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Abstract: Semantic segmentation is one of the significant tasks in understanding aerial images with
high spatial resolution. Recently, Graph Neural Network (GNN) and attention mechanism have
achieved excellent performance in semantic segmentation tasks in general images and been applied to
aerial images. In this paper, we propose a novel Superpixel-based Attention Graph Neural Network
(SAGNN) for semantic segmentation of high spatial resolution aerial images. A K-Nearest Neighbor
(KNN) graph is constructed from our network for each image, where each node corresponds to
a superpixel in the image and is associated with a hidden representation vector. On this basis,
the initialization of the hidden representation vector is the appearance feature extracted by a unary
Convolutional Neural Network (CNN) from the image. Moreover, relying on the attention mechanism
and recursive functions, each node can update its hidden representation according to the current
state and the incoming information from its neighbors. The final representation of each node is used
to predict the semantic class of each superpixel. The attention mechanism enables graph nodes to
differentially aggregate neighbor information, which can extract higher-quality features. Furthermore,
the superpixels not only save computational resources, but also maintain object boundary to achieve
more accurate predictions. The accuracy of our model on the Potsdam and Vaihingen public datasets
exceeds all benchmark approaches, reaching 90.23% and 89.32%, respectively.

Keywords: graph neural networks; superpixel; attention mechanism; semantic segmentation; aerial
images

1. Introduction

With the rapid development in aerial photography technology in recent years, signifi-
cant improvement has been achieved in spatial resolution of aerial images. High Spatial
Resolution (HSR) aerial images contain a wide variety of objects, including vehicles, roads,
farmland, buildings, and so on [1]. As such, the research in aerial imagery is of significant
value to land monitoring and management [2]. As a basic task of geographic information in-
terpretation, semantic segmentation based on HSR aerial images can be applied in practical
events such as urban planning [3], road extraction [4], and land cover classification [5].

Early image segmentation algorithms (watershed [6], N-Cut [7], Grab cut [8], etc.)
mainly segment an image by extracting its low-level features, and the segmentation results
did not contain semantic information. With the development in deep learning, a series of
semantic segmentation methods based on Convolutional Neural Networks (CNNs) repre-
sented by Fully Convolutional Neural Network (FCN) have been proposed in succession.
Image segmentation has since entered a new stage of semantic segmentation [9]. Deep
Convolutional Neural Networks (DCNNs) show great abilities in feature extraction and
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object representation [10–12]. However, convolutional filters can only capture limited local
context, while accurate inference of semantic information requires a global perspective
of the image and spatial relations between objects. Different from CNNs, Graph Neural
Networks (GNNs) can process non-Euclidean structural data, effectively extract spatial
features from topologies, and use global context information for inference learning [13,14].
Based on this, subsequent studies attempted to apply GNNs to semantic segmentation
tasks [15,16].

However, semantic segmentation on aerial images is a challenging task for three reasons:

• In the case of images with high resolution, the scale of the foreground object varies
greatly (the car in Figure 1a and the building in (b) are both foreground objects, but
the scale difference is great).

• The edge of some foreground object is irregular (the tree edge is irregular in Figure 1c,d).
• The background is highly complex and contains a wide variety of features.

Figure 1. Illustration of image from two public aerial image semantic segmentation datasets: (a,b) are
from the Potsdam dataset and (c,d) are from the Vaihingen dataset.

Existing semantic segmentation methods are difficult to deal with the complex context
information of aerial images. To address the above challenges, a semantic segmentation
method is proposed for aerial images based on superpixel-GNN with attention mechanism.
First, the aerial image is segmented into superpixels. A graph consisting of all these
superpixels as its nodes is then built. Finally, edges are constructed by finding neighbors
in the spatial connection between these nodes (superpixels). For each node, the image
feature vector (i.e., the output of semantic segmentation CNN) is taken as the initial
representation and updated iteratively using recursive functions. The key idea of this
dynamic programming approach is that the state of each node is determined by its historical
state and the information sent from its neighbors. The aggregation of neighbor information
can be differentiated by adding the attention mechanism into the aggregation process.
The final state of each node is used to classify each node. Back-Propagation Through
Time (BPTT) algorithm is used to calculate the gradient of GNN. In summary, the main
contributions of this paper are outlined as follows.

1. A GNN-based framework has been proposed for semantic segmentation of aerial
images. To get a satisfactory segmentation boundary, superpixels are used as graph
nodes for classification, and GNN can learn its representation directly from superpixel
graphs. To solve the problem of irregular object edges in aerial images, superpixels
are used as graph nodes to construct the graph structure, and GNN can directly learn
its representation from the superpixel graph. To overcome the limitations of GNN in
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extracting features, CNN is used as a feature extractor to provide good feature vectors
for the subsequent learning of GNN. Our method takes the complementary advan-
tages of two neural networks (image features extracted by CNN and spatial relations
provided by GNN) based on superpixels to achieve satisfactory segmentation results.

2. The GNN model in our framework of semantic segmentation of aerial images is
an improved version that has introduced the attention mechanism into each node.
When the information of neighbor nodes is fused, nodes are aggregated differently
depending on their similarity to neighbors, so that the GNN’s expression ability is
enhanced. For the challenge of large variation in aerial image scales, we increase
the receptive field by increasing the number of neighbors of the graph node when
constructing the graph and adding an attention mechanism when merging neighbors’
information. These designs can effectively reduce information fluctuations caused
by scale changes, and thus deal with the problem of scale changes. Experimental
results show that it has advanced performance on the challenging public datasets of
Vaihingen and Potsdam.

The rest of this article is organized as follows. Section 2 covers the latest progress
in semantic segmentation of aerial images in two aspects: semantic segmentation and
graph neural network. Section 3 describes our proposed SAGNN architecture in detail.
Section 4 presents the experiment and result analysis. Finally, the conclusion and future
work prospects are given in Section 5.

2. Related Work
2.1. Semantic Segmentation

In recent years, deep learning has become a mainstream method for semantic seg-
mentation. Long et al. first proposed a Full Convolutional Network (FCN) incorpo-
rating the upsample convolution layer into Convolutional Neural Network (CNN) to
achieve image segmentation of arbitrary size [9]. The FCN model has laid a solid foun-
dation for the following semantic segmentation model. The following works [17–20] aim
to implement multiscale feature fusion by expanding the receptive field. For example,
DeepLabv1 increases the receptive field through atrous convolution and solves the prob-
lem of repeated maximum pooling and subsampling in DCNNs that cause resolution
degradation [17]. Next, DeepLabv2 [18] and DeepLabv3 [19] use Atrous Spatial Pyramid
Pool (ASPP), which is composed of parallel convolutions with distinct expansion rates,
to capture the image’s context information in multiple proportions. Pyramid Scene Pars-
ing Network (PSPNet) [20] proposed a Pyramid Pooling Module (PPM) to aggregate the
contextual information from different regions, thereby improving the ability to obtain
global information. Other works [21,22] use an encoder–decoder architecture to optimize
object edge details. Semantic segmentation is also a very challenging task to aerial images.
However, in addition to the large-scale changes in most image semantic segmentation
datasets [23,24], aerial images also have many challenging problems due to their unique
characteristics, such as wide gaps between features within the same class, small foreground
object, imbalance between background and foreground, etc. [25]. Michele Volpia and Devis
Tuia combined the output and features (bottom-up) and conditions of the multi-task CNN
coded with the empty field model (top-bottom) to optimize the label space [26]. In addition
to increasing the diversity of data, the work in [27] also introduces a Channel Attention
Mechanism (CAM), which allows the model to better weigh semantic information and
spatial location information, and to achieve more accurate segmentation. Hybrid Multiple
Attention Network (HMANet), in order to comprehensively capture the feature correlation
among space, channel, and category, three attention modules have been proposed, namely,
Class Augmented Attention (CAA), Class Channel Attention (CCA), and Region Shuffle
Attention (RSA) [28]. The latest research has proposed the PointFlow Module (PFM). In
order to bridge the semantic gap and address the imbalance between foreground and
background at the same time, Li et al. designed the PointFlow Network (PFNet) by adding
PointFlow Module(PFM) to Feature Pyramid Networks (FPNs) [29].
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2.2. Graph Neural Network

There are two main research directions of graph neural networks: One direction is
to extend the convolution operation from traditional data (such as images) to graphic
data. Graph Convolutional Neural Network (GCNN)-based algorithms are mainly divided
into two categories: spectral-based and spatial-based. The spectral-based method defines
graph convolution as a filter, so the graph convolution operation is considered to remove
noise from the graph signal [30]. On the other hand, the spatial-based method interprets
graph convolution as an aggregation of feature information from the neighborhood and
coarsens the graph into a high-level substructure through the interleaving arrangement
of the graph convolution layer and the graph pooling layer [31]. The other direction is
to apply the Recurrent Neural Network (RNN) to each node of the graph [32–35], thus
generating the “graph neural network”. This GNN is based on recursive operators and can
be extended to various graph types [32]. Some subsequent works integrated the attention
mechanism [13,36,37], autoencoder [14,38], generative network [39,40], and other struc-
tures into the GNNs. With the vigorous development of GNN models, their applications
have become more and more extensive in various fields, such as social networks [41],
recommendation systems [42], life sciences [43], and so on. For unstructured data such as
images, superpixels can transform images into graph structures, thus solving image-related
tasks using graph neural networks [44–46]. Note that the application of GNNs in the field
of computer vision, where semantic segmentation is an important task, has attracted more
and more attention. Surprisingly, the GNN exhibits extraordinary performance in semantic
segmentation tasks. In the semantic segmentation of 3D point cloud images, the work [47]
proposes an end-to-end 3DGNN, from which a K-nearest neighbor graph is constructed in
2D pixels according to the depth image, so that the purpose of learning its representation
directly from the 3D point cloud can be achieved. The work in [48] proposed the EdgeConv
layer to improve the segmentation accuracy by acquiring local features. The result of KNN
will differ, depending on the K nearest points re-found, each time the EdgeConv feature
is updated according to the distance to the new feature, and the local map constructed
each time will be subject to dynamic update. Different from the structure of the KNN
structure map, the work [49] proposed the similar concept of superpoint to superpixel to
represent simple objects. The superpoint map connected by superpoints performs well in
large-scale point cloud semantic segmentation. Similarly, the work [15] of semantic analysis
of two-dimensional images also constructs graph structures through superpixels and uses
the novel graph Long Short-Term Memory (LSTM) to capture the semantic relationship be-
tween superpixels based on local context interactions. The subsequent work [16] proposed
a structurally evolved LSTM, which randomly merges graph nodes with high similarity
through stacked LSTM layers.

3. Methodology

In this section, the proposed superpixel-based graph semantic segmentation model
is presented in details. An overview of the proposed model is introduced followed the
description of the superpixel-based graph construction method. Finally, the superpixel-
based GNN with attention mechanism is presented.

3.1. Overview of the Graph Structure

The graph structure is shown in Figure 2. The input RGB image is first subjected to
superpixel segmentation processing, which can be done off-line. Meanwhile, a stack of
convolution layers is used to determine the feature vectors for each RGB image, which are
the initial hidden representations of the graph nodes. The graph is built on the superpixel
nodes and their spatial connections. More details can be found in Section 3.2. As a result,
both semantic information and geometrical information are accessible in this GNN, which
consists of three layers. Then a Multi-Layer Perceptron (MLP) with a softmax layer is
shared by all graph nodes.
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Figure 2. The left half of Figure 2 is an illustration of the diagram construction. The superpixels
obtained by SLIC segmentation of aerial images are used as graph nodes, feature vectors extracted
by convolutional neural networks and picture information (RGB, label, and coordinate information)
are used as the hidden state of nodes, and k-nearest neighbors graph is constructed according to
the spatial relations between superpixels. The blue curve in the graph neural network represents
the addition of attention in information aggregation, which can aggregate neighbor information
differently. Finally, we get the segmentation result of aerial image through prediction module.

3.2. Graph Construction

Based on the Simple Linear Iterative Clustering (SLIC) superpixel method put for-
ward by Achanta et al. [50], the superpixel-based graph semantic segmentation model is
proposed hereof. First, the SLIC approach is used to a generate a superpixel graph. We
construct a directed graph based on the superpixel nodes. Each superpixel is regarded as
a graph node and each graph node is connected to its K nearest neighbors via directed
edges. The graph can be denoted by G = (V, E, H) where V, E, and H represent the sets
of nodes, edges, and hidden states, respectively. It can be easily found that the graph is
directed and asymmetric. Second, a CNN is used to figure out the feature map which can
exploit semantic information. Finally, the feature vectors of the superpixels are determined
according to the feature maps and put into the corresponding hidden states of graph nodes.

3.2.1. Nodes Determination

The SLIC method is employed to derive the superpixel graph, in which each superpixel
is regarded as a graph node. It is a local clustering method of pixels defined in the 5D space
including the (l, a, b) values of the CIELab (Commission International Eclairage Lab) color
space and the (u, v) pixel coordinates. In this method, the number of superpixels (nodes)
can be specified according to the task and computing power. For smaller granularity
segmentation and higher computing power, more superpixels (nodes) can be designed,
and vice versa.

3.2.2. Node Features and Labels

Each graph node includes RGB, superpixel center coordinate, and feature information,
respectively. As a result, a graph node feature contains following elements: R, G, B, x,
y, label, and S. Among them, R, G, and B are the average RGB values of all pixels in
each superpixel; (x, y) represents the x- and y-coordinates of the center of the superpixel;
and S is the feature vector extracted from the convolution feature maps. In subsequent
experiments, the improved VGG-16 network, namely, Deeplab-Largefov [17], is used as
our unary CNN to extract appearance features from aerial images. The fc7 feature maps
are used to upsample the size of the original image, and the size of the output feature
maps is H × W × C, where H, W, and C are original height, width, and channel size (1024),
respectively. Therefore, the dimension of S is 1024.
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In this way, the feature or initial hidden representation of each node hi can be written
as follows:

hi = (Ri, Gi, Bi, xi, yi, label, Si) (1)

label of graph node is the same as the label of corresponding superpixel node. The label
of a superpixel node is obtained by voting by the pixels it contains, and the label with the
most votes represents the label of this superpixel node.

3.2.3. Edges Determination

Each graph node is connected to its K nearest neighbors which are found in terms of
Euclidean distance. When constructing the edge, we add the direction (from the nearest
neighbor to the center), and the directional edge can more clearly convey the direction of
the information. However, the connection of edges for two graph nodes is not necessarily
symmetrical. It means that the edge from node i to node j can not imply the existence of
the edge from node j to node i. Algorithm 1 describes the graph construction.

Algorithm 1: Graph Construction.

Input: RGB image
Output: Graph G = (V, E, H)
1: compute superpixel map by SLIC method using RGB image
2: each superpixel node is regarded as a graph node
3: graph node→ V
4: compute feature map by CNN
5: for each graph node do
6: compute R, G, B
7: obtain x, y from superpixel center coordinates
8: compute S
9: (R, G, B, x, y, S)→ h, h ∈ H
10: obtain node label in feature map
11: end for
12: for every two nodes i and j do
13: compute Euclidean distance dij between node i and j
14: end for
15: for every node i do
16: find its K nearest neighbors
17: node i establishes a edge with those K nearest neighbors
18: end for

3.3. Superpixel-Based Attention Graph Neural Network

It can be seen from the above that each graph node has K neighbors, which may have
unequal impacts on that node. More attention should be paid to the neighbors which are
closer to or have the same label as that node. In other words, these edges should have
greater weight [13,37]. As such, we propose the Superpixel-based Attention Graph Neural
Network (SAGNN). The overview of SAGNN is shown in Figure 2 and more details can be
seen below.

For each node, the propagation process is written as

mt
i =

1
K ∑

j∈Ni

F1(α
t
ijh

t
j) (2)

ht+1
i = F2(ht

i , mt
i) (3)

where Ni is the set of K-nearest neighbors of node i; t ∈ 0, 1, 2 corresponds to graph G(0),
G(1), and G(2), respectively; ht

j is the current hidden state of node j; F1 is a Multi-Layer
Perceptron (MLP); mt

i is a vector, which indicates the aggregation of messages that node i
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receives from its neighbors Ni; αt
ij is the attention parameter between node i and node j;

and F2 is Vanilla RNN. At each time step, each node collects information from its neighbors
by (2), and then fuses its hidden states and neighbors’ information by (3). After that, one
can get the next new hidden state ht+1

i of node i which is to be used at the next layer G(t+1).
As for attention parameter αt

ij, it can be obtained by the following equation:

αt
ij =

ecos(ht
i ,h

t
j)

∑j∈Ni
ecos(ht

i ,h
t
j)

(4)

αt
ij is used to represent the correlation between node i and node j, which is measured in

terms of the cosine of the angle between their hidden states. αt
ij also represents the similarity

between two nodes. The higher the similarity between them, the more likely they have the
same label. Therefore, higher weight and more attention should be given to the neighbors
of nodes with higher similarity.

Finally, the probability over labels can be obtained as follows:

pi = F3(h2
i ) (5)

where h2
i is the hidden state of node i in graph G(2); F3 is a Multi-Layer Perceptron (MLP)

with a softmax layer shared by all nodes. Network parameters are adjusted by the Back-
Propagation Through Time (BPTT) algorithm.

4. Experimental Results
4.1. Datasets

The proposed method is evaluated using two public benchmarks provided by the In-
ternational Society for Photogrammetry and Remote Sensing (ISPRS), namely, the Potsdam
dataset and the Vaihingen dataset [51]. Both of these datasets consist of the high-resolution
True Ortho Photo (TOP), Digital Surface Model (DSM), and ground truth labels.

4.1.1. Potsdam

The Potsdam dataset contains 38 high-resolution images (size 6000 × 6000 pixels), with
a Ground Sampling Distance (GSD) of 5 cm. The dataset contains 6 classes: (1) impervious
surfaces, (2) building, (3) low vegetation, (4) tree, (5) car, and (6) clutter. The dataset
provides four channels of NIR (Near-Infrared)-R-G-B information, DSM, and standardized
DSM. Note that DSM is left unused in our experiments. 17 images are used for training
and 14 images for testing our model. Each image is cut into 600 × 600 size. The validation
set contains 7 images randomly selected from the training set.

4.1.2. Vaihingen

The Vaihingen dataset consists of 33 high-resolution images (average size 2494 × 2064 pixels)
with a Ground Sampling Distance (GSD) of 9 cm. The classes of the dataset are the same as
those of the Potsdam dataset. The dataset provides NIR-R-G channels and DSM. Sixteen images
are used for training and 17 images for testing our model. Each image is cut into 512 × 512 size.

4.2. Evaluation Metrics

On these datasets, our method is evaluated in terms of three commonly used metrics:
average F1 score, average accuracy, and Intersection over Union (IoU) [52]. Among them,
the F1 score of the foreground object classes is calculated by (6):

F1 = (1× β2) · precision · recall
β2 · precision + recall

(6)
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where β represents the equivalent factor between recall and precision and is usually set to
1. Overall Accuracy (OA) and Intersection over Union (IoU) are defined by Formulas (7)
and (8), respectively:

OA =
TN + TP

N
(7)

IoU =
TP

TP + FN + FP
(8)

where: N is the total number of pixels; TN, TP, FN, and FP represent the number of true
negatives, true positives, false negatives, and false positives, respectively.

4.3. Implementation Details

In the experiment, the SLIC algorithm [50] is used to generate 2000 superpixels for
each image. See Section 4.4 for details about the number of superpixels. Subsequently, the
average value of the feature vectors corresponding to all pixels contained in each superpixel
is calculated as the average feature vector of the superpixel. Finally, the K nearest neighbors
(K = 8 in this experiment) of each superpixel are determined according to the center of the
superpixel and the graph structure is constructed. The GNN part is composed of three
layers of the same graph structure. The MLP structure of each node is a single layer used to
aggregate neighbor information, and the attention parameter α is calculated from forward
propagation. In the training phase, the unary CNN is initialized from the pre-trained VGG
network in [17]. The network optimization method is Stochastic Gradient Descent (SGD)
with momentum, and the norm of the gradient is clipped in order for it not to exceed 10. The
initial learning rates of the unary CNN and GNN are 0.001 and 0.01, respectively, the batch
size is 5 images, the momentum is 0.9, and the weight attenuation is 0.0001. The MSRA
method [53] is used to initialize RNN update functions of our GNN. All the experiments
were conducted on the Pytorch framework with NVIDIA GeForce RTX 2080Ti GPU.

4.4. Superpixel Number

Superpixels can group pixels in advance according to their appearance similarity and
spatial correlation, effectively reducing the number of elements for subsequent manipu-
lation and helping preserve the edge information of objects. When the semantic labels
of superpixels are defined, most of the internal semantic information of superpixels is
consistent and can be directly used as labels. If pixels within a superpixel have different
ground truth labels, the voting mechanism is adopted to take the label with the largest
proportion as the label of the superpixel. However, superpixels may introduce quantization
errors in this case. Therefore, the performance of constructing GNNs is evaluated using
different superpixel numbers. Figures 3 and 4 show the experimental results of the Potsdam
and Vaihingen datasets at different superpixel numbers, respectively. We can see that, the
number of superpixels is preferably greater than 2000 for the Potsdam dataset, and it is
better to be greater than 1800 for the Vaihingen dataset. Because the image resolution of the
Vaihingen dataset is lower than that of the Potsdam dataset, the Vaihingen dataset needs
a lower number of superpixels to achieve maximum accuracy compared to the Potsdam
dataset. Comprehensive comparison between the results of the two datasets indicates the
network model tends to perform well when more than 2000 superpixels are used. Therefore,
in order to balance computational efficiency and prediction accuracy, we used an average
of 2000 superpixels for each image throughout the experiment.

4.5. Comparison with Existing Works

Our model was compared with four existing methods, including the benchmark algo-
rithm FCN [9], Spatial propagation CNN (SCNN) [54], RotEqNet [55], and DeepLabV3+ [19].
The experimental results of Potsdam and Vaihingen test sets are shown in Tables 1 and 2,
respectively. In order to directly reflect the segmentation effect, the F1 score is selected
as the evaluation metric for each foreground class in Table 1. As shown in Table 1, our
SAGNN method not only outperforms other algorithms in F1 scores for each class, but



Remote Sens. 2022, 14, 305 9 of 17

also performs best in mean F1 score, OA and MIoU. Similarly, the numerical results of our
method on the Vaihingen test set are also excellent (as shown in Table 2). In addition to
the F1 score of Low Vegetables, our SAGNN achieves the best in the other 7 aspects. Our
method performs most prominently in Building (in Table 1) and Car (in Table 2), which are
1.13 and 1.06 higher than the sub-optimal algorithm deeplabV3+, respectively. Regardless
of whether the segmentation object is large-scale (building) or small-scale (car), our model
always achieves good segmentation results, a solid proof that our network is robust to scale
changes.

Table 1. Experimental results on Potsdam test set, Bold means best results.

Mehtod Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) MIoU (%)

FCN [9] 86.81 92.32 82.69 79.25 92.18 86.65 84.67 77.13
SCNN [54] 89.66 92.75 84.23 85.67 93.86 89.23 85.96 81.83

RotEqNet [55] 90.32 93.80 86.94 84.53 94.10 89.94 87.25 82.04
DeeplabV3+ [19] 92.05 94.83 87.79 86.10 95.94 91.34 89.88 83.82
SAGNN (ours) 92.59 95.96 87.86 87.78 96.18 92.01 90.23 84.64

Table 2. Experimental results on Vaihingen test set, Bold means best results.

Mehtod Imp. surf. Building Low veg. Tree Car Mean F1 OA (%) MIoU (%)

FCN [9] 87.26 90.15 75.38 86.14 70.51 81.89 84.57 71.03
SCNN [54] 88.51 91.26 77.65 87.04 79.80 84.85 86.52 74.91

RotEqNet [55] 89.75 93.63 78.60 82.92 77.36 85.25 87.68 76.30
DeeplabV3+ [19] 91.64 94.21 83.11 87.58 86.19 88.55 88.94 79.85
SAGNN (ours) 92.01 95.13 83.09 88.36 87.25 89.16 89.32 80.11

4.6. Qualitative Comparison

The results of qualitative comparison between the Potsdam and Vaihingen test sets for
SAGNN and baseline network are provided in Figures 5 and 6, respectively. In particular,
the red dotted boxes are used to mark areas that are inaccurately labeled in Figure 5. As the
datasets of semantic segmentation are manually annotated, there are label errors, adding
more challenges to the inherently difficult semantic segmentation task. From Figure 5, our
method is evidently largely superior to the baseline network FCN based algorithm. And
the red box in Figure 5a indicates that our model can segment the wall that is not covered
by the branches. Similar situations are the black car in Figure 5b, the sunshade in Figure 5c,
and the road and the white car in Figure 6c. Even if the Ground Truth is wrong, our model
can still give correct predictions. Similarly, SAGNN’s performance is far better than the
benchmark on the Vaihingen test set. For example, in the red boxes of Figure 6a,b, the
edge is accurately segmented, and the objects are correctly classified, by SAGNN method.
In conclusion, SAGNN can predict more accurate segmentation maps; it not only obtains
more refined boundary information, but also effectively filters out error noises (incorrectly
labeled pixels), a proof of the outstanding performance of GNN and the effectiveness of the
model based on superpixels and attention mechanism. Figure 7 shows several examples of
the segmentation results of five segmentation algorithms. The upper three rows are the
results of the Potsdam test set, and the lower three rows are the results of the Vaihingen
test set. The segmentation results of our method are significantly better than those of the
other four methods, especially for objects with regular edges (such as Building and Car).
However, the segmentation effect is not so accurate for objects with irregular edges, such
as the tree in the first image and the low vegetable in the last image.
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Figure 3. Performance comparisons of different superpixel numbers when evaluating on Pots-
dam dataset.
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Figure 4. Performance comparisons of different superpixel numbers when evaluating on Vaihin-
gen dataset.
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Figure 5. Qualitative comparisons between our method and baseline on Potsdam test set.

Figure 6. Qualitative comparisons between our method and baseline on Vaihingen test set.
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Figure 7. Examples of segmentation results on Potsdam and Vaihingen test sets.

5. Discussions
5.1. Ablation Study

In SAGNN, three important modules are used on the GNN body: superpixel module,
attention module, and (CNN) feature extraction module, among which the superpixel
module is used to reduce the resolution of the image and retain the boundary information
of the object, the attention module is used to focus on similar neighbor information when
clustering neighbors, and the CNN feature extraction module is used to extract feature vec-
tors from the original image. Above is a brief discussion about the contributions of the three
modules, with which we conducted ablation studies under different settings. Tables 3 and 4
show the ablation experiment results on Potsdam and Vaihingen datasets, respectively.
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Table 3. Ablation study on Potsdam test set.

Mehtod Superpixel Attention CNN OA (%) MIoU (%)

X 84.01 76.95
X 82.43 75.16

X 84.57 77.02
SAGNN X X 86.32 81.95

X X 89.54 83.97
X X 87.68 82.19

X X X 90.23 84.64

Table 4. Ablation study on Vaihingen test set.

Mehtod Superpixel Attention CNN OA (%) MIoU (%)

X 83.82 70.78
X 82.21 70.29

X 84.13 71.98
SAGNN X X 86.45 74.88

X X 88.17 78.70
X X 87.39 76.16

X X X 89.32 80.11

As shown in Table 3, when these three modules are used alone, both overall accuracy
and average IoU are below baseline levels. Especially, when the attention module is used
alone, the overall model performance is the worst, with OA only 82.72% and MIoU only
75.16%. However, this result does not mean that the attention module is unimportant. The
main functions of the attention mechanism are to strengthen effective information and
weaken redundant information. For the graph neural network model, the influence of
the attention module on the semantic segmentation is indirect, and its greater significance
is to increase the ability of the neural network to extract effective information. However,
improving the edge accuracy of the image (super-pixel module) and improving feature
quality (CNN module) have direct and effective effects on semantic segmentation results,
so the model performance will be better when the attention module is used with these
two modules. In the experiment where the two modules are used at the same time, it can
be seen that the OA of “Superpixel + Attention” combination reaches 86.45%, which is
4.02% higher than if the “Attention” module is used alone, and 2.44% higher than if the
“Superpixel” module is used alone; also significant is the improvement brought about with
simultaneous use of “Superpixel + Attention” combination in MIoU. Similarly, the OA
and MIoU of “Attention + CNN” combination have also achieved better results of 87.68%
and 82.19%, respectively. These prove that the attention module has a strong dependence,
while the simultaneous use of the other two modules can greatly improve the performance
of our model. In the dual-module experiment, the OA and MIoU of “Superpixel + CNN”
combination are the best, achieving more than one percentage point higher in each metric
than either “Superpixel + Attention” or “Attention + CNN” combination. These results
show that good segmentation results require not only superpixel preprocessing but also
high-quality features being extracted by CNN. Finally, when the three modules are applied
at the same time, OA and mIOU reach the best of all experiments. The same situation can
be verified in Table 4. In summary, our method proves effective in optimizing the model
from different angles, which brings great benefits to target segmentation.
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Table 5. Ablation study of Parameters (PRM), Inference Time (IT) on GPU, and computational cost
(FLOPs).

Mehtod Superpixel Attention CNN PRM (M) IT (ms) FLOPs (Giga)

X 7.03 12.96 8.65
X 9.20 15.19 16.78

X 10.56 16.28 17.80
SAGNN X X 7.86 14.10 10.24

X X 8.02 14.24 13.78
X X 11.21 16.76 18.13

X X X 8.96 15.07 14.51

We also conduct ablation experiments on our method in terms of parameters, inference
time on GPU, and computational cost (FLOPs). Table 5 details the quantitative results of
ablation experiments on the Potsdam test set. It can be seen from Table 5 that the addition
of the superpixel module can save inference time and computational cost very effectively.

5.2. Extensive Analysis

We list five aerial images semantic segmentation datasets in Table 6. Among them, the
single sheet with the highest resolution is the Zeebrugges dataset, with a spatial resolution
of 5 cm. In order to improve computational efficiency, the method [26] reduced the spatial
resolution to 10 cm. The largest number of images is The EvLab-SS dataset, which contains
35 satellite images and 25 aerial images. Dual Multi-Scale Manifold Ranking (DMSMR)
Network [56] cut the images into 640 × 480 pixels patches and then compresses them into
321 × 321 pixels for training. The Zurich Summer dataset is a relatively small dataset com-
pared to the other four datasets. CNN-Multiresolution Segmentation (MRS) [57] designed
three patch sizes (32 × 32, 64 × 64, 128 × 128) for training. P dataset and V dataset are
commonly used aerial image semantic segmentation datasets. In order to ensure that the
image information is relatively complete, we did not reduce the resolution of the pictures,
and cut them into patches of 600 × 600 pixels and 512 × 512 pixels for training. It can be
seen from the patch size that our method (including other methods) deals with relatively
small-sized patches. For the semantic segmentation model, the learning and processing of
large-size images is a challenge, and the substantial increase in image resolution will cause
exponential growth in parameters. Our graph structure is constructed with superpixels, so
it is advantageous to deal with large-size images. As the image size reaches the city-scale,
our model can upgrade the graph neural network to a dynamic evolution network to save
computing resources and merge graph nodes in the learning process.

Table 6. Comparison of 5 aerial image semantic segmentation datasets.

Method Dataset Original Size No. Class Patch Size

Multi-task learning [26] Zeebrugges 10K × 10K 7 8 500 × 500
DMSMR [56] EvLab-SS 4500 × 4500 60 11 321 × 321

CNN–MRS [57] Zurich Summer 1100 × 1100 20 8 128 × 128
SAGNN Potsdam 6000 × 6000 38 6 600 × 600
SAGNN Vaihingen 2494 × 2064 33 6 512 × 512

6. Conclusions

In this work, a superpixel-based attention graph neural network was proposed for
semantic segmentation of aerial images. GNN was built on superpixel nodes and features
extracted from the image, with an attention mechanism introduced into the propagation
process. Our SAGNN used both the appearance information of aerial images and the
geometrical relationship between superpixels. It was able to capture long-term depen-
dencies in images more effectively and maintain the integrity of semantic information.
The comprehensive evaluation of two public datasets for semantic segmentation of aerial
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images well demonstrated that our SAGNN had superior performance. The evaluation
metrics on both datasets attained the best results. Although the edges of objects of aerial
images are irregular, our model was able segment them accurately. Our model achieved
the highest F1 scores regardless of object scale, which showed that our model was robust
to aerial images with large scale changes. Although our model performed well in the
semantic segmentation task of aerial images, there are still unresolved problems, such as
how to process larger size aerial images. As such, a direction of our future work will be to
explore how to achieve semantic segmentation of large-size aerial images using a dynamic
evolution graph neural network.
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