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Abstract. This paper presents a simple and effective nonparametric
approach to the problem of image parsing, or labeling image regions (in
our case, superpixels produced by bottom-up segmentation) with their
categories. This approach requires no training, and it can easily scale
to datasets with tens of thousands of images and hundreds of labels. It
works by scene-level matching with global image descriptors, followed by
superpixel-level matching with local features and efficient Markov ran-
dom field (MRF) optimization for incorporating neighborhood context.
Our MRF setup can also compute a simultaneous labeling of image re-
gions into semantic classes (e.g., tree, building, car) and geometric classes
(sky, vertical, ground). Our system outperforms the state-of-the-art non-
parametric method based on SIFT Flow on a dataset of 2,688 images and
33 labels. In addition, we report per-pixel rates on a larger dataset of
15,150 images and 170 labels. To our knowledge, this is the first complete
evaluation of image parsing on a dataset of this size, and it establishes
a new benchmark for the problem.
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1 Introduction

This paper addresses the problem of image parsing, or segmenting all the ob-
jects in an image and identifying their categories. The literature contains diverse
proposed image parsing methods, including ones that estimate labels pixel by
pixel [1, 2], ones that aggregate features over segmentation regions [3–6], and
ones that predict object bounding boxes [7–10]. Most of these methods operate
with a few pre-defined classes and require a generative or discriminative model
to be trained in advance for each class (and sometimes even for each training
exemplar [5]). Training can take days and must be repeated from scratch if
new training examples or new classes are added to the dataset. In most cases
(with the notable exception of [2]), processing a test image is also quite slow,
as it involves operations like running multiple object detectors over the image,
performing graphical model inference, or searching over multiple segmentations.
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Fig. 1. System overview. Given a query image (a) we retrieve similar images from our
dataset (b) using several global features. Next, we divide the query into superpixels (c)
and compute a per-superpixel likelihood ratio score for each class (d) based on nearest-
neighbor superpixel matches from the retrieval set. These scores, in combination with
a contextual MRF model, give a dense labeling of the query image (e).

While most existing methods thus remain trapped in a “closed universe”
recognition paradigm, a much more exciting paradigm of “open universe” datasets
is promising to become dominant in the very near future. For example, the La-
belMe dataset [11] is composed of complex, real-world scene images that have
been segmented and labeled (sometimes incompletely or noisily) by multiple
users. There is no pre-defined set of class labels; the dataset is constantly ex-
panding as people upload new photos or add annotations to current ones. In
order to cope with such datasets, vision algorithms must have much faster train-
ing and testing times, and they must make it easy to continuously update the
visual models with new classes or new images.

Recently, several researchers have begun advocating nonparametric, data-
driven approaches to breaking out of the “closed universe” [12–15]. Such ap-
proaches do not do any training at all. Instead, for each new test image, they
try to retrieve the most similar training images and transfer the desired infor-
mation from the training images to the query. Liu et al. [15] have proposed
a nonparametric image parsing method based on estimating “SIFT Flow,” or
a dense deformation field between images. This method requires no learning
and in principle, it can work with an arbitrary set of labels. However, inference
via SIFT Flow is currently very complex and computationally expensive. While
we agree with [15] that the nonparametric philosophy currently holds the most
promise for image parsing in large-scale, dynamic datasets, there is a lot of room
for improvement over their method in terms of efficiency.
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We set out to implement a nonparametric solution to image parsing that is as
straightforward and efficient as possible, and that relies only on operations that
can easily scale to ever larger image collections and sets of labels (see Figure 1 for
a system overview). Similarly to [15], our proposed method requires no training
(just some basic computation of dataset statistics), and makes use of a retrieval

set of scenes whose content is used to interpret the test image. However, unlike
the approach of [15], which works best if the retrieval set images are very similar
to the test image in terms of spatial layout of the classes, we transfer labels
at the level of superpixels, or coherent image regions produced by a bottom-up
segmentation method. The label transfer is accomplished with a fast and simple
nearest-neighbor search algorithm, and it allows for more variation between the
layout of the test image and the images in the retrieval set. Moreover, using
segmentation regions as a unit of label transfer gives better spatial support for
aggregating features that could belong to the same object [16].

The current consensus among recognition researchers is that image pars-
ing requires context (see, e.g., [3, 4, 9, 10]). However, learning and inference with
most existing contextual models is slow and non-exact. Therefore, due to our
goal of developing a scalable system, we restrict ourselves to efficient forms of
context that do not need training and that can be cast in an MRF framework
amenable to optimization by fast graph cut algorithms [17, 18]. We show that
our system equipped with this form of context can achieve results comparable
to state-of-the-art systems based on more complex contextual models [3, 6]. We
also investigate geometric/semantic context in the manner of Gould et al. [6].
Namely, for each superpixel in the image, we simultaneously estimate a seman-
tic label (e.g., building, car, person, etc.) and a geometric label (sky, ground, or
vertical surface) while enforcing coherence between the two class types.

Our system exceeds the results reported in [15] on a dataset of 2,688 images
and 33 labels. Moreover, to demonstrate the scalability of our method, we present
per-pixel and per-class rates on a subset of LabelMe with 15,150 images and 170
labels. To our knowledge, we are the first to report complete recognition results
on a dataset of this size. Thus, one of the contributions of this work is to establish
a new benchmark for large-scale image parsing. Our code, data, and output can
be found at http://www.cs.unc.edu/SuperParsing.

2 System Description

2.1 Retrieval Set

Similarly to several other data-driven methods [7, 12, 14, 15], our first step in
parsing a query test image is to find a relatively small retrieval set of training
images that will serve as the source of candidate superpixel-level annotations.
This is done not only for computational efficiency, but also to provide scene-level
context for the subsequent superpixel matching step. A good retrieval set should
contain images of a similar scene type to that of the test image, along with
similar objects and spatial layouts. To attempt to indirectly capture this kind
of similarity, we use four types of global image features (Table 1(a)): spatial
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Table 1. A complete list of features used in our system

(a) Global features for retrieval set computation (Section 2.1)

Type Name Dimension

Spatial pyramid (3 levels, SIFT dictionary of size 200) 4200
Global Gist (3-channel RGB, 3 scales with 8, 8, & 4 orientations) 960

Tiny image (3-channel RGB, 16× 16 pixels) 768
Color histogram (3-channel RGB, 8 bins per channel) 24

(b) Superpixel features (Section 2.2)

Mask of superpixel shape over its bounding box (8× 8) 64
Shape Bounding box width/height relative to image width/height 2

Superpixel area relative to the area of the image 1

Location Mask of superpixel shape over the image 64
Top height of bounding box relative to image height 1

Texton histogram, dilated texton histogram 100× 2
Texture/SIFT SIFT histogram, dilated SIFT histogram 100× 2

Left/right/top/bottom boundary SIFT histogram 100× 4

Color RGB color mean and std. dev. 3× 2
Color histogram (RGB, 11 bins per channel), dilated hist. 33× 2

Color thumbnail (8 × 8) 192
Appearance Masked color thumbnail 192

Grayscale gist over superpixel bounding box 320

pyramid [19], gist [20], tiny image [13], and color histogram. For each feature
type, we rank all training images in increasing order of Euclidean distance from
the query. Then we take the minimum of the per-feature ranks to get a single
ranking for each training image, and take the top 200 images as the retrieval set.
Taking the minimum of per-feature ranks amounts to taking the top fifty matches
according to each global image descriptor, and it gives us better results than,
say, averaging the ranks. Intuitively, taking the best scene matches from each of
the global descriptors leads to better superpixel-based matches for region-based
features that capture similar types of cues as the global features.

2.2 Superpixel Features

We wish to label the query image based on the content of the retrieval set, but
assigning labels on a per-pixel basis as in [1, 14, 15] would be too inefficient. In-
stead, like [3–5], we choose to assign labels to superpixels, or regions produced by
bottom-up segmentation. This not only reduces the complexity of the problem,
but also gives better spatial support for aggregating features that could belong to
a single object than, say, fixed-size square patches centered on every pixel in the
image. We obtain superpixels using the fast graph-based segmentation algorithm
of [21] and describe their appearance using 20 different features similar to those
of [5], with some modifications and additions. A complete list of the features is
given in Table 1(b). In particular, we compute histograms of textonsand dense
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SIFT descriptors over the superpixel region, as well as that region dilated by 10
pixels. For SIFT features, which are more powerful than textons, we have also
found it useful to compute left, right, top, and and bottom boundary histograms.
To do this, we find the boundary region as the difference between the superpixel
dilated and eroded by 5 pixels, and then obtain the left/right/top/bottom parts
of the boundary by cutting it with an “X” drawn over the superpixel bounding
box. All of the features are computed for each superpixel in the training set and
stored together with their class labels. We associate a class label with a training
superpixel if 50% or more of the superpixel overlaps with the segment mask for
that label.

2.3 Local Superpixel Labeling

Having segmented the test image and extracted all its features, we next obtain a
likelihood ratio score for each test superpixel and each class that is present in the
retrieval set. Making the Naive Bayes assumption that features are independent
of each other given the class, the likelihood ratio for class c and superpixel si is

L(si, c) =
P (si|c)

P (si|c̄)
=

∏

k

P (fk
i |c)

P (fk
i |c̄)

, (1)

where c̄ is the set of all classes excluding c, and fk
i is the feature vector of the

kth type for si. Each likelihood ratio P (fk
i |c)/P (fk

i |c̄) is computed with the help
of nonparametric density estimates of features from the required class(es) in the
neighborhood of fk

i . Specifically, let D denote the set of all superpixels in the
training set, and N k

i denote the set of all superpixels in the retrieval set whose
kth feature distance from fk

i is below a fixed threshold tk. Then we have

P (fk
i | c)

P (fk
i | c̄)

=
n(c,N k

i )/n(c,D)

n(c̄,N k
i )/n(c̄,D)

=
n(c,N k

i )

n(c̄,N k
i )

×
n(c̄,D)

n(c,D)
, (2)

where n(c,S) (resp. n(c̄,S)) is the number of superpixels in set S with class label
c (resp. not c). To prevent zero likelihoods and smooth the counts, we add one
to n(c,N k

i ) and n(c̄,N k
i ). In our implementation, we use the ℓ2 distance for all

features, and set each threshold tk to the median distance to the 20th nearest
neighbor for the kth feature type over the dataset. The superpixel neighbors N k

i

are currently found by linear search through the retrieval set.
At this point, we can obtain a labeling of the image by simply assigning

to each superpixel the class that maximizes eq. (1). As shown in Table 2, the
resulting classification rates already come within 1.5% of those of [15]. We are
not aware of any comparably simple scoring scheme reporting such encouraging
results for image parsing problems with many unequally distributed labels.

2.4 Contextual Inference

Next, we would like to enforce contextual constraints on the image labeling – for
example, a labeling that assigns “water” to a superpixel completely surrounded
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by “sky” is not very plausible. Many state-of-the-art approaches encode such
constraints with the help of conditional random field (CRF) models [1, 6, 4].
However, CRFs tend to be very costly both in terms of learning and inference.
In keeping with our nonparametric philosophy and emphasis on scalability, we
restrict ourselves to contextual models that require minimal training and that
can be solved efficiently. Therefore, we formulate the global image labeling prob-
lem as minimization of a standard MRF energy function defined over the field
of superpixel labels c = {ci}:

J(c) =
∑

si∈SP

Edata(si, ci) + λ
∑

(si,sj)∈A

Esmooth(ci, cj) , (3)

where SP is the set of superpixels,A is the set of pairs of adjacent superpixels and
λ is the smoothing constant. We define the data term as Edata = −wi logL(si, ci),
where L(si, ci) is the likelihood ratio score from eq. (1) and wi is the superpixel
weight (the size of si in pixels divided by the mean superpixel size). The smooth-
ing term Esmooth is defined based on probabilities of label co-occurrence:

Esmooth(ci, cj) = − log[(P (ci|cj) + P (cj |ci))/2]× δ[ci 6= cj ] , (4)

where P (c|c′) is the conditional probability of one superpixel having label c given
that its neighbor has label c′, estimated by counts from the training set. We use
the two conditionals P (c|c′) and P (c′|c) instead of the joint P (c, c′) because they
have better numerical scaling, and average them to obtain a symmetric quantity.
Qualitatively, we have found eq. (4) to produce very reasonable edge penalties.
As can be seen from the examples in Figure 4 (d) and (f), it successfully flags im-
probable boundaries between “sea” and “sun,” and “mountain” and “building.”
Quantitatively, results with eq. (4) tend to be about 1% more accurate than
with the constant Potts penalty δ[ci 6= cj ]. We perform MRF inference using the
efficient graph cut optimization code of [17, 18, 22]. On our large datasets, the
resulting global labelings improve the accuracy by 3-5% (Table 2).

2.5 Simultaneous Classification of Semantic and Geometric Classes

Following Gould et al. [6], we consider the task of simultaneously labeling regions
into two types of classes: semantic and geometric. Like [6], we use three geometric
labels – sky, ground, and vertical – although the sets of semantic labels in our
datasets are much larger. In this paper, we make the reasonable assumption that
each semantic class is associated with a unique geometric class (e.g., “building”
is “vertical,” “river” is “horizontal,” and so on) and specify this mapping by
hand. We jointly solve for the fields of semantic labels (c) and geometric labels
(g) by minimizing a cost function that is a simple extension of eq. (4):

H(c,g) = J(c) + J(g) + µ
∑

si∈SP

ϕ(ci, gi), (5)

where ϕ is the term that enforces coherence between the geometric and semantic
labels. It is 0 when the semantic class ci is of the geometric class type gi and
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Fig. 2. In the contextual MRF classification, the road gets replaced by “building,”
while “horizontal” is correctly classified. By jointly solving for the two kinds of labels,
we manage to recover some of the “road” and “sidewalk” in the semantic labeling. Note
also that in this example, our method correctly classifies some of the windows that are
mislabeled as doors in the ground truth, and incorrectly but plausibly classifies the
windows on the lower level as doors.

1 otherwise. The constant µ controls how strictly the coherence is enforced (we
use µ = 8 in all experiments). Note that we can enforce the semantic/geometric
consistency in a hard manner by effectively setting µ = ∞, but we have found
that allowing some tradeoff produces better results. Eq. (5) is in a form that
can be optimized by the α/β-swap algrithm [17, 18, 22]. The inference takes
almost the same amount of time as for the MRF setup of the previous section.
Figure 2 shows an example where joint inference over semantic and geometric
labels improves the accuracy of the semantic labeling. In many other cases, joint
inference improves both labelings.

3 Results

3.1 Large Datasets

The first large-scale dataset in our experiments (“SIFT Flow dataset” in the
following) is composed of the 2,688 images that have been throughly labeled by
LabelMe users. Liu et al .[15] have split this dataset into 2,488 training images
and 200 test images and used synonym correction to obtain 33 semantic labels.
In our experiments, we use the same training/test split as [15]. Our second
dataset (“Barcelona” in the following) is derived from the LabelMe subset used
in [7]. It has 14,871 training and 279 test images.1 The test set consists of street
scenes from Barcelona, while the training set ranges in scene type but has no
street scenes from Barcelona. We manually consolidated the synonyms in the

1 Russell et al. [7] use a test set of 560 images, 281 of which are office scenes. However,
the entire training set of 14,871 images only contains about 218 office scenes, so we
have excluded the office images from the test set.
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Fig. 3. (a) Label frequencies for the superpixels in the training set. The Barcelona
dataset has 170 labels, but we only show the ones that are in common with the SIFT
Flow dataset. (b) Per-class classification rates of our system.

label set to 170 unique labels. Note that [7] only gives detection curves for 12
categories on this dataset, so there are no previous baseline results for per-pixel
performance. Both datasets have very nonuniform label distributions, as shown
in Figure 3(a). Because of this, we report not only the per-pixel classification
rate, which mainly reflects performance on the few largest classes, but also the
average of per-pixel rates of all the classes.

Our system labels each superpixel of each test image by a semantic class (the
original 33 and 170 labels, respectively) and a geometric class of sky, ground,
or vertical (same as [6]). Because the number of geometric classes is small and
fixed for all datasets, we have trained a discriminative model for them using
a boosted decision tree classifier as in [3]. This classifier outputs a likelihood
ratio score that we can directly plug into our MRF framework, and it gives
us an improvement of about 1% in the accuracy for geometric classes over the
nearest-neighbor scheme of Section 2.3. Apart from this, local and contextual
MRF classification for geometric classes proceeds as described in Sections 2.3
and 2.4, and we also put the geometric and semantic likelihood ratios into a
joint contextual classification framework as described in Section 2.5.

Table 2 reports per-pixel and average per-class rates for semantic classifica-
tion of all three setups (local superpixel labeling, contextual MRF, joint MRF).
As compared to the local baseline, the contextual MRF improves overall per-
pixel rates on the SIFT Flow dataset by about 3% and on the Barcelona dataset
by about 4%. Average per-class rates drop slightly due to the MRF “smooth-
ing away” some of the smaller classes. Simultaneous geometric/semantic MRF
improves the results for both types of classes on the SIFT Flow dataset, but
makes little difference on the Barcelona dataset. Figure 3(b) shows that our per-
class rates on both datasets are comparable, with large changes due primarily
to differences in label frequency (e.g., there are no mountains in the Barcelona
test set). It also shows that, similarly to most other image labeling approaches
that do not train object detectors, we get much weaker performance on “things”
(people, cars, signs) than on “stuff” (sky, road, trees).
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Table 2. Performance of our system on the two large datasets. For semantic classes, we
show the per-pixel rate followed by the average per-class rate in parentheses. Because
there are only three geometric classes, we report only the per-pixel rate for them.

SIFT Flow dataset [15] Barcelona dataset [7]

Semantic Geometric Semantic Geometric

Baseline 74.75 [15] N/A N/A N/A

Local labeling (Sec. 2.3) 73.2 (29.1) 89.8 62.5 (8.0) 89.9
Superpixel MRF (Sec. 2.4) 76.3 (28.8) 89.9 66.6 (7.6) 90.2
Simultaneous MRF (Sec. 2.5) 76.9 (29.4) 90.8 66.9 (7.6) 90.7

Our final system on the SIFT Flow dataset achieves a classification rate of
76.9%. Thus, we outperform Liu et al .[15], who report a rate of 74.75% on the
same test set with a more complex pixel-wise MRF (without the pixel-wise MRF,
their rate is 66.24%). Liu et al .[15] also cite a rate of 82.72% for the top seven
object categories; our corresponding rate is 84.5%. Sample output of our system
on several SIFT Flow test images can be seen in Figure 4.

Next, we examine the effects of various components of our system. For each
of these tests, we only show the local labeling rates on the SIFT Flow dataset.
Table 3(a) shows the effect of different combinations of global features for com-
puting the retrieval set (Section 2.1). Similarly to [12], we find that combining
global features of unequal descriptive power gives better scene matches. Ta-
ble 3(b) shows classification rates of the system with ten superpixel features
added consecutively in decreasing order of their contribution to performance.
Notice that SIFT histograms constitute four of the top ten features selected.
The dilated SIFT histogram, which already incorporates some context from the
superpixel neighborhood, is our single strongest feature, and it effectively makes
the non-dilated SIFT histogram redundant. Also notice that SIFT and texton
histograms are complementary (despite SIFT being stronger), and that all six
feature categories from Table 1(b) are represented in the top ten.

Table 4(a) examines the effect of retrieval set size on classification rate. In-
terestingly, matching test superpixels against the entire dataset (last row of the
table) drastically reduces performance. Thus, we quantitatively confirm the intu-
ition that the retrieval set is not just a way to limit the computational compexity
of sub-image matching; it acts as a global image-level context by restricting the
superpixel matches to come from a small subset of related scenes. Table 4(b)
shows the effect of restricting the list of possible labels in a test image to differ-
ent “shortlists.” Effectively, the shortlist used by our system for each test image
is composed of all the classes present in the retrieval set (first row). To demon-
strate the effect of long-tail class frequencies, the second row of the table shows
the performance we get by classifying every superpixel in every test image to the
ten most common classes in dataset. This does not change the overall per-pixel
rate, but lowers the average per-class rate dramatically, thus underscoring the
importance of looking at both numbers. The third row of Table 4(b) shows the
results produced by restricting our shortlist to the ground truth labels in the
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Table 3. Feature evaluation on the SIFT Flow dataset. (a) Results for local superpixel
labeling with different retrieval set feature combinations. (b) Performance with the
best retrieval set from (a) and top ten superpixel features added in succession.

(a)

Global Descriptor Rate

Gist (G) 70.8 (28.7)
Spatial Pyramid (SP) 70.0 (22.4)
Color Hist. (CH) 65.9 (22.1)
Tiny Image (TI) 65.4 (25.5)

G + SP 72.4 (27.6)
G + SP + CH 73.3 (28.8)
G + SP + CH + TI 73.3 (29.1)

(b)

Superpixel Feature Rate

Dilated SIFT hist. 44.8 (20.8)
+ Texton hist. 54.3 (21.1)
+ Top height 60.2 (23.2)
+ Color thumbnail 63.6 (25.0)
+ Dilated color hist. 66.4 (26.1)
+ Left boundary SIFT hist. 68.1 (26.8)
+ Right boundary SIFT hist. 69.4 (26.3)
+ SP mask over bounding box 69.8 (27.3)
+ Top boundary SIFT hist. 70.5 (27.9)
+ Color hist. 71.0 (27.9)

+ All remaining features 73.3 (29.1)

query image, giving us an upper bound for the performance of superpixel match-
ing. We can see that a perfect shortlist “oracle” would give us a boost of almost
8%. This suggests that to further improve system performance, we may get a
bigger payoff from more accurate scene-level label prediction, rather than from
more sophisticated edge potentials in the MRF. In fact, we have observed that
in many of our unsuccessfully labeled images, incompatible scene classes with
strong local support over large regions vie for the interpretation of the image,
and neighborhood context, though it may detect the conflict, has no plausible
path towards resolving it (Figure 4(f) is one example of this).

Finally, we analyze the computational requirements of our system. Our cur-
rent implementation is mostly in unoptimized and un-parallelized MATLAB
(with some outside C code for feature extraction and MRF optimization), and
all our tests are run on a single PC with dual Xeon 2.33 GHz quad core proces-
sors and 24 GB RAM. Table 3.1 shows a breakdown of the main stages of the
computation. On the SIFT Flow dataset, we are able to extract features and la-
bel images in less than 10 seconds. In comparison, as reported in [15], to classify

Table 4. (a) Effect of retrieval set size on performance for the SIFT Flow dataset. (b)
Effect of restricting the set of possible classes in the test image to different “shortlists.”

(a)

Retrieval Set Size Rate

50 71.1 (30.1)
100 72.4 (29.7)
200 73.3 (29.1)
400 72.1 (27.2)
2,488 68.6 (19.1)

(b)

Shortlist Rate

Classes in retrieval set 73.3 (29.1)
10 most common classes 73.2 (20.4)
Perfect shortlist 81.0 (34.0)
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Table 5. Left: The average timing in seconds of the different stages in our system
(excluding file I/O). While the runtime is significantly longer for the Barcelona dataset,
this is primarily due to the change in image size and not the number of images. Right:
query time vs. number of superpixels in the query image.

SIFT Flow Barcelona

Training set size 2,488 14,871
Image size 256× 256 640× 480
Ave. # superpixels 63.9 307.9

Feature extraction ∼ 4 sec ∼ 5 min

Retrieval set search 0.04 ± 0.0 0.21 ± 0.0
Superpixel search 4.4 ± 2.3 34.2 ± 13.4
MRF solver 0.005 ± 0.003 0.03 ± 0.02

Total (excluding features) 4.4 ± 2.3 34.4 ± 13.4
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a single query image, the SIFT Flow system required 50 alignment operations
that took 30 seconds each, or 25 minutes total without parallelization.

At present, our running time is actually dominated by our (wildly inefficient)
feature extraction code that can be easily sped up by an order of magnitude.
Our algorithm complexity is approximately quadratic in the average number of
superpixels per image in the dataset due to the need to exhaustively match every
test superpixel to every retrieval set superpixel. On the other hand, this time is
independent of the overall number of training images. Moreover, as our dataset
gets larger, we expect that target retrieval set size will stay the same or decrease,
as the top scene matches will become closer to the test image. For larger datasets,
the main bottleneck of our system will not be superpixel search, but retrieval
set search and file I/O for loading retrieval set superpixel descriptors from disk.
However, we expect to be able to overcome these challenges with appropriate
hardware, parallelization, and/or data structures for fast search.

3.2 Small Datasets

To further validate our superpixel-based feature representation, we tested it on
two small datasets: that of Gould et al. [6], which has 715 images with eight se-
mantic and three geometric classes, and the geometric context dataset of Hoiem
et al. [3], which has 300 images and seven surface layout classes (sky, ground, and
five vertical sub-classes). For the latter, we treat these seven classes as the “se-
mantic” classes, and the three geometric classes correspond to the main classes
of [3]. Because nearest neighbor search requires a large set of training images to
perform well, and because the competing approaches use heavily trained discrim-
inative models, we train boosted decision tree classifiers similar to those of [3]
on all the semantic and geometric classes. To obtain initial labelings of test im-
ages in these datasets, we do not use a retrieval set, but apply the boosted tree
classifier for each class to each superpixel and use its likelihood ratio score in
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the same way as eq. (1). Table 6 shows the resulting performance, which is com-
parable to the results of [3, 6]. Moreover, our system is much simpler than the
competing approaches. Unlike [6], we do not need to learn classifiers over pairs
of geometric and semantic classes or optimize image regions in a complex CRF
framework. Unlike [3], we do not need to search over multiple segmentations
with two tiers of features and a discriminative model of region homogeneity. In
fact, when restricted to just a single superpixel segmentation, Hoiem et al. [3]
report a sub-class rate of 53.5%, which we beat by 7.5% on the same superpixels.

4 Discussion

This paper has presented a superpixel-based approach to image parsing that
can take advantage of datasets consisting of tens of thousands of images anno-
tated with hundreds of labels. Our system does not need training, except for
basic computation of dataset statistics such as label co-occurrence probabili-
ties, and it relies on just a few constants that are kept fixed for all datasets.
Our experimental evaluation carefully justifies every implementation choice. De-
spite its simplicity, our system outperforms state-of-the-art methods such as
SIFT Flow [15]. Like [15], our method is nonparametric and makes use of a
retrieval set of similar scenes, but unlike [15], it does not rely on an intricate
optical flow-like scene alignment model. Our underlying feature representation,
based on multiple appearance descriptors computed over segmentation regions,
is similar to that of [3, 5]. However, unlike [3], we do not search over multiple
segmentations, and unlike [5], we successfully combine features without learning
class-specific or exemplar-specific distance functions. That one can achieve good
performance without these costly steps is very encouraging for the prospect of
successfully scaling up image parsing algorithms.

There still remain areas to improve our system further. Because our rep-
resentation makes it easy to “plug in” new features, any advances in feature
extraction are likely to give gains in performance. Also, while we have achieved
promising results with one bottom-up segmentation algorithm [21], it remains
important to examine the effect of segmentation quality on image parsing and
to address the problem of finding the right spatial support for objects.

Table 6. A comparison of our system to [6, 3] using five-fold cross-validation and the
same evaluation protocols as [6, 3].

Gould et al . dataset [6] Geometric Context dataset [3]

Semantic Geometric Sub-classes Main classes

Gould et al . [6] 76.4 91.0 N/A 86.9
Hoiem et al . [3] N/A N/A 61.5 88.1

Local labeling 76.9 90.5 57.6 87.8
Superpixel MRF 77.5 90.6 61.0 88.2
Simultaneous 77.5 90.6 61.0 88.1
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Fig. 4. Example results from the SIFT Flow test set (best viewed in color). In (c),
sidewalk is successfully recovered. In (d), the co-occurrence MRF and joint geomet-
ric/semantic classification remove the spurious classification of the sun’s reflection in
the water as “sun.” In (e), we find some windows (some of which are smoothed away
by the MRF) and plausibly classify the arches at the bottom of the building as doors.
In (f), parts of the building and the bare tree get initially classified as “mountain,”
and while the co-occurrence MRF does not like the boundaries between “building”
and “mountain,” it is not completely successful in eliminating the errors. For complete
results, see http://www.cs.unc.edu/SuperParsing.


