and ψ is an exponent
satisfying θ < ψ < d−1. The characteristic time τL that a thermally activated
droplet will last for is given by an Arrhenius law

ln[τL/τ0(T )] ∼ BL/kBT , (3.8)

where τ0(T ) is the unit time scale for the activated process. For activated
hopping processes the unit time scale is not simply given by the real microscopic
time scale [66], which is τm ∼ h̄/J ∼ 10−13 s in spin systems. A plausible choice
for τ0(T ) is instead the critical correlation time τc as proposed in Ref. [55].

The Arrhenius law implies that droplets of length scale L = LT (t),

LT (t) ∼
[

kBT ln(t/τ0(T ))

∆(T )

]1/ψ

, (3.9)

can be activated within a time scale t. Hence LT (t) will be the characteristic
length scale of equilibrium spin-glass order at a time t after a quench from
a temperature above Tg to a temperature T in the spin-glass phase. In a
magnetisation measurement the system is probed by applying a small magnetic
field. The magnetisation arises through the polarisation of droplets. Since this
polarisation also is a thermally activated process, it will affect droplets of size
L(tobs), where tobs = 1/ω (in an ac experiment at a given angular frequency
ω) or the time elapsed after the application of the magnetic field in a ZFC-
relaxation experiment.
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Isothermal ageing

In the droplet model it is assumed that isothermal ageing at a constant tem-
perature T after a quench from a temperature above the spin-glass transition
temperature Tg is a coarsening process of domain walls as in many other phase
ordering systems. During the isothermal ageing of a spin glass of spatial di-
mension d, the temporal ac susceptibility at a given angular frequency ω at
time t after the quench is supposed to scale as [55, 67],

χ′′(ω, t) − χ′′
eq(ω)

χ′′(ω, t)
∝

[

LT (1/ω)

LT (t)

]d−θ

, (3.10)

where LT (t) is the typical size of the domains and LT (1/ω) is the largest
size of the droplets being polarised by the ac field. The left hand side of
this equation can equally well be written [χ′′(ω, t) − χ′′

eq(ω)]/χ′′
eq(ω). Both

scaling forms are expected to give the same result, if correction terms of order
[LT (1/ω)/LT (t)]2(d−θ) are negligible. The basic physical idea of this scaling
form is that the presence of a domain wall effectively reduces the excitation
free energy of droplet excitations that are touching the domain wall. This
reduction can be accounted for by defining an effective stiffness Υeff , which for
small values of LT (1/ω)/LT (t) will scale as 1 − Υeff/Υ ∝ [LT (1/ω)/LT (t)]d−θ

[55].
The equilibrium ac susceptibility χ′′

eq(ω) is proposed to scale as [54],

χ′′
eq(ω) ≈ π

2
Kω

qm(T )

Υ(T )

∂

∂ lnω

[

L0

LT (1/ω)

]θ

, (3.11)

where Kω is a universal constant and qm is equal to the Edwards-Anderson
order parameter for a symmetric spin glass.

Cross-over between critical dynamics and activated dynamics

Due to a possible slow crossover from critical dynamics at t ≪ τc(T ) to acti-
vated dynamics at t≫ τc(T ), the logarithmic domain growth law Eq. (3.9) may
apply only for ideally asymptotic regimes beyond the time scales of numerical
simulations [68, 59, 39]. Results from numerical simulations [69, 70, 71] accord-
ingly suggest an alternative growth law for the spin glass coherence length

LT (t) ∼ L0(t/τm)1/z(T ) , (3.12)

where z(T ) ≃ z(Tg/T ) is a temperature-dependent effective exponent.
Bouchaud et al. [38] proposed to relate time and length according to

t ∼ τ0(LT (t)/L0)z exp

[

∆(T )(LT (t)/L0)ψ

kBT

]

. (3.13)

This formula is asymptotically correct both in the limit of critical and activated
dynamics.
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Temperature chaos

According to the droplet theory, typical spin configurations of a pair of equi-
librium states at two different temperatures, say T1 and T2, are essentially the
same on short length scales much below the so-called overlap length L∆T, but
completely different on large length scales much beyond L∆T. This temperature-
chaos is due to a subtle competition between energy and entropy in the spin-
glass phase.

In the limit of small temperature differences |∆T/J | ≪ 1, the overlap length
between the two temperatures T1 and T2 = T1 + ∆T is supposed to scale as
[72, 54, 55]

L∆T ∼ L0|∆T/J |−ζ , ζ = 2/(ds − 2θ) , (3.14)

where ζ is the chaos exponent.

3.3.3 Spin glass order in a magnetic field?

Within the droplet model, a spin glass is disordered by an applied magnetic
field H on length scales larger than the correlation length [54]

ξH ∝
[

Υ

H
√
qm

]2/(d−2θ)

, (3.15)

while it still exhibits spin-glass order on shorter length scales. The droplet
model therefore predicts that a spin glass will not exhibit a phase transition
in a magnetic field. This prediction has been experimentally confirmed for the
Fe0.50Mn0.50TiO3 sample [73].

In the mean field model, the spin glass order will persist up to the the
d’Almeida-Thouless line [74] for Ising spin glasses (or weak fields) or the Gabay-
Toulouse line [75] for Heisenberg spin glasses in strong fields. Recently, Kawa-
mura and Imagawa [76] showed that the chiral-glass ordered state sustains in
a magnetic field in a similar way as predicted by the mean-field model. This is
supported by experiments on Heisenberg spin glasses [77].

3.4 Experiments: Ageing, memory and rejuve-

nation

Magnetic ageing was first observed by Lundgren et al. in 1983 [78]. It was
found that the ZFC-relaxation depends on the wait time, tw, the system has
been allowed to age at the measurement temperature, before the probing field
is applied and the magnetisation is recorded as a function of time (tobs), see
Fig. 2.3. The peak observed in the relaxation rate at tobs ≈ tw has, within
the droplet model, been interpreted as a crossover between quasi-equilibrium
dynamics at L(tobs) < L(tw) and nonequilibrium dynamics at L(tobs) > L(tw)
(see [59] for more details). Later, experimental protocols including tempera-
ture steps and cyclings were proposed [79]. These experiments showed that
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Figure 3.3: χ′′(ω) vs temperature for the AgMn sample measured during cooling
(pluses) and during the subsequent re-heating (circles). Two intermittent halts were
made during the cooling: One at 27 K for 10 000 s and another at 23 K for 30 000 s.
The susceptibility measured on constant cooling and on constant heating is shown as
reference (solid lines). The inset shows χ′′(ω) vs time during the halt at T = 23 K;
ω/2π = 510 mHz.

spin-glass order, characteristic of different temperatures, can co-exist on dif-
ferent length scales, and the findings could qualitatively be interpreted within
the droplet model supporting the temperature-chaos scenario [80]. Recently, a
simple experimental protocol was employed to illustrate memory and rejuve-
nation effects [36]; the sample is cooled from a high temperature with one (or
more) halts at a low temperature in the spin-glass phase during the cooling.
The ac susceptibility is subsequently recorded on heating. Such a “memory”
experiment is shown in Fig. 3.3. The ac susceptibility is measured on cooling
with two intermittent stops. During the isothermal ageing the ac susceptibility
relaxes as shown in the inset of the figure. As the cooling is resumed the ac
susceptibility merges with the reference curve - the system is rejuvenated. On
the subsequent reheating the ac susceptibility shows a dip around each of the
ageing temperatures - the system has kept a memory of each isothermal ageing.

In Ref. [36] it was argued that this “double memory” experiment is in-
compatible with the compact domain growth picture of the droplet model. In
Paper I, it was instead proposed that the domains are fractal (fractal domains
have also been proposed in Ref. [81, 82, 83]). While Yoshino et al. [37] used
numerical simulations, putting chaos in by hand, to show that the memory
effect is dynamic in nature, and due to the existence of “ghost domains” it
does not contradict the standard droplet picture. These ghost domains are the
equilibrium domains grown during the first ageing at the higher temperature,
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which will only partly be erased during the ageing at the lower temperature,
due to the large separation in length scales at the same time scales for different
temperatures. This leads us to the importance of knowing the growth law for
the coherence length when comparing experiments with real space models. In
an experiment, we can control the two parameters temperature and time, but
for interpretations we are interested in the length scale of equilibrium domains.

We have performed experiments on the two model spin glasses
Fe0.5Mn0.5TiO3 and AgMn. When comparing these experimental findings with
theoretical models concerning nonequilibrium dynamics, it is important to take
into account that what we refer to as a “quench” is not an ideal quench but
a rapid cooling, with a finite cooling rate (∼ 0.05 − 0.08 K/s in our magne-
tometer). The system will therefore have an “effective age” when reaching
the measurement temperature. This age is 10-30 s for the AgMn sample and
100 − 350 s for the Fe0.50Mn0.50TiO3 sample depending on the measurement
temperature. The difference in effective age between the two samples is due to
a difference in their chaotic nature as will be discussed below.

3.4.1 Isothermal ageing

By scaling isothermal ageing data to the predictions of the droplet model
[Eq. (3.10)], it is possible to test the functional form of the domain growth
law and estimate exponents. In earlier studies [84, 65, 31] an ωt-scaling, indi-
cating an algebraic growth law [c.f. Eq. (3.12)], has been found. It was also
found that the data could not be described by a ln t/ lnω behaviour consis-
tent with a logarithmic domain growth law. However in those investigations it
was assumed that τ0(T ) = τm. The effect of isothermal ageing was measured
by recording the ac susceptibility, as a function of time, after rapidly cooling
the spin glasses from a temperature above Tg to the measurement tempera-
ture (the relaxation of the ac susceptibility as a function of time at a constant
temperature is shown in the inset of Fig. 3.3).

The isothermal ageing data were analysed using the scaling prediction
from the droplet model Eq. (3.10) and the logarithmic domain growth law
in Eq. (3.9), yielding

χ′′(ω, t) − χ′′
eq(ω)

χ′′(ω, t)
∝

{

ln[t/τc(T )]

ln[(1/ω)/τc(T )]

}

d−θ
ψ

. (3.16)

This scaling law should permit all isothermal ageing data from measurements
at different temperatures and frequencies to collapse onto one single master
curve. A necessary condition for such a scaling is activated dynamics, i.e.
t > (1/ω) ≫ τc(T ). Provided that the critical correlation time was chosen as
the unit time scale (τ0(T ) = τc), it was possible to scale the data for both
samples (see Fig. 3.4), while it was not possible to scale the data for any of
the two spin glasses using a constant value for τ0 ∼ 10−13 s.

The remaining parameter in the scaling analysis, χ′′
eq(ω, T ), is predicted

to show a frequency and temperature dependence according to Eq. (3.11), i.e.
χ′′

eq(ω) ∝ [T ln((1/ω)/τc(T ))]−(1+θ/ψ). We have from these analyses obtained
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Figure 3.4: [χ′′(ω, t)−χ′′

eq(ω)]/χ′′(ω, t) vs ln[t/τc(T )]/ ln[(1/ω)/τc(T )] on a log-log
scale (a) for the Fe0.50Mn0.50TiO3 sample with ω/2π = 0.17, 0.51, 1.7, 5.1, 17, 55, 170
Hz, T = 15, 17 K and (b) for the AgMn sample with ω/2π = 0.17, 1.7, 17, 170 Hz,
T = 20, 25, 30 K. The insets show χ′′

eq(ω) vs ln[(1/ω)/τc(T )] on a log-log scale at (a)
T = 17 K (pluses) and 15 K (circles), and (b) T = 30 K (triangles), 25 K (crosses)
and 20 K (squares).

estimates of θ and ψ (see Paper IV) and the results are summarised in table
3.1 together with earlier estimates.

The difference in the estimated exponents between the scaling form with
χ′′(ω, t) in the denominator and that with χ′′

eq(ω), tells us that correction terms

of order [LT (1/ω)/LT (t)]2(d−θ) are not negligible. However, the difference can
give an indication of the error in the values. Also, the slow crossover from
critical to activated dynamics may require a more complete functional form
than only the asymptotic form Eq. (3.9) to accurately describe the growth law
on experimental time scales.

The significant difference between the exponents obtained for the Fe0.50-
Mn0.50TiO3 Ising spin glass and the AgMn Heisenberg spin glass is consis-
tent with the chiral-glass picture conjecturing a different universality class for
Heisenberg spin glasses than for Ising spin glasses. Experimental evidences for

Table 3.1: Droplet exponents

Fe0.50Mn0.50TiO3 AgMn
From θ ψ θ ψ

[χ′′(ω, t) − χ′′
eq(ω)]/χ′′(ω) 0.2 1.9 1.0 1.2

[χ′′(ω, t) − χ′′
eq(ω)]/χ′′

eq(ω) 0.13 1.3 0.6 0.8

Exp. [73] - 0.8 - -
Exp. [85, 38] - 0.3-0.7 - 1.3

Ising Heisenberg
Ising EA-model [61, 64, 65] 0.2 - - -
Heisenberg EA-model [86] - - 0.8 -
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different universality classes were recently obtained by magnetic torque mea-
surements [29].

3.4.2 Memory, ageing and rejuvenation

The cooling/heating rate dependence of the susceptibility of a AgMn spin
glass was investigated in Paper I. The slower the cooling rate the lower is the
susceptibility curve and hence, the system is “older” or closer to equilibrium.
As noticed in the isothermal ageing study it is not possible to reach a truely
stationary regime on experimental time scales even for quite high frequency ac
susceptibility measurements. For the AgMn sample, the ac susceptibility curve
measured on cooling is lower than the curve subsequently measured on heating
except close to the lowest temperature (see Fig. 3.3). If the ageings at different
temperatures were accumulative, the heating curve would appear older than
the cooling curve and therefore lower. For the Fe0.50Mn0.50TiO3 sample this
is indeed the case (see Fig. 3.5). The non-accumulative behaviour observed
in the cooling-heating curves of the ac susceptibility of the AgMn sample can
qualitatively be explained by rejuvenation during cooling and heating due to
strong temperature chaos. For the Fe0.50Mn0.50TiO3 sample the double mem-
ory experiment shown in Fig. 3.5 indicates that temperature-chaos does exist,
but that it is much weaker than for AgMn .

A dc method to investigate effects of memory and rejuvenation was em-
ployed in Papers II and III. The ZFC, FC and TRM magnetisations are mea-
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Figure 3.5: a) χ′′ vs temperature measured on cooling (pluses), with two intermit-
tent stops at 20 K for 10 000 s and at 16 K for 30 000 s, and on the subsequent
reheating (diamonds), for the Fe0.50Mn0.50TiO3 sample. The reference cooling and
heating curves are drawn with solid lines. Inset: χ′′ − χ′′

ref vs temperature derived
from the heating curves for single and double stops. ω/2π = 510 mHz.
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Figure 3.6: ZFC, FC and TRM magnetisation vs temperature for the AgMn sam-
ple. Filled symbols denotes measurements with a stop at T = 27 K for 104 s and
open symbols the reference measurements.

sured as described in section 2.4, but with one (or more) stop(s) during the
cooling. The stop during the cooling results in a “dip” in the ZFC magnetisa-
tion, an “excess” in the TRM magnetisation while the FC magnetisation is only
marginally affected, see Fig. 3.6. The advantage of this dc-memory method,
compared to the ac memory method, is that the measurements are easier to
perform, but still yield information about memory, chaos and rejuvenation.

Chaos and overlap

From the experiments presented above one can in a simple way get an idea
about chaos and rejuvenation in the spin-glass phase. In order to make quan-
titative studies, T -shift experiments have been performed using the following
protocol: the system is quenched from a temperature above the spin-glass tran-
sition temperature Tg to an initial temperature Ti < Tg, at which it is aged
a time tw. The temperature is then shifted to a measurement temperature
Tm = Ti − ∆T with ∆T being either positive or negative. Immediately af-
ter reaching temperature stability at Tm either the ZFC magnetisation or the
ac susceptibility is recorded as a function of time. This T -shift experiment is
denoted as (Ti, Tm).

In Paper V we extract the effective age teff of the system at Tm due to the
ageing at Ti from the maximum in the relaxation rate S(t). The relaxation rate
is shown in Fig. 3.7 for different values of ∆T for the AgMn sample. We have
also measured the ac relaxation and used the method of Refs. [65, 85, 39] to
determine teff . The extracted value of teff did not depend on how the system was
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probed, which validates both methods. However, we found the determination
of teff somewhat more ambiguous in the ac case.

If temperature-chaos is absent, successive ageing at the two different tem-
peratures will add to each other in a fully accumulative way. In such a
situation the effective age teff is a monotonically increasing function of tw,
teff = f(tw, (Ti, Tm)) and conversely tw = f−1(teff , (Ti, Tm)). By performing
twin-experiments – (T1, T2) and its conjugate (T2, T1) – for pairs of tempera-
tures T1 and T2 below Tg, it can be checked if the criterion for accumulative
ageing

f−1 (t, (T1, T2)) = f (t, (T2, T1)) (3.17)

holds.
Data from twin-experiments on the AgMn sample are shown in Fig. 3.8 and

on the Fe0.50Mn0.50TiO3 sample in Fig. 3.9. The results of (T1, T2) experiments
are shown with tw on the horizontal axis and teff on the vertical axis. The
results of (T2, T1) experiments are shown in the reversed way - with teff on
the horizontal axis and tw on the vertical axis. The criterion for accumulative
ageing [Eq. (3.17)] is satisfied if and only if the two data sets merge with each
other in the plots. Clear non-accumulative effects are observed for ∆T >∼ 0.2 K
(∆T/Tg >∼ 0.006) for the AgMn sample and for ∆T > 1 K (∆T/Tg > 0.05)
for the Fe0.50Mn0.50TiO3 sample. This confirms the existence of temperature-
chaos and that the spin-glass phase in the AgMn sample is more chaotic than
the spin-glass phase in the Fe0.50Mn0.50TiO3 sample.

A quantitative analysis of the non-accumulative effect in terms of the droplet
theory was done in Paper V for the AgMn sample. The effective coherence
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Figure 3.8: Relation between tw and teff in twin-experiments – (T1, T2) shown as
squares and (T2, T1) shown as pluses – on the AgMn sample. T1 = (30−∆T ) K and
T2 = 30 K with ∆T=0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 K.

length Leff at Tm, due to the ageing at Ti was determined as

Leff = LTm(teff), (3.18)

using the growth law Eq. (3.9) with the parameters obtained by the isothermal
ageing analysis together with ν = 1.1 and J = Tg. For the data with accu-
mulative ageing Leff = LTi(tw), which satisfies Eq. (3.17), and for data with
non-accumulative ageing; the data of the (T1, T2) and (T2, T1) experiments
merge with each other. The latter clearly demonstrates that the effective do-
main size for a given pair of temperatures is the same, which is consistent with
the expectation that there is a unique overlap length between a given pair of
temperatures.

Fully accumulative ageing, i.e. Leff = LTi(tw), will only be observed on
length scales LTi(tw) ≪ L∆T, where L∆T is the overlap length. Leff saturates
to L∆T on length scales LTi(tw) ≫ L∆T. A simple possibility is then that the
two limits are connected by a crossover scaling form,

Leff

L∆T
= F

(

LTi(tw)

L∆T

)

, (3.19)

with a scaling function F (x) = x for x≪ 1 (accumulative ageing) and F (x) = 1
for x≫ 1 (chaos). Note that the intermediate regime between the two extremes
can be a very slow crossover.

Figure 3.10 shows a scaling plot, for the AgMn sample, to fully test Eq. (3.19)
using a large set of data for a variety of ∆T ’s. A good collapse of the data
is obtained for ζ = 2.6 ± 0.5. Since the time (length) scales we can study are
restricted, we did not reach the chaotic limit where Leff is determined by L∆T.
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Figure 3.9: Relation between tw and teff in twin-experiments – (T1, T2) shown as
squares and (T2, T1) shown as pluses – on the Fe0.50Mn0.50TiO3 sample. T1 =
(19 − ∆T ) K and T2 = 19 K with ∆T=0.2, 0.5, 1.0, 1.6, 2.0 and 3.0 K.

For the Ising spin glass, θ ≈ 0.2 imposing ζ ≈ 1. Hence, the observation
that the Fe0.50Mn0.50TiO3 spin glass seems less chaotic than the AgMn spin
glass is consistent with the droplet model, although it is still an open question
if the non-accumulative ageing can be described by the droplet model for the
Fe0.50Mn0.50TiO3 sample.
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Figure 3.10: Scaling plot of Leff/L∆T with L∆T = (c∆T/J)−2.6 with c = 8 for
the AgMn sample. The solid straight line represents the case of fully accumulative
ageing. Pluses mark data with Ti > Tm and squares data with Ti < Tm.
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Memory

To further investigate memory and rejuvenation effects, we have performed T -
cycling experiments: The sample is cooled from the paramagnetic phase to a
temperature Tm within the spin-glass phase, at which it is aged a time tw1

. The
temperature is changed to Tm − ∆T for a time tw2

, finally the temperature is
shifted back to Tm where the ZFC relaxation is measured. Such experiments,
performed on the AgMn sample with Tm = 30 K, tw2

= 3000 s and Tm−∆T =
29 K, are shown in Fig. 3.11. On the time scales probed in the experiments
there is no overlap between the equilibrium domain configurations at these two
temperatures. A memory of the first ageing at Tm is kept by the system, as
evidenced by the peak in S(t) at t = tw1

. However, there is also a second peak
in S(t) at short time scales indicating that the domain structure grown at 30
K has been partly erased at short length scales due to the ageing at 29 K. As
seen from the figure, there is a continuous growth (decrease) of the peak at
short times (long times) with increasing tw2

. We can conclude that the ageing
at the lower temperature can erase the domain structure grown at a higher
temperature completely, only if the coherence length at the lower temperature
[LTm+∆T (tw2

)] becomes similar in size to the coherence length attained at the
higher temperature [LTm(tw1

)].
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Figure 3.11: (a) ZFC susceptibility and (b) relaxation rate vs time for the AgMn
sample. T -cycling experiments with Tm = 30 K, tw1

= 3000 s, Tm + ∆T = 29 K
and tw2

= 30 s (dash-dotted line), 300 s (solid line), 3000 s (dashed line) and
30 000 s (dotted line) are shown. The thick solid lines show ordinary ZFC-relaxation
measurements with tw = 10 s (a time allowing thermal stabilisation at Tm) and
3000 s.



Chapter 4

Magnetic single-domain

nanoparticles

4.1 Introduction

The study of single-domain magnetic particles has been an active field of re-
search since the pioneering work of Stoner and Wohlfarth [2], who studied the
hysteretic rotation of the magnetisation over the magnetic-anisotropy energy
barrier under the influence of an applied field, and Néel [3] who predicted that
at non-zero temperature the magnetisation can surmount the energy barrier as
a result of thermal agitation.

The theoretically most well studied systems are non-interacting classical
spins (representing the magnetisation of the nanoparticles) with axially sym-
metric potentials (representing the magnetic anisotropy). A great step for-
ward to compare experiments and theory was taken when measurements on
individual particles were reported [87]. A profound knowledge of the physical
properties of isolated particles is a prerequisite for further studies on e.g. quan-
tum tunnelling in molecular nanomagnets or dipole-dipole interaction in dense
samples.

In this thesis, the main interest is devoted to how dipolar interaction affects
the physical properties of nanoparticle systems. Dipolar interaction is, due
to its long range and reduced symmetry, difficult to treat analytically; most
work on dipolar interaction is therefore numerical [88, 89, 90, 91]. Here we
will use thermodynamic perturbation theory to treat weak dipolar interaction
analytically. It will be shown that dipolar interaction can change the physical
properties of an ensemble of particles considerably compared to those of the
non-interacting system. In the next chapter we show that strongly interacting
particle systems exhibit spin-glass-like properties.

Throughout this chapter we will for notational simplicity assume that the
parameters characterising different nanoparticles are identical in analytical ex-
pressions. In real particle systems this is not the case, and Paper VI gives an
example on how the polydispersivity of a real particle system can be taken into

32



CHAPTER 4. MAGNETIC SINGLE-DOMAIN NANOPARTICLES 33

account when comparing theory and experiments.

4.2 Basic properties

The current studies of magnetic single-domain nanoparticles are limited to sys-
tems where the particles are fixed in space (realised e.g. in frozen ferrofluids,
single crystals of molecular magnets and magnetic nanoparticles in a solid ma-
trix). We will also assume that every single-domain nanoparticle is in internal
thermodynamic equilibrium and that its constituent spins rotate coherently.
Moreover, we are only considering temperatures much lower than the Curie
temperature, so the spontaneous magnetisation is approximately constant with
temperature. Hence, the only relevant degree of freedom is the orientation of
the net magnetic moment.

The Hamiltonian of a non-interacting nanoparticle consists of the magnetic
anisotropy (which creates preferential directions of the magnetic moment ori-
entation) and the Zeeman energy (which is the interaction energy between the
magnetic moment and an external field). The nanoparticles are supposed to
be well separated by a non-conductive medium (which can be obtained e.g.
by adding a surfactant to a ferrofluid), and the only relevant inter-particle
interaction mechanism is therefore dipole-dipole interaction.

4.2.1 Magnetic anisotropy

The term magnetic anisotropy is used to describe the dependence of the internal
energy on the direction of the spontaneous magnetisation, creating “easy” and
“hard” directions of magnetisation. In general, a bulk sample of a ferromag-
net will exhibit magnetic anisotropy with the same symmetry as the crystal
structure. This anisotropy energy originates from spin-orbit coupling and is
called magnetocrystalline anisotropy [92]. The two most common symmetries
are uniaxial and cubic. For uniaxial symmetry the energy is given by

Euni
a = K1V sin2 θ +K2V sin4 θ + · · · , (4.1)

where V is the particle volume, K1 and K2 are anisotropy constants and θ is
the angle between the magnetic moment and the symmetry axis. For cubic
symmetry the anisotropy can be expressed in terms of the direction cosines
(αi) as

Ecubic
a = K1V (α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1) +K2V α

2
1α

2
2α

2
3 + · · · , (4.2)

where the αi are defined through α1 = sin θ cosφ, α2 = sin θ sinφ and α3 =
cos θ, θ is the angle between the magnetisation and the z-axis and φ is the
azimuthal angle.

For a single-domain ferromagnet, any non-spherical particle shape will give
rise to shape anisotropy due to the internal magnetostatic energy. The magne-
tostatic energy, for an ellipsoid of revolution, is equal to

Em = 1
2µ0VM

2
s (Nz cos2 θ +Nx sin2 θ), (4.3)
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where θ is the angle between the magnetic moment and the polar axis ẑ, Ms is
the saturation magnetisation, Nz is the demagnetisation factor along the polar
axis and Nx = Ny the demagnetisation factor along an equatorial axis. Both
the magnetostatic energy for an ellipsoid and the uniaxial magnetocrystalline
anisotropy energy [Eq. (4.1)] can to first order, except for a constant term, be
written as

Ea = −A cos2 θ , (4.4)

where A = KV is the anisotropy energy barrier and the uniaxial anisotropy
constant K = 1

2µ0M
2
s (Nx −Nz) in the case of shape anisotropy. For a prolate

ellipsoid, K > 0 and the anisotropy is of easy axis type, since there exist two
minima of the anisotropy energy along ±ẑ (the anisotropy axis). For an oblate
ellipsoid, K < 0 and the anisotropy energy has its minimum in the whole xy
plane. In this case the anisotropy is of easy plane type.

With decreasing particle size, the magnetic contributions from the surface
will eventually become more important than those from the bulk of the particle,
and hence surface anisotropy energy will dominate over the magnetocrystalline
anisotropy and magnetostatic energies. A uniaxial anisotropy energy propor-
tional to the particle surface S,

Esurface
a = KsS cos2 θ (4.5)

has been observed experimentally by ferromagnetic resonance [93].
Hereafter, we will assume uniaxial anisotropy, of easy-axis type, given by

Eq. (4.4) (if not otherwise indicated), since it is the simplest symmetry, but
still it contains the basic elements (potential minima, barriers) responsible for
the important role of magnetic anisotropy in superparamagnets. Experimental
evidence for uniaxial anisotropy is given in Ref. [93, 94].

4.2.2 Superparamagnetic relaxation

The uniaxial anisotropy energy creates two potential wells separated by the
energy barrier A. The magnetic moment is subjected to thermal fluctuations
and may undergo a Brownian-type rotation surmounting the potential barriers.
This relaxation process was proposed and studied by Néel in 1949 [3] and
further developed by Brown in 1963 [95]. In the high potential barrier range,
βA≫ 1, where β = 1/kBT , the characteristic time for the overbarrier rotation
τ can approximately be written in the Arrhenius form

τ ≃ τ0 exp(βA) , (4.6)

where τ0 ∼ 10−9−10−12 s. For observation times tobs much longer than the re-
laxation time, ~m maintains the thermal-equilibrium distribution of orientations
as in a classical paramagnet - but due to the much larger magnetic moment
than a single spin, this phenomenon was called superparamagnetism [96]. The
condition of superparamagnetism (tobs ≫ τ) corresponds to a temperature
range that fulfils, ln(tobs/τ0) > βA . For tobs ∼ 10 s, due to the small value
of τ0, this equilibrium range extends down to low thermal energies compared
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to the anisotropy energy (25 > βA). Hence, within the equilibrium regime,
the system displays an isotropic behaviour at high temperatures (βA ≪ 1),
but a strongly anisotropic behaviour at low temperatures (βA ≫ 1) with a
Heisenberg to Ising crossover in-between.

If tobs ≪ τ , the magnetic moment is blocked in one of the potential wells.
A state which corresponds to stable magnetisation in a bulk magnet. If the
measurement time is of the same order as the relaxation time (tobs ∼ τ),
dynamical time dependent effects are observed.

4.2.3 Effects of a magnetic field

The Hamiltonian of a noninteracting nanoparticle with uniaxial anisotropy is
given by,

H = − A

m2
(~m · ~n)2 − µ0 ~m · ~H (4.7)

where ~m is the magnetic moment with m = MsV , A = KV and ~n is a unit
vector along the symmetry axis of the anisotropy energy (anisotropy direction).
By introducing unit vectors for the magnetic moment (~s = ~m/m) and the

external magnetic field (ĥ = ~H/H) and defining dimensionless parameters for
the anisotropy and magnetic field,

σ = βA, ξ = βµ0mH, (4.8)

we can write a dimensionless Hamiltonian as,

−βH = σ(~s · ~n)2 + ξ(~s · ĥ). (4.9)

The bistable character of the zero-field Hamiltonian will be destroyed by a
sufficiently large field. The critical field for ~n‖ĥ is called anisotropy field, and
is given by

HK =
2A

µ0m
=

2K

µ0Ms
. (4.10)

We can define another dimensionless field quantity:

h =
H

HK
=

ξ

2σ
, (4.11)

which is the field measured in units of the anisotropy field. The Hamiltonian, as
a function of the angle θ between the anisotropy axis and the magnetic moment
(~s · ~n = cos θ), is shown in Fig. 4.1 for different values of the longitudinal field.

4.2.4 Inter-particle interaction

Dipole-dipole interaction is ubiquitous in magnetic spin systems, but usually
other interaction mechanisms (e.g. exchange interaction) dominate. The rela-
tive weakness of the dipolar coupling between magnetic ions in paramagnetic
systems results in characteristic temperatures lying in the range of 0.01-0.1 K.
For superparamagnetic nanoparticles (for which care has been taken to avoid
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Figure 4.1: Magnetic energy vs θ in the case of longitudinal field for different values
of the reduced field h = H/HK .

direct contact between the particles) exchange interaction and other interaction
mechanisms can usually be discarded so that the dipolar interaction is the only
relevant interparticle interaction. In addition, the size of the typical magnetic
moment (S ∼ 102 − 105 magnetic spins) shifts the relevant temperatures up
to the range of a few Kelvin, making it possible to observe effects of dipolar
interaction in conventional magnetisation experiments.

The dipolar field, created by all other spins, at the position ~ri of the spin
~si, is given by

~Hi =
m

4πa3

∑

j

Gij · ~sj , (4.12)

where the term j = i is omitted from the summation, a is defined in such a
way that a3 is the mean volume around each spin, and

Gij =
1

r3ij
(3 r̂ij r̂ij − 1) , (4.13)

~rij = ~ri − ~rj , r̂ij = ~rij/rij , (4.14)

where 1 is the unit tensor.
By introducing the dimensionless coupling constant

ξd =
µ0m

2

4πa3

1

kBT
, (4.15)

and noting that the dipolar energy Ed = µ0

2

∑

i 6=j ~m · ~Hi, we can write the total
dimensionless Hamiltonian of an interacting nanoparticle system as

−βH = σ
∑

i

(~si · ~ni)2 + ξ
∑

i

(~si · ĥ) + ξd
∑

i>j

ωij , (4.16)
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where ωij = ~si ·Gij ·~sj . Note that the interaction strength can also be measured
by the temperature independent coupling parameter

hd = ξd/2σ =
Ms

4πHK
c , (4.17)

which is the magnitude of the field, measured in units of the anisotropy field
HK , produced at a given position by a dipole at a distance a. Here, c = V/a3

is the volume concentration of particles.
Dipole-dipole interaction is long-ranged and anisotropic, which makes it

cumbersome to treat both analytically and numerically. For a system with
randomness in particle positions and anisotropy directions, the dipolar interac-
tion introduces frustration and disorder leading to glassy dynamics for strongly
interacting systems [97]. We will therefore only use analytical and numerical
treatment for weakly interacting particle systems, while strongly interacting
systems will be discussed in terms of collective spin-glass behaviour in chapter
5.

4.3 Thermal equilibrium properties

We will here calculate some thermodynamic quantities for independent and
weakly interacting nanoparticles. The thermal-equilibrium average of any quan-
tity B(~s1, . . . , ~sN ) is given by

〈B〉 =
1

Z

∫

dΓB exp(−βH) , (4.18)

where Z =
∫

dΓ exp(−βH) is the partition function. For classical spins the
different states correspond to different spin orientations so that dΓ =

∏

i dΩi,
with dΩi = d2~si/2π.

4.3.1 Linear and non-linear susceptibility of superpara-

magnets with a general anisotropy energy

We will consider the linear and non-linear susceptibilities of superparamagnets.
For the calculation of other thermodynamic quantities of independent nanopar-
ticles, see e.g. the review by Garćıa-Palacios [98]. The non-linear suscepti-
bilities can constitute more sensitive tools to investigate static and dynamic
properties of magnetic nanoparticles than the linear susceptibility. A common
experimental situation is an ensemble of nanoparticles with the anisotropy axes
oriented randomly (e.g. frozen ferrofluids). This randomness may obscure the
possibility to extract information about the intrinsic properties of the nanopar-
ticles (e.g. the anisotropy).

A case that has already been studied is nanoparticles with uniaxial anisotropy
and random anisotropy orientations [99, 100]: The static linear susceptibility
is equal to that of isotropic spins χiso = 1

3βµ0m
2, while the static nonlinear

susceptibility has an additional anisotropy induced temperature dependence
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compared to isotropic superparamagnets, χ
(3)
iso = − 1

45β
3µ3

0m
4 [99]. It is impor-

tant to know the origin of such a deviation from the common 1/T 3 behaviour
in order not to mix it up with deviations due to interaction or quantum effects.

In Paper VII we have studied the linear and nonlinear equilibrium response
of ensembles of spins in which the anisotropy axes are distributed at random.
The analysis is restricted to independent spins with Hamiltonians having in-
version symmetry [H(~m) = H(−~m)]. The method is valid for any kind of
anisotropy, but if a bias field is applied in addition to the probing field the
condition of inversion symmetry breaks down.

Linear susceptibility

The effective linear susceptibility, averaged over random anisotropy directions,
reads

χ =
1

3
βµ0m

2 , (4.19)

where all vestiges of the magnetic anisotropy have disappeared. Since the result
is valid for any kind of anisotropy, χ can not be used to extract any information
about the anisotropy energy.

Nonlinear susceptibility

The effective nonlinear susceptibility, averaged over random anisotropy, can be
written

χ̄(3) = − 1

15
β3µ3

0m
4[

〈

x2
〉

+
〈

y2
〉

+
〈

z2
〉

]2 , (4.20)

where the anisotropy dependence remains after the random averaging and is
contained in the statistical-mechanical averages. By introducing

S2 = 1
2 (3

〈

z2
〉

− 1) , ∆ = 1
2 (

〈

y2
〉

−
〈

x2
〉

) , (4.21)

we can finally write the nonlinear susceptibility as

χ̄(3) = − 1

45
β3µ3

0m
4(1 + 2S2

2 + 6∆2) . (4.22)

For isotropic spins as well as for spins with cubic anisotropy,
〈

x2
〉

=
〈

y2
〉

=
〈

z2
〉

= 1/3 and hence

χ̄
(3)
cubic = χ̄

(3)
iso = − 1

45β
3µ3

0m
4 . (4.23)

For spins with axially symmetric anisotropy
〈

x2
〉

=
〈

y2
〉

and hence ∆ = 0.
Properties of S2 in the case of uniaxial anisotropy are discussed in the appendix.

By using the asymptotic values for S2 we can see that χ̄
(3)
uni must exhibit a

crossover from the high-temperature isotropic regime (
〈

z2
〉

= 1/3) to the low-

temperature Ising (
〈

z2
〉

= 1) or planar-rotor (
〈

z2
〉

= 0) regimes, so that [99,
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100]

χ̄
(3)
uni ≃ − 1

45β
3µ3

0m
4 (high T ),

χ̄
(3)
uni ≃ − 1

15β
3µ3

0m
4 (low T , easy-axis), (4.24)

χ̄
(3)
uni ≃ − 1

30β
3µ3

0m
4 (low T , easy-plane).

Equation (4.22) can be used to calculate the static susceptibility for more
complicated functional forms of the anisotropy, e.g. biaxial, as was done in
Paper VII.

4.3.2 Thermodynamic perturbation theory for weakly in-

teracting superparamagnets

We will consider dipolar interaction in zero field so that the total Hamiltonian
is given by the sum of the anisotropy and dipolar energies H = Ea + Ed.
By restricting the calculation of thermal-equilibrium properties to the case
ξd ≪ 1, we can use thermodynamical perturbation theory [101, 102] to expand
the Boltzmann distribution in powers of ξd. As is shown in Paper VIII, this
leads to an expression of the form

W = Wa

(

1 + ξdF1 + 1
2ξ

2
dF2 + · · ·

)

, (4.25)

where F1 is linear in Ed and F2 is (up to) quadratic in Ed, while

Wa = Z−1
a exp(−βEa) , (4.26)

is the Boltzmann distribution of the noninteracting ensemble. By keeping all
averages weighted with Wa, the thermal-equilibrium quantities calculated with
this method will be exact in the anisotropy and only perturbational in the
dipolar interaction.1 An ordinary high-temperature expansion corresponds to
expanding Eq. (4.26) further in powers of β.

Linear susceptibility

We can obtain the equilibrium linear susceptibility using Eq. (2.8). If, in ad-
dition, there is no external bias field applied, the susceptibility is simply given
by

χ =
µ0m

2

kBT

1

N

〈

s2z
〉

, sz =
∑

i

(~si · ĥ), (4.27)

where ĥ is a unit vector along the probing field direction and sz is the field
projection of the net magnetic moment. Calculating

〈

s2z
〉

using thermodynamic
perturbation theory yields an expansion of the susceptibility of the form

χ =
µ0m

2

kBT

(

a0 + ξda1 + 1
2ξ

2
da2

)

, (4.28)

1A similar approach was recently used by B. Huke and M. Lücke [103]. They performed a
“Born–Mayer” expansion to study the field-dependent magnetisation of a ferrofluid. As the
magnetic anisotropy was not included, their noninteracting distribution corresponded to the
Zeeman energy; Wa ∝ exp(~s ·

~ξ).
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with the general expressions for the coefficients an given in Appendix B of
Paper VIII. Simplified expressions for the coefficients can be obtained for
some orientational distributions of the anisotropy axes, e.g. parallel anisotropy
axes and randomly distributed axes.

For systems with parallel axes (e.g., single crystals of magnetic molecular
clusters or a ferrofluid frozen in a strong field), the coefficients for the longitu-
dinal response read

a0,‖ =
1 + 2S2

3
(4.29)

a1,‖ =
1 + 4S2 + 4S2

2

9
C , (4.30)

1
2a2,‖ = −1 + 4S2 + 4S2

2

27

[

(1 − S2)
(

R̄ − S
)

+ 3S2 (T − U)
]

(4.31)

+
7 + 10S2 − 35S2

2 + 18S4

315

[

(1 − S2) (R̄ − R) + 3S2

(

T − 1
3R̄

)]

,

where C, R (R̄), S, T and U are certain lattice sums whose properties are
discussed below in Sec. 4.3.3. The properties of Sl(σ) are discussed in the
appendix.

To obtain the susceptibility when the anisotropy axes are distributed at
random, we average the general expressions for the an over ~n, getting

a0,ran =
1

3
(4.32)

a1,ran =
1

9
C (4.33)

1
2a2,ran = − 1

27

(

R̄ − S
)

+
1

45
(1 − S2

2) (R̄ − R) . (4.34)

Note that in the limit of isotropic spins (where Sl → 0) the results for coherent
axes and for random anisotropy duly coincide and agree with ordinary high-
temperature expansions.

Specific heat

The specific heat at constant volume can be obtained directly from Z using
Eq. (2.6):

cv
kB

= β2 ∂
2

∂β2
(lnZ) = σ2 ∂

2

∂σ2
(lnZ) , (4.35)

where, to take the σ-derivative, the coupling parameter ξd is expressed as
ξd = 2σhd [Eq. (4.17)]. As in the calculation of χ, we only consider the zero-
field specific heat. In that case, the term linear in ξd vanishes and the expansion
of the specific heat to second order in ξd reads,

cv
NkB

= σ2b0 + 1
2ξ

2
db2 , (4.36)
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where the zeroth order coefficient

b0 =
4

315
(18S4 − 35S2

2 + 10S2 + 7) , (4.37)

gives the specific heat in the absence of interaction [98]. The general formula
for b2 is given in Appendix C of Paper VIII. Again, it is possible to obtain
simplified formulae for coherent anisotropy axes and for random anisotropy. In
the first case (~ni = ~n, ∀i) we obtain

b2,‖ = 1
3

{

1 − S2
2 − 4σS2S

′
2 − σ2[S2S

′′
2 + (S′

2)2]
}

R

+ 1
3

(

2S2(1 − S2) + 4σS′
2(1 − 2S2)

+ σ2{S′′
2 − 2[S2S

′′
2 + (S′

2)2]}
)

(R̄ − R)

+
{

S2
2 + 4σS2S

′
2 + σ2[S2S

′′
2 + (S′

2)2]
}

T , (4.38)

where S′
2 = dS2/dσ. For randomly distributed axes, on averaging the general

expression for b2 over ~n, one simply gets

b2,ran = 1
3R. (4.39)

This is the same correction term as that obtained for isotropic spins by Waller
[104] and Van Vleck [105] using ordinary high-temperature expansions.

Dipolar fields

We are interested in calculating thermodynamical averages of the dipolar field,
to introduce them in the expression for the relaxation rate in a weak but arbi-
trary oriented field, in order to obtain an expression for the relaxation rate of
weakly interacting dipoles (we will argue in Sec. 4.4.3 that the effect of weak
dipolar interaction can be accounted for by the thermodynamic averages of the
dipolar field). Since the uniaxial anisotropy has inversion symmetry, only the
square of the field will enter the low field expression for the relaxation rate and
not the field itself. In addition, the effects of longitudinal and transversal fields
will be different. In Paper IX we calculated 〈ξ2i,‖〉 and 〈ξ2i,⊥〉 = 〈ξ2i 〉 − 〈ξ2i,‖〉
to second order in ξd. If we consider infinite systems, the index i can be re-
moved since all spins have the same surroundings. For a system with aligned
anisotropy axes the averaged fields are given in terms of the lattice sums by

〈

ξ2‖
〉

=
ξ2d
3

[

(1 − S2) R̄ + 3S2 T
]

,

〈

ξ2⊥
〉

=
ξ2d
3

[

3R− (1 − S2)R̄ + 3S2 (R− R̄ − T )
]

, (4.40)

while for randomly distributed anisotropy axes they read

〈

ξ2‖
〉

=
ξ2d
3
R ,

〈

ξ2⊥
〉

=
ξ2d
3

2R . (4.41)

Note that the result for random anisotropy is identical to the result for isotropic
dipoles.
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4.3.3 The lattice sums

An essential element of the expressions derived for χ, cv, and the dipolar fields
are the following “lattice sums”2

C =
1

N

∑

i

∑

j 6=i

ĥ · Gij · ĥ (4.42)

R =
2

N

∑

i

∑

j 6=i

r−6
ij (4.43)

R̄ =
1

N

∑

i

∑

j 6=i

ĥ · Gij · Gij · ĥ (4.44)

S =
1

N

∑

i

∑

j 6=i

∑

k 6=j

ĥ · Gij · Gjk · ĥ (4.45)

T =
1

N

∑

i

∑

j 6=i

(ĥ · Gij · ĥ)2 (4.46)

U =
1

N

∑

i

∑

j 6=i

∑

k 6=j

(ĥ · Gij · ĥ)(ĥ · Gjk · ĥ) (4.47)

The long range of the dipole-dipole interaction leads to a shape depen-
dence of the physical quantities in an external magnetic field [106, 107], and
hence on the linear susceptibility (which is a field derivative), but not the zero-
field specific heat or the dipolar fields. In the expressions obtained for the
susceptibility, this shape dependence is borne by the slowly convergent lat-
tice sums C, S and U . If we consider “sufficiently isotropic” lattices, in the
sense of fulfilling

∑

(rx)n =
∑

(ry)n =
∑

(rz)
n, e.g. cubic and completely

disordered lattices (incidentally, the type of arrangements for which in the
classical Lorentz cavity-field calculation the contribution of the dipoles inside
the “small sphere” vanishes) these lattice sums vanish for large spherical sam-
ples. The sums R, R̄ and T on the other hand contain r−6

ij which make them
rapidly convergent and shape independent. For sufficiently symmetric lattices
R̄ = R = 16.8, 14.5, 14.5 for simple cubic, bcc and fcc structures [108], and
T = 13.54 (sc), 3.7 (bcc), 4.3 (fcc). Note that since R̄ − R = 0, some terms
vanish in the above expressions for χ, cv, and the dipolar fields.

Shape and anisotropy dependence

For the linear susceptibility, the zero-field specific heat as well as the dipolar
fields, the anisotropy dependence cancels out in the case of random anisotropy
(at least for sufficiently symmetric lattices). In other cases the anisotropy is a
very important parameter as shown in Paper VIII. The specific heat for uncou-
pled spins does not depend on the orientations of the anisotropy axes, however
the corrections due to the dipolar coupling do (see Fig. 4.2). The shape depen-
dence of the linear susceptibility is illustrated in Fig. 4.3. The susceptibility

2ĥ should be replaced by ~n in the formulae for cv and the dipolar fields.



CHAPTER 4. MAGNETIC SINGLE-DOMAIN NANOPARTICLES 43

0.1 0.15 0.2 0.25

1.2 

1.25

1.3 

1.35

1/σ

0 0.5 1
0

0.5

1

1.5

c
v
/k

B
N

Figure 4.2: The specific heat per spin vs temperature for non-interacting spins
(thick line), and weakly interacting spins with randomly distributed anisotropy axes
(dashed lines) and parallel axes (thin lines) arranged on a simple cubic lattice. In
each case, hd = ξd/2σ = 0.003 and 0.006 from bottom to top. The inset shows the
specific heat for non-interacting spins over a wider temperature interval.

is calculated for small systems using both thermodynamic perturbation theory
and a Monte Carlo technique (see Appendix D of Paper VIII), taking the dipo-
lar interaction into account without any approximation. It can be seen that χ
obtained by thermodynamic perturbation theory accurately describes the sim-
ulated susceptibility at high temperatures, while the results start to deviate
at the lowest temperatures displayed. An estimate of the lowest temperature
attainable by the thermodynamic perturbation theory is ξd ∼ 1/6, which is
milder than the a priori restriction ξd ≪ 1.

4.4 Dynamic properties

At high temperatures, a nanoparticle is in a superparamagnetic state with
thermal-equilibrium properties as described in the previous section. At low
enough temperatures, the magnetic moment is blocked in one potential well
with a small probability to surmount the energy barrier, while at intermediate
temperatures, where the relaxation time of a spin is comparable to the obser-
vation time, dynamical properties can be observed, e.g. magnetic relaxation
and a frequency dependent ac susceptibility.

For applications such as magnetic recording media it is necessary to know
how different parameters will affect the relaxation time in order to avoid spon-
taneous data erasure (caused by thermal fluctuations) on the lifetime of the
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Figure 4.3: Equilibrium linear susceptibility in reduced units χ̄ = χ(HK/m) vs
temperature for three different ellipsoidal systems with equation x2/a2 + y2/b2 +
z2/c2 ≤ 1, resulting in a system of N dipoles arranged on a simple cubic lattice.
The points shown are the projection of the spins to the xz-plane. The probing
field is applied along the anisotropy axes, which are parallel to the z axis. The
thick lines indicate the equilibrium susceptibility of the corresponding noninteracting
system (which does not depend on the shape of the system and is the same in the
three panels); thin lines show the susceptibility including the corrections due to the
dipolar interaction obtained by thermodynamic perturbation theory [Eq. (4.28)]; and
the symbols represent the susceptibility obtained with a Monte Carlo method. The
dipolar interaction strength is hd = ξd/2σ = 0.02.

device. Due to the ongoing effort to increase the information/surface ratio it
is of special importance to know how the dipolar interaction of densely packed
nanoparticles will affect the relaxation time.

Brown derived in 1963 [95] the Fokker-Planck equation for the probability
distribution of the spin orientation, starting from the stochastic Gilbert equa-
tion, and calculated the relaxation time for particles with uniaxial anisotropy in
a longitudinal field. Recent work on spins with non-axially symmetric potential
revealed a large dependence of the relaxation time on the damping coefficient λ
in the medium-to-weak damping regime [109, 110, 111]. Experiments on indi-
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vidual nanoparticles analysed with accurate asymptotes of the relaxation time
[112], gave damping coefficients in the range: λ ≈ 0.05− 0.5. Non-axially sym-
metric potentials are for example created when applying a field at an oblique
angle to a uniaxial spin. This oblique field can either be a bias field [113] or
a non-linear probing field [114]. In the case of interacting particles a trans-
verse field component arises from the dipolar field of the surrounding particles.
This explains the dependence on λ of the blocking temperature that was first
observed in numerical simulations by Berkov and Gorn [91] (see Fig. 4.4).

Non−int. partcles

c = 0.04

c = 0.08

c = 0.16

λ = 0.1

0.3

0.2

0.1

0.0

" (arb. units)χ

0.60.2 0.4 1.00.80.0

0.6

0.4

0.2

0.0

" (arb. units)χ

0.30.1 0.2 0.50.40.0

λ = 1.0

(b)

((

T / E
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Figure 4.4: The out-of-phase component of the ac susceptibility versus temperature
for two different values of the damping λ = 0.1 and 1.0. γMsω = 0.03, Edem =
M2

s V/kB and hd = (µ0/4π)(c/β) with β = 2.0. From Ref. [91].

The importance of including the damping in models describing the dynamic
response of spins with non-axially symmetric potentials (e.g. interacting uni-
axial spins) tells us that models based only on how the energy-barriers change
[115, 116] necessarily overlook the precession of the magnetic moment (λ→ ∞)
and therefore cannot account for the numerical results of Berkov and Gorn. For
this reason we developed an approach that includes the dependence on the pre-
cession (Paper VIII).

4.4.1 The equation of motion

We will here present the equation of motion for a classical spin (the mag-
netic moment of a ferromagnetic single-domain particle) in the context of the
theory of stochastic processes. The basic Langevin equation is the stochastic
Landau-Lifshitz(-Gilbert) equation [95, 117]. More details on this subject and
on various techniques to solve this equation can be found in the reviews by
Coffey et al. [118] and Garćia-Palacios [98].

Deterministic equations

The motion of a magnetic moment can be described by the Gilbert equation
[119]

1

γ

d~m

dt
= ~m× ~Heff − λ

γm
~m× d~m

dt
(4.48)
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where γ is the gyromagnetic ratio (which includes µ0), λ is a dimensionless
damping coefficient, and the effective field is given by

~Heff = −µ−1
0 ∂H/∂ ~m . (4.49)

The first term on the right-side of Eq. (4.48) represents the precession of the
magnetic moment about the axis of the effective field, while the second one
is the damping term, which rotates ~m towards the potential minima and is
responsible for the dissipation of the energy.

The Gilbert equation can be cast into the Landau-Lifshitz form [120]

1

γ

d~m

dt
= ~m× ~Heff − λ

m
~m× (~m× ~Heff) (4.50)

with a “renormalised” gyromagnetic ratio γ → γ/(1 + λ2) (see e.g. [118, 98]).
In the case of uniaxial anisotropy and a Hamiltonian given by Eq. (4.7)

~Heff = (HK/m)(~m · ~n)~n + ~H, where HK is the anisotropy field and ~H is an
external field. The ferromagntic resonance frequency ω for the precession about
~Heff is given by ω = γµ0Heff [121].

Stochastic equations

At T 6= 0 the magnetic moment will interact with the microscopic degrees of
freedom (phonons, conducting electrons, nuclear spins etc.). The complexity
of this interaction allows an idealisation, namely to introduce them through a
stochastic model. The simplest model is the Brownian, in which the interaction
of ~m with the surroundings is represented by a randomly fluctuating magnetic
field. This fluctuating field is necessarily combined with a dissipation (damp-
ing) term and these two terms are linked by fluctuation-dissipation relations
[122].

In the work of Brown [95] and Kubo and Hashitsume [117] the starting
equation is the Gilbert equation (4.48), in which the effective field is increased
by a fluctuating field yielding the stochastic Gilbert equation. This equation
can, as in the deterministic case, be cast into the Landau-Lifshitz form as,

1

γ

d~m

dt
= ~m× [ ~Heff +~bfl(t)] − λ

m
~m× {~m× [ ~Heff +~bfl(t)]} , (4.51)

known as the stochastic Landau-Lifshitz-Gilbert (LLG) equation. The fluctu-
ating field is assumed to be Gaussian distributed white noise,

〈bfl,α(t)〉 = 0, 〈bfl,α(t)bfl,β(t′)〉 = 2Dδαβδ(t− t′) , (4.52)

with α, β = x, y, z. Garćia-Palacios and Lázaro [123] showed that the stochastic
Landau-Lifshitz-Gilbert equation (4.51) and the simpler stochastic Landau-
Lifshitz (LL) equation,

1

γ

d~m

dt
= ~m× [ ~Heff +~bfl(t)] − λ

m
~m× (~m× ~Heff) , (4.53)
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both give rise to the same Fokker-Planck equation, describing the average prop-
erties of the magnetic moment, but with different Einstein-type relations be-
tween the amplitude of the fluctuating field and the temperature,

DLLG =
λ

1 + λ2

kBT

γm
, DLL = λ

kBT

γm
. (4.54)

4.4.2 Relaxation time in a weak but arbitrary field

We are interested in knowing how the relaxation time of uniaxial spins is af-
fected by a weak field at an arbitrary direction, since it will allow us to study
how the superparamagnetic blocking is affected by a field. This field depen-
dence of the relaxation time can be obtained by expanding the relaxation rate
Γ = 1/τ in powers of the field components. As the spins have inversion sym-
metry in the absence of a field, Γ should be an even function of the field
components, and to third order it is given by

Γ ≃ Γ0

(

1 + c‖ξ
2
‖ + c⊥ξ

2
⊥

)

, (4.55)

where ξ‖ and ξ⊥ are the longitudinal and transversal components of the field
(given in temperature units Eq. (4.8)) with respect to the anisotropy axis. Γ0

is the zero-field relaxation rate, which for low temperatures (σ > 1) is given by
Brown’s result [95]

Γ0 =
1

τD

2√
π
σ3/2e−σ , (4.56)

where τD = m/(2γλkBT ) is the relaxation time of isotropic spins. The coeffi-
cient c‖ can be obtained by expanding the expression for Γ in the presence of
a longitudinal field [95, 124]

Γ(ξ‖, ξ⊥ = 0) =
1

τD

σ3/2

√
π

[(1 + h)e−σ(1+h)2 + (1 − h)e−σ(1−h)2 ]

≃ Γ0

(

1 + 1
2ξ

2
‖

)

. (4.57)

There is no general expression for the relaxation rate in the presence of a
non-zero transversal field valid for all values of the relevant parameters [125],
but Garanin et al. have derived a low-temperature formula valid for weak
transversal fields [111], which can be used to determine the coefficient c⊥,

Γ(ξ‖ = 0, ξ⊥) ≃ Γ0

[

1 + 1
4F (α)ξ2⊥

]

, (4.58)

F (α) = 1 + 2(2α2e)1/(2α
2)γ

(

1 +
1

2α2
,

1

2α2

)

. (4.59)

Here α = λσ1/2 and γ(a, z) =
∫ z

0
dt ta−1 e−t is the incomplete gamma function.

It can be noted that for the axially symmetric potential with a longitudinal
field, the only dependence on λ is the trivial one in τD, while in the non-axially
symmetric potential obtained with a transversal field the relaxation rate will
strongly depend on λ through F (α) which is plotted in Fig. 4.5.
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Collecting these results, we can finally write the expression for the relaxation
rate in a weak field, obtained in Paper IX,

Γ ≃ Γ0

[

1 + 1
2ξ

2
‖ + 1

4F (α)ξ2⊥

]

. (4.60)

4.4.3 Relaxation time of weakly interacting nanoparticles

The relaxation time for weakly interacting nanoparticles with uniaxial anisotropy
can be obtained by inserting the thermodynamical averages of the dipolar fields
(calculated in section 4.3.2) in the expression for the relaxation rate in a weak
field Eq. (4.60). Earlier models [115, 116] have been energy-barrier based and
therefore lack the dependence on λ. For instance, the model by Mørup and co-
workers [116] is basically the same as the one presented here in the particular
case of high damping and random anisotropy. The model by Mørup predicted
a decrease of the blocking temperature with increasing interaction strength for
weak interaction as was observed in high frequency Mössbauer experiments,
while the Dormann-Bessias-Fiorani model [115] predicted an increase of the
blocking temperature with increasing interaction strength as commonly ob-
served in magnetisation measurements. These discrepancies led to some con-
troversy [126, 127]. In Ref. [91] it was shown that for strong anisotropy (or
weak interaction) the blocking temperature decreases with interaction (see Fig.
4.4), while for weak anisotropy (or moderate-to-high interaction) the energy
barriers are governed by to the interaction and hence grow with hd. An in-
crease of the apparent blocking temperature is clearly the case for the strongly
interacting nanoparticle samples studied in Chapter 5 in which the relaxation
time increases with hd due to spin-spin correlations (see Fig. 5.3).

In order to determine the characteristics of the superparamagnetic block-
ing we use the equilibrium susceptibility χeq calculated using thermodynamic
perturbation theory Eq. (4.28) and the relaxation rate Γ obtained when the
dipolar fields Eq. (4.40) and (4.41) are introduced in Eq. (4.60). Combining
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these expressions in a Debye-type formula,

χ = χeq
Γ

Γ + iω
(4.61)

provides us with a simple model for the dynamic response. The dynamic suscep-
tibility of a large spherical sample with parallel anisotropy axis and a simple
cubic structure is shown in Fig. 4.6. In the overdamped case, the blocking
temperature is not noticeably affected by the dipolar interaction while for low
damping the blocking temperature decreases significantly as the interaction
strength increases. These results are in agreement with the simulations by
Berkov and Gorn [91] shown in Fig. 4.4.

An interpretation of the strong damping dependence found in the presence
of a transverse field component was given in Ref. [114]: The transverse field
creates a saddle point in the potential barrier. A thermally excited spin with
high damping will “fall” directly back to the bottom of the potential well if
the thermal excitation is not large enough for an overbarrier jump. On the
other hand, a weakly damped spin in the same situation will precess (∼ 1/λ
times) about the anisotropy axis and therefore has an increased probability for
overbarrier jumps, each time it passes close to the saddle point. In the case of
non-interacting particles the transverse field component must come from either
a nonlinear probing field [114] or a bias field [113], while the transverse field
here naturally arises from the dipolar interaction.
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Figure 4.6: Imaginary component of the dynamical susceptibility vs temperature
(the real component is shown in the inset) for a spherical sample and spins placed
in a simple cubic lattice. The anisotropy axes are all parallel and the response is
probed along their common direction. The dipolar interaction strength hd = ξd/2σ
is: hd = 0 (thick lines), 0.004, 0.008, 0.012, and 0.016 from (a) right to left and (b)
top to bottom. The frequency is ωτD/σ = 2π × 0.003.
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4.5 Numerical methods

Due to the long-range and reduced symmetry of the dipole-dipole interaction
analytical methods such as the thermodynamic perturbation theory presented
in Sec. 4.3.2 will only be applicable for weak interaction. Numerical simulation
techniques are therefore indispensable for the study of interacting nanoparticle
systems, beyond the weak coupling regime.

The Monte Carlo (MC) method can be used to efficiently calculate thermal-
equilibrium properties. However, since it is an energy-barrier based method it
will fail to generate dynamic features such as the precession of the spins, and it
is able to generate the dynamic magnetisation in the overdamped limit (λ→ ∞)
only, if an appropriate algorithm is used [128].

Using a Langevin dynamics approach, the stochastic LLG equation (4.51)
can be integrated numerically, in the context of the Stratonovich stochastic
calculus, by choosing an appropriate numerical integration scheme [123]. This
method was first applied to the dynamics of non-interacting particles [123] and
later also to interacting particle systems [91].

Due to the long-range nature of the dipolar interaction, care must be taken
in the evaluation of the dipolar field. For finite systems the sums in Eq. (4.12)
are performed over all particles in the system. For systems with periodic bound-
ary conditions the Ewald method [129, 130, 131], can be used to correctly cal-
culate the conditionally convergent sum involved. However, in most work (e.g.
[90, 91]) the simpler Lorentz-cavity method is used instead.



Chapter 5

Interacting nanoparticle

systems

5.1 Introduction

There exist apparent resemblances between non-interacting nanoparticle sys-
tems and spin glasses as to the difference between the FC and ZFC magneti-
sation and the frequency dependent ac susceptibility. The origin of the slow
dynamics in the two systems are different however, as discussed in the two
previous chapters. It has been suggested that dense nanoparticle samples can
exhibit glassy dynamics due to dipolar interparticle interaction [97]; disorder
and frustration are induced by the randomness in the particle positions and
anisotropy axes orientations. In order to investigate spin-glass-like proper-
ties of such systems, one needs to use the experimental techniques (protocols)
developed in studies of spin glasses. Examining the effects of dipolar inter-
actions using standard experimental protocols (ZFC/FC magnetisation or ac
susceptibility) indicate no dramatic change in these quantities (c.f. Fig. 5.2)
and one can be misled to believe that the only effect of the dipolar interac-
tion is to increase the blocking temperature due to enhanced energy barriers.
Some work, however, support the existence of glassy behaviour in such sys-
tems (e.g. [132, 133, 134]) and for strongly interacting systems with narrow
size distributions evidence has been given for spin-glass-like phase transitions
[135, 136, 137].

To know how the glassy behaviour affects various physical properties is
not only of interest for the large number of applications using densely packed
magnetic nanoparticles, but also from a fundamental point of view. Interact-
ing nanoparticle systems are interesting as model systems for spin-glass-like
dynamics. Due to a larger microscopic flip time in these systems, than in
canonical spin glasses (see below), the time scales investigated in experiments
are closer to those accessible by numerical simulation techniques [138].

51
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5.2 Materials

Frozen ferrofluids offer systems where the dipolar interaction between the single-
domain nanoparticles can be continuously varied by changing the particle con-
centration, and for all experiments on nanoparticles it is desirable to have a
system with a narrow size distribution. The material that has been used in this
study is a ferrofluid of single-domain particles of the amorphous alloy Fe1−xCx
(x ≈ 0.2-0.3). The particle shape is nearly spherical (see Fig 5.1) and the av-
erage particle diameter d = 5.3 ± 0.3 nm. The saturation magnetisation was
estimated to Ms = 1×106 Am−1, the microscopic flip time to τ0 = 1×10−12 s,
and the uniaxial anisotropy constant K = 0.9 × 105 Jm−3. For details on
sample preparation and characterisation see Paper XII. This batch of Fe1−xCx
particles is slightly different from that studied in Refs. [135, 136]. We have
studied samples with volume concentrations of c = 17 ± 4, 5 ± 1, 1 ± 0.3 and
0.06 ± 0.02 vol% nanoparticles. The strength of the interaction for a given
concentration is determined by the anisotropy constant and the saturation
magnetisation according to Eq. (4.17) and for this sample hd ≈ 0.56(c/100).

Figure 5.1: TEM picture of typical Fe1−xCx nanoparticles.

5.3 A Spin-glass phase transition?

The existence of a second order phase transition can be evidenced from critical
slowing down [Eq. (3.4)] approaching the phase transition from above. Defining
a criterion for the onset of dissipation, we can extract the freezing temperature
Tf associated with a certain relaxation time and derive the “transition” line
(τc) between thermodynamic equilibrium and critical dynamics as in Fig. 3.2.
Figure 5.2 shows the ac susceptibility for the 0.06, 5 and 17 vol% samples
measured at two different frequencies. Data for a larger set of frequencies
(shown in Paper XII) was used to extract the relaxation time versus Tf data
for the 5 vol% sample and the 17 vol% sample shown in Fig. 5.3. The blocking
temperature for the 0.06 vol% is shown in the same figure as a reference.
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Figure 5.2: Ac susceptibility vs temperature at frequencies ω/2π = 125 Hz (filled
symbols) and ω/2π = 1000 Hz (open symbols).

The dynamic susceptibility of a spin glass scales according to [139]

χ′′(T, ω)

χeq(T )
= ǫβG(ωτc), T > Tg (5.1)

where ω = 1/t and G(x) is a scaling function. It is shown in Fig. 5.4 that the
susceptibility data for the 17 vol% sample could be scaled according to this
relation and the parameters associated with the phase transition are indicated
in the figure; from Paper XI. For the 5 vol% sample, the dynamic susceptibility
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Figure 5.3: Relaxation time τc = ω−1 vs Tf . For the 5 vol% and 17 vol% samples
the lines are fits to the critical slowing down relation [Eq. (3.4)] and for the 0.06
vol% sample a fit to the superparamagnetic relaxation time on the Arrhenius form
Eq. (4.6).
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could not be scaled according to Eq. (5.1).
For nanoparticles, τm in Eq. (3.4) can be assigned to the superparamagnetic

relaxation time of a single particle. In Paper XII, we therefore included the
exponential temperature dependence of τm in the analysis. This, however, only
gives corrections to scaling and the exponents do not change significantly. Due
to the temperature dependence of τm, a static scaling analysis as performed
in Ref. [136] is a crucial additional tool to disclose a possible spin-glass phase
transition in interacting nanoparticle systems.
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Figure 5.4: Scaling of ǫ−βχ′′(T, ω)/χeq data for T > Tg for the 17 vol% sample.
Inset: critical slowing down analysis on a log-log scale.

5.4 Glassy dynamics

The ZFC relaxation for a noninteracting nanoparticle sample is only a function
of the relaxation time and the volume distribution of particles in the sample.
Magnetic ageing, as shown in Fig. 5.5 for the 5 vol% sample, is therefore a clear
evidence for glassy dynamics. In Paper X, we have examined the glassy dynam-
ics of the 5 vol% sample using the ac memory method presented in Sec. 3.4. As
for the Fe0.50Mn0.50TiO3 sample, the ac susceptibility measured on heating is
lower than the one measured on cooling. A double stop memory experiment is
shown in Fig. 5.6 together with the two corresponding single stop experiments.
In this figure χ′ is shown instead of χ′′ since the relaxation is larger in χ′, and
the nonequilibrium effects are more clearly revealed by subtracting the refer-
ence curves obtained on constant cooling (respectively heating). This sample
exhibits qualitatively similar ageing, memory and rejuvenation phenomena, as
the spin glasses studied in chapter 3. The rejuvenation effect is however much
weaker; the cooling curve approaches the reference curve only very slowly and
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Figure 5.5: S(t) vs time on a logarithmic scale for the 5 vol% sample obtained
from ZFC relaxation measurements with tw = 300 s (open symbols) and 3000 s
(filled symbols).

if the two stops are made somewhat closer in temperature as in Fig. 5.7, the
heating curve only exhibit one dip.
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Figure 5.6: χ′(T ) − χ′

ref(T ) vs T measured on cooling (solid symbols) and heating
(open symbols) for the 5 vol% sample. Circles, the cooling was halted at 33 K for
1 h 30 min; squares, the cooling was halted at 23 K for 10h and triangles, the cooling
was halted at T1 = 33 K for tw1

= 1 h 30 min and at T2 = 23 K for tw2
= 10 h.

ω/2π = 510 mHz.
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This nanoparticle sample can, due to the uniaxial anisotropy of the indi-
vidual particles and the anisotropic interparticle interaction, be considered as
an Ising spin glass. The relative time scales (tobs/τm) of the experiments on
nanoparticle systems are shorter than for conventional spin glasses, due to the
larger microscopic flip time. The nonequilibrium phenomena observed here are
indeed rather similar to those observed in numerical simulations on the Ising
EA model [138], which also correspond to shorter time (length) scales [39]. It
would be interesting to examine if the nonequilibrium phenomena are different
in a more dense sample with stronger interparticle interactions. Due to some
technical difficulties such a study was unfortunately not possible to perform on
the 17 vol% sample.
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Figure 5.7: χ′(T ) − χ′

ref(T ) vs T measured on cooling (solid symbols) or heating
(open symbols) for the 5 vol% sample. Circles, the cooling was halted at 33 K for
1 h 30 min; squares, the cooling was halted at 28 K for 7 h and triangles, the cooling
was halted at T1 = 33 K for tw1

= 1 h 30 min and at T2 = 28 K for tw1
= 7 h.

ω/2π = 510 mHz.

5.5 Dynamics in a field

The ageing dynamics in a bias field was studied in Paper XIV. The ageing
dynamics is found to be strongly affected by the bias field, in a qualitatively
similar way to spin glass dynamics. It was shown that the ageing disappears
completely in a strong enough field. Figure 5.8 shows the ac susceptibility in
superimposed dc fields for the 5 and 1 vol% samples. It can be seen that for
high enough fields, the susceptibility curves for the two samples are almost
identical, showing that the effects of dipolar interaction are suppressed by a
strong enough magnetic field.
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Appendix:

Sl for uniaxial anisotropy

The thermodynamical average Sl(σ) over the Legendre polynomials Pl occur in
the expressions for the susceptibilities, the specific heat and the dipolar fields
in Sec. 4.3. For uniaxial anisotropy these averages read

Sl(σ) = 〈Pl〉a =
1

Za

∫ 1

−1

dzPl(z)e
σz2 . (5.2)

In particular, S0 = 1 and S2 = 1
2

〈

3z2 − 1
〉

a
[Eq. (4.21)] can be written,

S2 =
3

2

(

eσ

σZa
− 1

2σ

)

− 1

2
. (5.3)

The one-spin partition function Za =
∫ 1

−1
dz exp(σz2) can be written in terms

of error functions of real and “imaginary” argument as

Za =

{
√

π/σ erfi(
√
σ), σ > 0

√

π/|σ| erf(
√

|σ|), σ < 0
(5.4)

The less familiar erfi(x) is related with the Dawson integral D(x), so in the
easy-axis case one can write Za = (2eσ/

√
σ)D(

√
σ) and compute D(x) with

the subroutine DAWSON of Ref. [140].
For l > 2 the Sl can be computed using the following homogeneous three-

term recurrence relation [141]

[

1 − 2σ

(2l − 1)(2l + 3)

]

Sl −
2σ

2l + 1

[

l − 1

2l − 1
Sl−2 −

l + 2

2l + 3
Sl+2

]

= 0 , (5.5)

The derivative of any Sl can be computed by means of the differential-recurrence
relation derived in Paper VIII

S′
l =

dSl
dσ

=
(l − 1)l

(2l − 1)(2l + 1)
Sl−2 +

2l(l + 1)

3(2l − 1)(2l + 3)
Sl

+
(l + 1)(l + 2)

(2l + 1)(2l + 3)
Sl+2 −

2

3
S2Sl . (5.6)
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The approximate behaviour of S2 for weak (|σ| ≪ 1) and strong (|σ| ≫ 1)
anisotropy is

S2(σ) =







2
15σ + 4

315σ
2 + · · · |σ| ≪ 1

1 − 3
2σ − 3

4σ2 + · · · σ ≫ 1
− 1

2 (1 + 3
2σ ) + · · · σ ≪ −1

. (5.7)
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[3] L. Néel, Ann. Geophys. 5, 99 (1949).

[4] W. Heisenberg, Z. Phys. 49, 619 (1928).

[5] E. Ising, Z. Phys. 31, 253 (1925).

[6] S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).

[7] D. Sherrington and S. Kirkpartick, Phys. Rev. Lett. 35, 1792 (1975).

[8] G. Toulouse, Comm. Phys. 2, 115 (1977).

[9] J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford Uni-
versity Press, Oxford, 1992).

[10] S. K. Ma, Modern Theory of Critical Phenomena (Addison-Wesley Pub-
lishing, New York, 1976).

[11] K. G. Wilson, Phys. Rev. B 4, 3174 (1971).

[12] K. G. Wilson, Phys. Rev. B 4, 3184 (1971).

[13] J. Magnusson, C. Djurberg, P. Granberg, and P. Nordblad, Rev. Sci.
Instrum. 68, 3761 (1997).

[14] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

[15] H. Aruga, T. Tokoro, and A. Ito, J. Phys. Soc. Jpn. 57, 261 (1988).

[16] K. Gunnarsson, P. Svedlindh, P. Nordblad, L. Lundgren, H. Aruga, and
A. Ito, Phys. Rev. Lett. 61, 754 (1988).

[17] K. Gunnarsson, P. Svedlindh, P. Nordblad, L. Lundgren, H. Aruga, and
A. Ito, Phys. Rev. B 43, 8199 (1991).

[18] R. N. Bhatt and A. P. Young, Phys. Rev. B 37, 5606 (1988).

60



BIBLIOGRAPHY 61

[19] N. Kawashima and A. P. Young, Phys. Rev. B 53, R484 (1996).

[20] H. G. Ballestros, A. Cruz, L. A. Fernandez, V. Martin-Mayor, J. Pech,
J. J. Ruiz-Lorenzo, A. Tarancon, and P. Tellez, Phys. Rev. B 62, 14237
(2000).
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