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Abstract

Purpose—Segmentation of liver in abdominal computed tomography (CT) is an important step 

for radiation therapy planning of hepatocellular carcinoma. Practically, a fully automatic 

segmentation of liver remains challenging because of low soft tissue contrast between liver and its 

surrounding organs, and its highly deformable shape. The purpose of this work is to develop a 

novel superpixel-based and boundary sensitive convolutional neural network (SBBS-CNN) 

pipeline for automated liver segmentation.

Method—The entire CT images were first partitioned into superpixel regions, where nearby 

pixels with similar CT number were aggregated. Secondly, we converted the conventional binary 

segmentation into a multinomial classification by labeling the superpixels into three classes: 

interior liver, liver boundary, and non-liver background. By doing this, the boundary region of the 

liver was explicitly identified and highlighted for the subsequent classification. Thirdly, we 

computed an entropy-based saliency map for each CT volume, and leveraged this map to guide the 

sampling of image patches over the superpixels. In this way, more patches were extracted from 

informative regions (e.g., the liver boundary with irregular changes) and fewer patches were 

extracted from homogeneous regions. Finally, deep CNN pipeline was built and trained to predict 

the probability map of the liver boundary.

Results—We tested the proposed algorithm in a cohort of 100 patients. With 10-fold cross 

validation, the SBBS-CNN achieved mean Dice similarity coefficients of 97.31±0.36% and 

average symmetric surface distance of 1.77±0.49mm. Moreover, it showed superior performance 

in comparison with state-of-art methods, including U-Net, pixel-based CNN, active contour, level-

sets and graph-cut algorithms.
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Conclusion—SBBS-CNN provides an accurate and effective tool for automated liver 

segmentation. It is also envisioned that the proposed framework is directly applicable in other 

medical image segmentation scenarios.
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1. Introduction

The accurate segmentation of liver is important not only for radiation therapy planning, but 

also for follow-up evaluations (Mharib et al., 2012). In current clinical practice, manually 

delineation is time-consuming and may suffer from inter- and intra-operator variations (Dou 

et al., 2017). While several methods have been proposed (Hoogi et al., 2017; Li et al., 2016; 

Dou et al., 2017; Zheng et al., 2017), automated liver segmentation remains challenging. 

Briefly, the existing liver segmentation methods can be subdivided into two categories: 

model-based or learning-based methods. Among the model-based methods, atlas-based 

models (Li et al. 2017), graphical models (Wu et al., 2016; Luo et al., 2013), and deformable 

models(Chartrand et al., 2016; Li et al., 2015) have been proposed. Despite that the 

involvement of sophisticated registration and parametric modeling steps, the results obtained 

from the methods may still be inaccurate. In learning-based segmentations, handcrafted 

features are extracted first and classification models are then employed to train and label the 

target images (Zheng et al., 2016). A major shortcoming of the learning-based methods is 

that they require careful feature engineering to achieve good performance.

Recently, deep learning has emerged as a powerful technique for medical image analysis 

(Litjens et al., 2017; Shen et al., 2017; Ibragimov and Xing, 2017; Bibault et al., 2016; 

Esteva et al., 2017; Long et al., 2017). In most published applications, convolutional neural 

network (CNN) is used as a pipeline to automatically generate discriminative features for 

further supervised learning. For conventional use of CNN in computer vision, a single class 

label vector is associated with an individual image for classification purpose. In contrast, for 

object segmentation, the desired output is a pixel-wise class probability map. A few studies 

have been made to develop CNN pipelines for medical image segmentation, including 

segmentations of liver (Hu et al., 2016), prostate (Guo et al., 2016), isointense stage brain 

tissues (Zhang et al., 2015), brain tumor (Pereira et al., 2016), and pancreas (Roth et al., 

2015). However, most of these existing deep learning approaches are based on pixelated 

CNN and they suffer from the limitations of computational efficiency and disturbances from 

noises. Moreover, the information for overlapping pixel-based patches may be redundant. In 

order to go beyond the local patch-based CNN analysis, a recent studies ( Ronneberger et al., 

2015; Milletari et al., 2016) proposed a U-Net network architecture or its variant model to 

directly analyze the whole imaging data, which takes full advantage of global patterns within 

the images. Han (2016) proposed a DCNN method based on the U-Net and ResNet, which 

ranked the first for the LiTS challenge at the time of the ISBI 2017 and showed the best 

performance on the recent thoracic auto-segmentation challenge at AAPM 2017. In general, 

these methods are computationally costly due to high memory requirement of the model 

during training and not easily applicable for 3D medical image, which is at least two orders 
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of magnitude computation burden than superpixel-based CNN segmentation method due to 

each pixel convolutional calculation in U-Net.

Superpixel algorithm groups pixels with similar properties into perceptually meaningful 

atomic regions while considering spatial constraints. Additionally, it preserves the edge 

information of the original image during the process of enhancing the local consistency. He 

et al (2015) recently proposed a superpixel CNN approach by re-arranging superpixels, 

which however required features extraction. Furthermore, the boundary between the target 

organ and its neighboring tissues may be ambiguous due to potentially limited contrast in 

medical images. Therefore, the pixel-based patch-wise or fully CNN may still be 

challenging in accurately delineatation of the liver organ boundary due to the restriction in 

memory demanding and highly imbalanced class training set (Chen et al., 2017; Ghafoorian 

et al., 2017; Han X, 2017). The probability prediction result does not necessarily represent 

the final segmentation. From previous studies, deep learning methods are usually used to 

generate the prior probability map of subject of interest as initialization, and further integrate 

with model-based models such as Graph-cuts (Lu et al., 2017), Level-sets (Cha et al., 2016), 

Surface evolution (Hu et al., 2016) and Markov random fields (Ibragimov and Xing, 2017) 

to improve the consistency of the obtained results.

Here, we presented a CNN pipeline for fully automatic liver segmentation. Compared with 

the existing algorithms, there are two major novelties in the proposed framework:

1. We transform classic binary segmentation tasks (i.e., liver or non-liver) into a 

multinomial classification problem. In other words, we explicitly labeled the 

boundary as a separate class. By doing so, more learning power is given to 

boundary, which can significantly increase the detection accuracy. Many 

previous deep learning algorithms served as the initial contour generation for the 

subsequent shape-based algorithms (e.g., level-set). Our method explicitly 

addresses the issues of boundary prediction problem and provides more 

information on edge for network perception. As thus, it can delineate liver edges 

without further post-processing.

2. Our CNN framework is based on superpixels rather than on individual pixels. 

Moreover, we utilize entropy-based saliency map to guide the patch sampling 

where more patches are extracted from more informative regions. By eliminating 

patches that are redundant and only keeping informative ones, the training patch 

size is decreased by at least two orders of magnitude, leading to significantly 

improved computational efficiency and robustness.

The remaining of this article is organized as follows. In section 2, we describe the details of 

the proposed framework and evaluation tests. The results are presented in section 3, followed 

by some discussions in section 4 and concluding remarks in section 5.

2. Materials and methods

The overview of the proposed framework is depicted in figure 1. In the training stage, we 

first converted the binary ROI (region-of-interest) contours (liver in this study) into a 

multinomial map. Meanwhile, we obtained a set of superpixels and the saliency maps from 
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CT images. Under the guidance of saliency maps, we extracted patches containing 

superpixels and assigned them the class labels, i.e., interior liver, liver boundary and non-

liver background. A six-layer CNN network was then trained with these image patches and 

their labels. In the test stage, we applied the trained model to predict the class label of an 

independent dataset. In details, the image patches that cover all superpixels from individual 

patients were analyzed and assigned the probability for three classes. The probability maps 

were integrated into the final segmentation result.

2.1. Imaging dataset and preprocessing

The public dataset from LiTS - Liver Tumor Segmentation Challenge (ISBI2017) were used 

for this study. The dataset contains 100 abdomen contrast CT scans. More details of this 

dataset and imaging protocols can be found online (https://competitions.codalab.org/

competitions/17094). Briefly, the in-plane matrix is 512×512 with resolution ranged from 

0.45mm to 0.98mm and slice numbers vary from 75 to 987 with resolution ranged from 

0.45mm to 5mm. All liver segmentations were carefully prepared and visually checked by a 

radiation oncologist (F.H., with 23 years experiences in radiation therapy).

We first transfer data into the same physical resolution space 1×1×1 mm using coordinate 

transform and bilinear interpolation. A Gaussian filter with Sigma of 0.5 in voxels is used to 

de-noise the input CT data for enhance image contrast (Pawar et al, 2017). Hence, we set the 

intensity range as [−200,200] in our experiments, because the Hounsfield scale is +40 to 

+60. When CT intensity value is higher than 200, the intensity is set to 200, likewise, the 

intensity is set to −200 when intensity is less than −200. We further scale the window value 

in a range of zero to unity.

2.2. Superpixel-based boundary sensitive patch selection guided by saliency map

The term of superpixel (Ren and Malik, 2003) is used to describe a group of pixels similar in 

interested low-level feature space. It has several known advantages for image segmentation. 

Firstly, it can be used to accelerate computationally demanding algorithms without obvious 

information loss. Second, the regular shape bricks preserve the main connection 

relationships within images. Although the superpixel-based over-segmentation gives a 

semantically meaningful representation of original images, which image characteristics are 

expressed by using few superpixels with similar color, brightness and texture instead of 

massive pixels (Tian et al., 2016).

Conventionally, the patches are extracted iteratively based on the predefined grid that 

superimposed on the original image. Thus, redundant patches are extracted for further 

network analysis, which can significantly deteriorate following analysis due to learning from 

imbalanced data. To overcome this, we generated the superpixels to guide the image patches 

extraction. In details, Simple Linear Iterative Clustering (SLIC) method (Achanta et al., 

2012) was adopted to obtain superpixels. Moreover, SLIC algorithm performs better in 

adhering to image boundaries, speed, and memory efficiency compared with five state-of-

the-art superpixel algorithms (Achanta et al., 2012). However, distinct from nature images, 

CT images can be more heterogeneous. In regions possessing similar CT numbers, it 

remains challenging to have the boundary properly covered by superpixels, which is shown 
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in figure 4, especially for the superpixels at the border of the liver that usually suffered from 

the edge leakage. Therefore, the training patch selection has a great impact on training the 

following segmentation model.

As illustrated in figure 2(b), we obtained a set of subregions S = (S1, S2, … Si, …, SM), i ∈ 
(1, M) using SLIC, where M is the number of superpixels. The i-th superpixel is composed 

of a set of N pixels Si = {mi(1), …, mi(j), …, mi(N)} with mi(j) ∈ I, I is the CT slice image, 

If every pixel mi(j) of superpixel Si belongs to labeled liver class, the superpixel Si is labeled 

as liver class. Otherwise, there is a certain proportion of pixels inside the superpixel Si, i ∈
(1, M) belongs to liver, we assign it as the boundary class. The superpixels that do not 

contain any liver pixel are assigned as background class.

Given a superpixel map, we also measured the information contained within each superpixel 

by computing a saliency map based on Shannon entropy (Mylona et al., 2012), as figure 

3(c). Here, we selected the superpixel with the mean entropy value greater than 1.5 to be the 

training patches. Redundant background patches and non-informative patches were excluded 

to improve the robustness and efficiency of the network. The final sample candidate patches 

with entropy value larger than 1.5 were shown in green in figure 3(c).

Given a CT slice image I and segmented regions (superpixel) S =(S1, S2, … Si, …, SM), 

each image patch Pk ∈ Rh×w with its size in height h and width w and value R in interval 

[0,1] can be obtained from centroid of each superpixel Si. Our aim here is to predict class 

labels for individual superpixels denoted as ℒ ={ℒ1, ℒ2,…, ℒM}, where ℒi =0, ℒi =1, ℒi 

=2 represents non-liver background, liver and liver boundary respectively. In this study, we 

chose the patch size to be 32×32, which will be explained in the following discussion 

section. The detailed illustration for three class are shown in Figure 4. The patches were 

obtained from centroid of each superpixels. The k-th training patch class label based on 

pixel-level ground truth is obtained by the following equation:

Pk(tk) =

0 i f mk( j) ∈ ℒ{0} or i f
m

k
( j) ∈ ℒ{1}

m
k
( j) ∈ ℒ{0} + m

k
( j) ∈ ℒ{1}

≤ θ

1 i f mk( j) ∈ ℒ{1}

2 i f
m

k
( j) ∈ ℒ{1}

m
k
( j) ∈ ℒ{0} + m

k
( j) ∈ ℒ{1}

> θ

(1)

where mk(j) ∈ Pk denotes the j-th pixel located within the k-th patch, tk is the k-th patch 

class label. Here, the “liver patch” is defined as a superpixel that all of its pixels are located 

inside the hand-outlined liver. When the ratio of area labeled as liver in a patch (mk(j) ∈ 
ℒ{1}) to the total are of the patch (mk(j) ∈ ℒ{0} + mk(j) ∈ ℒ{1}) is over θ, it is considered 

as a “boundary patch”, as illustrated in figure 3(c). This makes the following network more 

sensitive to the boundary and facilitates the detection of the edge.

Intuitively, the number and size of superpixel Nsp would have important impact on subregion 

extraction. The selection of these parameters is generally empirical. If a large number of 

superpixels are extracted, the superpixels would well adhere to boundary, but the 
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computation efficiency is greatly reduced. In the opposite case, increased under-

segmentation error would be resulted. As illustrated in figure 4, large size superpixels will 

leak into the boundary, when the number of superpixels is less than 500. If the right amount 

of superpixels is selected, the liver boundary can be discretized properly. Here, we measured 

standard deviation of CT numbers inside each superpixel to determine the optimal number 

of superpixels.

2.3. Superpixel-based boundary-sensitive CNN (SBBS-CNN)

CNN is an architecture composed of convolution operator and pooling operator, which 

makes the best of local spatial correlation information and drastically reduces the number of 

parameters using their weight sharing. Because end-to-end trained CNN enables the network 

to extract high level representation automatically without manually selected features, the 

CNN has become ubiquitous for medical image analysis and shown to be very powerful.

Here, we tailored a popular CNN architecture known as Cifarnet (Krizhevsky and Hinton, 

2009) to compute the superpixel probability maps Y(si|Psi). where si is the i-th superpixel, 

Psi is a patch at the si-th superpixel. The detailed network architecture is shown in figure 1. 

The CNN involves 6 layers: 2 layers for convolution operation, 2 layers for pooling operator, 

1 layer for full connections and 1 layer for softmax prediction. In details, the convolutional 

layers are operators based on a group of filter banks with K kernels  ={W1, W2, …, WK} 

and subsequently biases ℬ ={b1, …, bk} are added. Let ℱk represent feature map based on 

superpixel patches, the output of each convolution layer can be defined as:

ℱk
l = f (W1

l − 1 ⊗ ℱk
l − 1 + bk

l − 1) (2)

where f(·) is an element-wise non-linear transform, here we choose tangent functions tanh 

for each layer computation, because tanh can produce better a result than sigmoid that has 

gradient vanishing problem and computation burden (Jarrett et al., 2009).

The pooling layer is typically combined with convolution layer, which downscales the image 

to reduce the number of weight parameters. The redundant features can be made more 

compact and invariant to small insignificant details change. We used max-pooling in our 

network, which outputs the maximum value of each feature map within a predefined 

neighborhood. We also added a regularization term to prevent overfitting after each pooling 

layer, which is a nonlinear operator to transform the data. Here, we applied local response 

normalization scheme with Rectifier linear units (ReLU) (Krizhevsky et al., 2012). The 

response-normalized activity b
x, y
i  is defined as:

bx, y
i = ax, y

i
k + α∑ j = max(0, i − n/2)

min(K − 1, i + n/2)
ax, y

i 2 −β
(3)
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where a
x, y
i  is an activity of a neuron computed by non-linear transformation using tangent 

functions. The hyper-parameters k, α,β,n are constants whose values are determined 

empirically, more details can be found in (Krizhevsky et al. 2012).

In the classification layer, we used softmax to map the sequence map to a posterior over 

three classes. Softmax is a generalization of the logistic function that “squashes” a K-

dimensional vector z of arbitrary real values to a K-dimensional vector σ(Z)
j

=
e
z

j

∑
k = 1
K

e
z
k
 of 

real values in the range (0, 1) that add up to 1.

For the model training, we trained the network to optimize the weight variables and bias 

values based on cross-entropy. The cross-entropy loss function is defined as

H(tk, t k) = − [tk log (t k) − (1 − tk)log(1 − t k)] (4)

and Adaptive Moment Estimation (Adam) optimization method (Kingma et al 2015) has 

been performed to minimize the loss function (4), which is a first-order gradient-based 

optimization method. In the end, we estimated convolution kernels  ={W1, W2, …, WK} 

and bias values ℬ ={b1, b2, …, bK}.

In independent validation stage, we first extracted superpixel-based patches. The trained 

network was then used to infer the liver, liver boundary and background probability maps. In 

order to avoid over-segmentation, we firstly aggregate the liver and boundary probability 

Y(si|Psi) to form a probability map, and a threshold was then learned to reinforce the 

prediction probability to eliminate false positive objects. Any local maximum probability 

value less than the pre-chosen threshold is defined as background. Finally, we applied open 

and close morphology processing with disk-shaped structuring element to smoothen the 

edge of segmentation.

2.4. Training data augmentation and training details

Data augmentation is an essential step to enable the network the desired invariance and 

robustness properties. This is a process of generating new samples from original CT data, 

with automatic adjustment to the cases with a different orientation to make SBBS-CNN 

more robust to rotation-variant and noise disturbing. Here, random brightness and random 

right and left flip have been performed on superpixel-based patches. Because it is 

challenging to locate the edge in liver segmentation, we increased the numbers of liver 

boundary training set using 4-neighborhood connection around the centroid of the 

superpixel. Five patches will be extracted for boundary patches defined by formula (1). In 

total, approximately 1.6 million superpixel-based patches are extracted from the cases in the 

training set to depict background, liver, and boundary.
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We initialized all weights using truncated normal distribution with mean 0 and standard 

deviation 0.05, with a constant 0.1 given to all biases. The detailed configuration of 

Tensorflow for the SBBS-CNN model is listed in Table 1.

2.5. Performance evaluation

In quantitatively comparing with the manual segmentation and validating the performance of 

the proposed method, we utilized five metrics to evaluate the SBBS-CNN results. We also 

compared the results with the state-of-art CNN model (Dong et al., 2017) and some 

representative model-based methods, including active contour Chan-Vese segmentation 

(Pascal et al, 2012), Graph-cuts (Wu et al., 2016, Jirik et al., 2013) and level-sets 

(Yushkevich et al., 2006 ).

The active contour Chan-Vese segmentation is based on level sets that are evolved iteratively 

to minimize an energy1 (Pascal et al, 2012), In this paper, we used open source code scikit-

image for liver segmentation. Graph cuts (Wu et al., 2016; Jirik et al., 2013) segmentation is 

a graph-based model method which minimizes the energy function via the max-flow/min-cut 

algorithm. We have used the python version opensource code for the study2. Level-sets 3 

(Yushkevich, 2006) is segmentation techniques based on partial differential equations (PDE), 

i.e. progressive evaluation of the differences among neighboring pixels to find object 

boundaries. Ideally, the algorithm converges to the boundary of the object where the 

differences are the highest, which have been integrated in opensource software ITK-SNAP.

With the manual contours as the gold standard, Dice Similarity Coefficient (DSC) is used to 

measure the similarity of segmentation masks. In terms of vector operations over binary 

contours A and B, DSC is given by:

DSC(A, B) = 2 ∣ A ∩ B ∣
∣ A ∣ + ∣ B ∣

(5)

If A and B is the same, the DSC score value is 1. Volume Overlap Error (VOE) is the 

complement of the Jaccard coefficient:

VOE(A, B) = 1 − ∣ A ∩ B ∣
∣ A ∪ B ∣

(6)

Relative Volume Difference (RVD) is a relative difference between two objects

RVD(A, B) = ∣ B ∣ − ∣ A ∣
∣ A ∣

(7)

1http://scikit-mage.org/docs/dev/api/skimage.segmentation.html?highlight=segmentation#skimage.segmentation.chan_vese
2https://github.com/mjirik/pysegbase
3http://www.itksnap.org/pmwiki/pmwiki.php
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In order to calculate the distance error between two input volumes, we use Average 

Symmetric Surface Distance (ASD) and maximum surface distance (MSD) metrics.

2.6. Computing platform

The proposed SBBS-CNN algorithm was implemented in the framework of Tensorflow 

version 1.0 (Google, 2017) using Python. The computation was done on a Windows 10 

personal computer (PC) with an Intel i7-7700K CPU (4.2GHz, and 32GB memory) and 

Nvidia GPU GeForce GTX1070.

3. Results

3.1. Segmentation results from proposed SBBS-CNN

Figure 5 illustrates the segmentation results of the proposed method on three representative 

examples. The left column (figure 5(a)) shows original image slices after preprocessing 

using Hounsfield window and filter. To get a better visual understanding of the computation 

procedure, the prediction probability map of the liver (figure 5(b) and liver boundary (figure 

5(c)) are visualized. Figure 5(d) is the fusion map of liver and boundary probability. The 

liver and liver boundary have been inferred accurately. Finally, we used a simple open and 

close morphology operation to optimize fusion probability map. The approach generated 

results in excellent agreement with manual segmentation.

3.2. Quantitative evaluation of proposed SBBS-CNN

We used 10-fold cross validation to measure the performance of the proposed method. The 

patches in all experiments are extracted from planes of the CT image. The segmentation 

results are shown in table 2. The proposed approach yielded average DSC, RVD, VOE, ASD 

and MSD of 97.31±0.36%, 1.97±1.70%, 5.24±0.69%, 1.77±0.49mm, 13.03±5.71mm, 

respectively.

In addition, we compare the proposed boundary-aware segmentation concept with the 

standard binary segmentation. As observed in Table 3, SBBS-CNN yields mean ASD of 

1.77 and MSD of 13.03. Thus, it is obvious that our method can provide more precise 

contour delineation with smaller ASD and MSD value. Moreover, the mean DSC is 97.31%. 

The proposed SBBS-CNN improves the performance of edge detection.

To show that the proposed method is more efficient in memory usage and segmentation 

quality over the representative pixel-based CNN such as UNET (Dong et al., 2017), FCN

+CRF (Zhao et al., 2016) and pixel-based CNN method with random patch selection, we 

applied random sampling 2000 patches of each case for pixel-based CNN to generate 

training set with the same number of superpixel-based patch set. In the comparison, 

experiments were done on the same training and test dataset using the same computing 

platform. As demonstrated in the Table 4, SBBS-CNN gives the best result with DSC 97.31 

while using the mean evaluation time 7.22 s for each case. Qualitative comparisons are 

shown in figure 6.
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3.3. Comparison with conventional model-based segmentation techniques

We compared the performance of SBBS-CNN with the conventional method: active contour 

Chan-Vese segmentation (Pascal, 2012), Graph-cuts (Wu et al., 2016) and level-sets 

(Yushkevich et al., 2006 ) on the same training and testing sets. Table 5 summarizes the 

results from different approaches. It is observed that the proposed method is better than the 

traditional model-based method as measured by all metrics. Figure 7 shows three examples 

of visualization results. From the corresponding zoomed parts (Figure 7(d)–(e)), the 

segmentation results obtained by the proposed method are clearly better than other methods 

and agreed well with manual delineation contour.

4. Discussion

We have proposed a fully automated deep learning framework for image segmentation. This 

work contributes to the field of image analysis in a few aspects. First, we combined the 

superpixel with saliency map as a replacement for the pixel-grid to substantially improve 

computational efficiency and segmentation robustness. For example, we would need to 

extract 262144 patches with window-sliding of 1 pixel offset for a 512×512 CT image slice, 

and in contrast here, only < 2,000 informative patches are required for superpixel-based 

approach, which is at least two orders of magnitude less. Furthermore, instead of using 

massive pixels, the supervoxel scheme presents a concise representation/characterization of 

an image. Practically, the introduction of superpixel is to simplify the search space so that 

image segmentation can be achieved more efficiently with an end-to-end trained CNN. In 

this approach, the typical properties of the basic pixels in the context of contours of the 

structures, such as spatial topology, structure, homogeneity, and isometric information, are 

preserved effectively. Thus, there is no compromise in spatial resolution of the resultant 

segmentation. In this study, the influence of different patch sizes on the performance of 

segmentation was also investigated (table 6). In our experiments, different patch sizes were 

first extracted from the same dataset, and the SBBS-CNN model was then trained for each 

group of patch size. The same metric was used to score the effect of patch size for 

segmentation. When the patch size is small, it cannot cover sufficient neighborhood 

contexture. On the other hand, if the patch size is too large, more redundant information is 

involved in the training set, which would not only degrade CNN performance, but also 

increase the calculation burden. We found that the optimal patch size is around 32×32 for 

liver segmentation.

Secondly, we converted the classic binary segmentation into a multinomial task to explicitly 

adapt to patch-based CNN algorithm. We explicitly labeled the boundary into a separate 

class, as shown in figure 8. Compared with object detection, which is a classic problem for 

CNN in computer vision, we need to generate pixel-wised segmentation map for the image 

patches. Therefore, the conventional CNN architecture would not provide sufficient power to 

distinguish boundary patches. Here, we have proved that converting the binary problem to 

multinomial classification problem can significantly improve the accuracy with no extra 

computational cost (Table 3). These concepts can be easily extended to the segmentation of 

other organs. The boundary detection results are shown Figure 9. Boundary precision-recall 

has been used as boundary-detection evaluation criterion (Wang et al., 2017). Moreover, 
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from Figure 9 it is noticed that our method performed better than other CNN-based 

segmentation on boundary detection with 0.92, 0.84 precision and recall score respectively. 

In addition, it is useful to emphasize that the ratio for boundary superpixel definition plays a 

great role in SBBS-CNN. We have examined different region ratio to find the best ratio. We 

used the curve fitting toolbox from MATLAB and selected the polynomial function. The 

rationale behind this selection is based on the observed trend of the scatter plot. Figure 10 

shows that a ratio value of 0.5 is optimal and yields the highest accuracy of patch 

classification prediction.

In this study, the regions of superpixel including the edge have been taken as a separate 

class, which improved segmentation accurately. These superpixels played a crucial role in 

segmentation. Consequently, we averaged the variance of pixel distribution in a superpixel. 

When the variance of each superpixel is small, it is considered as the best boundary. We 

conducted the experiments on 100 CT volumes including training and test sets with different 

sized superpixels, and found that ~2000 superpixels optimally balances the computation 

efficiency and boundary adherence. Figure 11 summarized results of the different superpixel 

selection.

Since the morphology processing has been utilized to fine tuning the final segmentation 

result, the effect of the subsequent morphology is investigated. In our experiment, we used 

opening operation with radius 3 and closing operation with radius 25, both of which is disk-

shaped structuring element. We obtained DSC 95.18±1.17 before morphology operation and 

DSC 97.31±0.36 after morphology operation. The results suggest that the morphology 

operation only smoothens the edge of segmentation.

Despite the promising results, there are limitations to our study here. First, the available 

datasets are limited. It is desirable to further validated the algorithm in an independent 

cohort with more testing cases in the future. Second, several parameters in SBBS-CNN were 

determined empirically, strategies to auto-determining these parameters would be useful 

additions to enhance the proposed technique. Finally, due to computation hardware 

limitation, segmentation in the current work is done in a slice-by-slice fashion with the goal 

of demonstrating the feasibility and potential benefits of the supervoxel-based approach. The 

technique can and will be extended to volumetric segmentation in the future. In addition, the 

correlations among the patches were not considered in the proposed model. A formalism 

leveraging from inter-supervoxel relationship may further enhance the success of the 

technique, especially for the segmentation of small sized livers.

5. Conclusion

We proposed SBBS-CNN framework for accurate liver segmentation. In this framework, 

superpixels are used to facilitate the convolution computation while greatly decreasing the 

memory usage. Furthermore, a multinomial classification scheme is introduced for the first 

time to better delineate the liver boundary. It is shown that our method using multinomial 

SBBS-CNN classification is better than binary classification. The approach is quite general 

and extendable to other image segmentation problems. Our results show that SBBS-CNN 

can generate accurate results without any need for complicated postprocessing. Development 
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of a full 3D superpixel-based deep learning that will take full advantage of the rich spatial 

contextual information is in progress.
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Figure 1. 

Schematic diagram of the SBBS-CNN architecture used in this study
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Figure 2. 

An example of superpixel-based patch candidates sample. (a) original CT slice image after 

preprocessing, (b) illustration of the superpixel and patch definition, (c) sample superpixel 

candidates. Superpixel with an entropy value greater than 1.5 are denoted by green color and 

selected in patch extraction.
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Figure 3. 

Demonstration of superpixel-based patches extraction: (a) background patches outside of the 

liver area. (b) liver patches with all pixel inside the patch. (c) superpixel-based boundary 

patches.
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Figure 4. 

Examples of superpixel segmentations produced by different numbers of superpixel: The top 

row is the different numbers of superpixels, from (a)–(c) is 100, 2000, 5000 superpixels 

respectively. The image data inside the red box in (a)–(c) are displayed in the top row.
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Figure 5. 

Examples of three liver segmentation cases displayed from the top to bottom. From left to 

right are: (a) original transversal 2D slice after data augmentation. (b) inner liver prediction 

probability map. (c) liver boundary prediction probability. (d) fusion probability map from 

liver and liver boundary probability map. (e) the final segmentation results, the yellow line is 

the outline of manual segmentation, and the red area indicates the results obtained using 

SBBS-CNN.
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Figure 6. 

Three views of liver segmentation cases displayed from the top to bottom. From left to right 

are: (a) original transversal 2D slice after data augmentation. (b) ground truth. (c) our 

proposed method. (d) pixel-based CNN method. (e) U-Net model segmentation.
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Figure 7. 

Examples of SBBS-CNN segmentation results in comparison with other approaches on the 

testing set. The ground-truth is denoted in yellow, active contour, graph-cut, level-set, and 

SBBS-CNN are plotted in blue, cyan, green, and red, respectively. From left to right are (a)–

(c) transverse slice of three cases. The corresponding zoomed parts in the green boxes are 

demonstrated in (d)–(e).
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Figure 8. 

Demonstration of the boundary sensitive classification definition in segmentation. (a) 

ground-truth by manual segmentation with 2 classes, (b) ground-truth by superpixel-guided 

3 classes.
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Figure 9. 

Evaluation of boundary detection quality of the different segmentation techniques. (a) 

Boundary precision, (b) Boundary recall.
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Figure 10. 

Accuracy of the patch classification prediction as a function of the ratio of liver pixels inside 

the patch area
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Figure 11. 

Illustration of mean of gray value variance with different number of superpixels
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Table 1

Parameters configuration for SBBS-CNN

epoch Learning rate Decay of moving average Weight decay

20000 0.1 0.9 0.004

60000 0.01 0.9 0.004

100000 0.001 0.9 0.004
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