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Abstract

Semantic segmentation, like other fields of computer vision, has seen a remarkable
performance advance by the use of deep convolution neural networks. However, con-
sidering that neighboring pixels are heavily dependent on each other, both learning and
testing of these methods have a lot of redundant operations. To resolve this problem, the
proposed network is trained and tested with only 0.37% of total pixels by superpixel-
based sampling and largely reduced the complexity of upsampling calculation. The hy-
percolumn feature maps are constructed by pyramid module in combination with the
convolution layers of the base network. Since the proposed method uses a very small
number of sampled pixels, the end-to-end learning of the entire network is difficult with
a common learning rate for all the layers. In order to resolve this problem, the learning
rate after sampling is controlled by statistical process control (SPC) of gradients in each
layer. The proposed method performs better than or equal to the conventional methods
that use much more samples on Pascal Context, SUN-RGBD dataset.

1 Introduction
The purpose of semantic segmentation is to segment a given image and identify the semantic
information of each segment. Like many other computer vision applications, architectures
based on convolutional neural networks (CNN) have been introduced and applied to improve
performance of the semantic segmentation [9, 24, 26]. Especially, since the introduction of
the fully convolutional network (FCN) based architecture proposed in [24], which showed
promising performance on semantic segmentation, many studies follow this methodology
[3, 21, 26, 33]. A general CNN-based semantic segmentation is largely divided into three
parts as shown in Figure 1(a). First, feature extraction is performed as in [28]. Second, we
upsample the reduced feature map to the original size and finally calculate probability values
for each semantic class using a 1-by-1 convolution for each pixel. This is also referred to as
dense classification or pixel-wise classification.
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Figure 1: (a) Conventional CNN for semantic segmentation. Usually they need upsampling
layer and do pixel-wise classification (b) Our proposed method. We do not need to use up-
sampling method and reduce the operations significantly by superpixel based sampling
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Figure 2: Overall structure of the proposed method (HP-SPS)

Semantic segmentation has a couple of problems owing to the pixel-wise classification.
First, pooling is used multiple times for a wider receptive field to get richer information as in
[4]. Thus, the feature map becomes much smaller than the original size. In order to solve this
problem, researchers devised schemes which used less pooling layers but with a wider recep-
tive field, and made use of CNN-based upsampling methods. Second, neighboring pixels are
likely to have close relationship and share similar information. Therefore, they are likely to
belong to the same semantic class. However, the class of a pixel is calculated independently
without this relation. If we group the pixels that are likely to belong to the same class, we
can reduce the inefficient computation and time complexity. Also, because the neighboring
pixels share information, the basic assumption of the stochastic gradient descent (SGD), that
the data have independent identical distribution (IID), is violated and the learning becomes
inefficient [5, 13, 16].

However, none of the above studies has solved the problems mentioned above com-
pletely. The use of upsampling requires additional computation, even though less pooling is
performed. In addition, there is still a problem of pixel-wise classification. This paper pro-
poses a novel semantic segmentation algorithm based on pyramid module in combination
with superpixel-based sampling to solve the problems mentioned above. More specifically,
1) we use the pyramid module to broaden the receptive field and enable feature extraction
with enhanced scale-invariant properties. 2) We do not use common upsampling method [11]
and changed the method more efficiently by applying superpixel-based sampling method that
reduces the amount of computation in the training and testing, by using only 0.37% of the
total pixels through sampling. 3) To solve the learning speed drop problem cased by the
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sampling, the learning rate is further tuned to acquire stable gradients, by using statistical
process control [25].

The organization of the paper is given as follows. In Section 2, the related works are
briefly overviewed. Section 3 presents the proposed method of semantic segmentation using
superpixel-based sampling with pyramid module and hypercolumn feature extraction. We
also propose new gradient control method to compensate for the learning problem in sampled
networks. Section 4 shows the experimental results using Pascal context with subtraction
experiment and additional experiment using SUN-RGBD finally Section 5 concludes the
paper.

2 Related Works

The performance of semantic segmentation has improved a lot since the introduction of
CNN-based methodologies [9, 24, 26]. Since the introduction of the FCN [24], the scale
invariant features could be obtained in a fast and easy way without the use of the image
pyramid and semantic segmentation has been conducted using the popular networks such as
VGGNet [28]. After then, in many methods[2, 8, 21], pooling was used to obtain features
with wider receptive fields [8]. However, successive application of pooling makes the reso-
lution of a feature smaller and it becomes quite difficult to recover the original resolution of
an image. To resolve this problem and to obtain features with wider receptive fields using the
reduced number of pooling, some new types of filters such as dilated convolution [33] and
atrous convolution [8] have been introduced.

Nonetheless, recovering the resolution of feature map and preserving fine-detail informa-
tion a major obstacle for the FCN based segmentation. Therefore, researchers have proposed
the methods concatenating the features in intermediate layers as well as the final layer to
obtain high quality features. The studies in [2, 3, 21, 34] belong to this line of research. The
hypercolumn [11] of a pixel is defined as a stacked vector of all features in feature maps in
every different layers corresponding to the pixel. The methods of shift and stitch [23, 24],
deconvoution [21], and unpooling [2, 3, 21] gradually recover the missing information by
adding extra shallow layer features of the same target resolution [34].

There are also studies different from this framework of extract-and-expand as in [24].
Lin et al. [17] combine the structure of conditional random field (CRF) and CNN, where
the CNN computes the potential function value through joint learning. Then, a mean-field
approximation is applied to perform semantic segmentation. In [4], they randomly sampled
the feature map to cut off dependency among the pixels and delivered the gradient only
to the sampled ones for statistical efficiency. However, at the time of inference, they must
create hypercolumn feature maps that are in the same size as the original image. Also, at the
time of training, they use as much as 10 times the number of samples than ours. Therefore
very redundant operation is still performed in [4]. In [19], multi-layer features were created
by average pooling in each superpixel for semantic segmentation. This study aims at rich
feature representation for various resolutions without using a complex additional model.
At the same time, it also enhances efficiency in testing by using superpixel. Although this
work has some commonality with ours in that it uses superpixels in training and testing, the
difference is that unlike theirs, 1) we used sampling to reduce the computational complexity
and 2) hypercolumns of pyramid modules for better representation power.
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Figure 3: Hypercolumns of random pixels

3 Proposed Method
Figure 2 shows the overall framework of the proposed semantic segmentation method with
superpixel-based sampling. First, the CNN features are extracted for a given image. Second,
the image is divided into small regions by using a superpixel technique. Third, each region
in a superpixel is represented by one or two random pixels in the region. Fourth, for each
sampled pixel, hypercolumn features are generated by concatenating all the feature maps for
each layer passing the pixel. Then, using the extracted hypercolumn features, segmentation
is conducted for each sampled pixel in a superpixel by using the segmentation network com-
posed of Resblock [12] or FCN. The proposed method is named as HP-SPS, an abbreviation
for Hypercolums of Pyramid module with SuperPixel-based Sampling. The detailed network
design can be found in Table 1. More detailed explanation of each step is given below.

3.1 Feature Extraction through Hypercolumns of Pyramid Module

For semantic segmentation, we first map the input images into multi-layer CNN features
having large receptive fields in order to make the features robust to scale and translation
variations as in [4]. In the proposed feature network, we use the VGGnet [28] until conv5
stage. Then, the receptive field is expanded by four parallel pooling layers with pool sizes
of 2, 4, 7, and 14, respectively. After pooling, 3× 3 convolution with 1024 dimension is
performed on each output of the four pooling. We found that the segmentation performance
is better when the kernel size is equivalent to the stride size, so that the convolution inter-
vals do not overlap. Also kernel size of 3 was better than that of 1 because it considers the
information of surrounding features. We set the output feature dimensions the same (1,024)
because if the feature dimensions of the layers are much different from each other, it cause to
use only specific scale information [22]. After mapping the image into the feature extraction
network, we concatenate the feature maps for each layers using hypercolumn method [11].
To apply the method, we track the pooling locations of the target pixel through conv3, conv4,
conv5 and all the four conv6 in the proposed feature extraction network, then concatenate
all the corresponding feature maps of different layers as shown in Figure 3. We note that the
normalization step is required to balance the scale between the layers. l2 normalization is
adopted in our method as in [18].

3.2 Super-pixel Based Sampling for Learning and Inference

In our method, superpixel is adopted as a basic block for semantic segmentation to resolve
the problem of redundancy in learning and prediction. We weakly segment the image using
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Figure 4: Method of making gradient plot from the gradients gi’s

simple Linear Iterative Clustering (SLIC) and randomly sample the representative pixel pi
for each superpixel si, i = 1, . . . ,N. Since the number of SLIC superpixels differs from image
to image, we randomly select one or two pixels from the randomly chosen superpixel si
such that the number of the total selected pixels be same for all images. Then, we extract the
hypercolumn feature fi for the selected pixel pi representing the superpixel si and also record
the segmentation label li at same position as in Section 3.1. By selecting both the superpixel
and the pixels in it randomly, we try to meet the IID assumption of SGD.

Using the extracted hypercolumn feature fi, we train the segmentation network in Figure
2 with label li for the superpixel si. For the segmentation network, Resblock [12] and FCN
[24] are adopted. At test time, we assign the same class to all the pixels inside of superpixel
for dense prediction. Unlike other studies, thanks to superpixel-based sampling, we do not
need to recover feature map to the original resolution. Also because most of other works
perform pixel-wise independent estimation with 1-by-1 convolution, they incur much com-
putational complexity. Because neighbor pixels have high probability of sharing the same
semantic information, our superpixel based sampling method reduces this complexity a lot.

However, in our method, the training is not straightforward because the number of the
training sample is drastically decreased (only 0.374% of the sample compared to the pixel-
wise case). This is severe considering the large dimension of the input fi. To train the network
with a relatively small number of samples, learning rate of each layer γ of the stochastic
gradient should be increased so that the network parameter can be changed enough to reflect
the effect of the sample pi. When increasing the learning rate, correspondingly, we suffer
from noisy gradient problem and it is critical especially for the case when just a few input
samples are provided. Therefore, we propose statistical process control (SPC) method to
control the noisy gradient problem and successfully train the network parameters using a
restricted number of input samples. We analyze the gradients from the experiments with low
and high learning rates for all the layers (all low γ and all high γ , respectively) and suggest
a hybrid learning rates method where in some layers γ is set to have low values, while in
other layers it is set to have high learning rate (hybrid γ). Note that the control of γ by SPC
is applied only to the layers after the sampling.

3.3 Statistical Process Control for Tuning Learning Rates
For training the proposed segmentation network, considering the large solution space of the
network parameters, relatively a small number of samples is provided. Consequently, it is
difficult to extract a proper gradient for each layer, and adjusting the layer-wise learning rate
is widely used solution for mitigating the effect of the noisy gradient [16]. In this section, we
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UCL line for each layer

gradient data point gij

(a) (b)
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Figure 5: Gradient plot with UCL. The closer to the origin on the x-axis, the farther away
from the input. (a) all low γ gradient plot in Resblock network, (b) all low γ gradient plot in
FC network, (c) all high γ gradient plot in Resblock network, (d) all high γ gradient plot in
FC network, (e) hybrid γ gradient plot in Resblock network

introduce SPC method for efficient selection of the layer-wise learning rate.
If we look at CNN as a manufacturing system, we produce a gradient through a process

called backpropagation, where the quality of production depends on the parameters control-
ling the process. If the scattering of the gradients is too large, the learning will not work
properly. On the other hand, if the scattering is small, the learning will be done properly
and the good performance will be obtained. SPC [25] is the most popular method for quality
control which is based on statistics. SPC monitors data in the current state to understand
whether current state is good for producing high quality products. Here, we use the control
chart method where the upper control limit (UCL) and the lower control limit (LCL) are used
in the quality control. Both UCL and LCL are set by the mean and the standard deviation of
the process and they determine if there is a problem with the process.

In our learning, control chart method is applied to the gradient after 12 epochs. We only
apply UCL because we use the absolute value of a gradient. We make a control chart for the
same input at the same iteration using each network structure. After sampling, the depth of
feature map in the j-th layer has N j dimension. We make a gradient data point gi j for the
i-th feature map or slice (i ∈ {1, · · · ,N j}) by summing the absolute gradient values of each
feature in the slice. This is shown in (2) and Figure 4. Here, K is the number of features in
a slice and xk

i j is the k-th feature of the i-th feature map in the j-th layer. First, the mean µ j

and the standard deviation σ j of the gradient are calculated as in (1). Second, σ low
j is the j-th

layer’s standard deviation of the gradients from the experiment of all low γ . UCL is defined
using µ j and σ low

j , as in (2). The constant C is a parameter for controlling the regularity of
the process, and in our method, it is set to 6.

gi j =
K

∑
k=1
|| ∂E

∂xk
i j
||, µ j =

1
N j

N j

∑
i=1

gi j, σ j =

√√√√ 1
N j

N j

∑
i=1

(gi j−µ j)2, (1)

UCL = µ j +Cσ
low
j (2)

Figure 5 shows the plots of the gradient sums gi j’s in different layers after the sampling,
and the red line in each subfigure represents the UCL line from all low γ standard deviation
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1x1,1024

Eltwise sum

1x1,512

Eltwise sum

1x1,1024

Eltwise sum 1x1, 4096 1x1, 4096
1x1,1024 1x1,512 1x1,1024
1x1,2048 1x1,2048 1x1,2048
1x1,2048

Block 1 Block 2 Block 3 FC6 FC7
ResBlock Fully Convolution

Table 1: Network design after sampling layer for semantic segmentation

σ low
j . In Figure 5(c)(d), we show the gradient plot for the all high γ experiment where the

γ is set to 10 times the case for the all low γ experiment in Figure 5(a)(b). As in figure5(c),
since the magnitude of gi j exceeds the red line and also starts to fluctuates after passing
res3_c layer, we reduce the learning rate γ of the convolution layers placed after res3_c
layer to eliminate noisy gradient from the high learning rate. We note that the learning rate
regarding res2_c is not controlled despite that the gradient of res2_c is unstable either. It is
because the backpropagation for res3_c is performed before the calculation of gradient for
res2_c. It means that the control of the gradient for res3_c also brings change of the gradient
in res2_c. Finally reducing the gradients for the higher layer (res3_c) automatically brings
stable gradients of all the layers. Figure 5(e) depicts the experiment with hybrid γ , which
clearly shows gi j becomes stable and results in improvement in performance. For the FC
case, Figure 5(d) shows less fluctuations in spite of the high value of γ . In such cases, we
make no changes in the learning rate γ .

4 Experiment
Pascal Context dataset [20], which is based on VOC2010 dataset, has additional detailed cat-
egories. The most frequently used 59 categories are selected from more than 400 categories
and the rest are merged into one category. The number of training and validation images are
4,998 and 5,105, respectively.

SUN-RGBD dataset [29] is more difficult to segment than the Pascal Context dataset due
to variations in the shape, size and pose of the objects in the same category. The dataset con-
tains RGB and depth images from NYU depth v2 [27], Berkeley B3DO [14], and SUN3D
[32] datasets and has 37 indoor environment categories. The training set contains 5,285 im-
ages, and the test set has 5,050 images.

Here, pixel accuracy (pixel Acc.) measures the ratio of correctly estimated pixels. Mean
accuracy (mean Acc.) is the average of category-specific pixel accuracy and mean intersec-
tion of union (mean IU) is the average of category-specific ratio of the intersection versus
union between the ground truth and the estimation result.

4.1 Implementation Detail
All the experiments were performed using the caffe library [15] and we use Pixelnet [4]
pre-trained caffe model. For the new layer, we used "xavier" [10] initialization and dropout
[30] from the pyramid module. We set the momentum as 0.9 and the weight decay 0.0005.
The learning rate started at 10−6 and decreased to 10−7 after 16 epoch. The superpixel was
created using SLIC[1].

4.2 Result from SPC
To analyze the effect of the number of the superpixels between the performance, a cross
experiment was conducted as in Table 2. For ‘Train-250s’, ‘Train-750s’ and ‘Train-1600s’,
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image size:448×448
Train-750s Train-1600s

image size:224×224
Train-225s Train-750s

mean Acc. mean IU mean Acc. mean IU mean Acc. mean IU mean Acc. mean IU
Test-750s 46.975 34.976 48.275 35.603 Test-225s 45.976 32.866 46.618 33.84

Test-1600s 47.081 35.061 48.397 35.713 Test-750s 46.343 33.161 47.256 34.431

Table 2: Cross experiment between number of sampling and performance

all low γ all high γ hybrid γ1 hybrid γ2
mean Acc. 50.808 50.691 51.503 51.928
mean IU 37.936 37.828 38.911 39.659

Table 3: Performance of different γ policy using Resblock
250, 750 and 1600 superpixels were used. In the same way, ‘Test-250s’, ‘Test-750s’ and
‘Test-1600s’ were conducted by 250, 750 and 1600 number of superpixels. We used a same
network to both 224× 224 and 448× 448 image size, but only detailed setting of pyramid
module was slightly changed. As shown in Table 2, the performance was proportional to the
number of samples in the train. Surprisingly, the number of superpixels in the test was not
significantly affected. That is, as mentioned in Section 3.3, a small number of sample was
provided compared with a large solution space.

Table 3 shows performance improvement of tuning learning rate of each layer γ with
SPC analysis. In the experiment, high γ was set to 10 times larger learning rate than low γ

case. We note that setting high value of γ did not always occur good results. By using the
proposed statistical process control (SPC) technique, we determined which layer’s γ should
be small. The performance was improved when reducing the γ value of the last convolution
layer before softmax layer in Resblock network. In hybrid γ1, the γ in last convolution layer
was set to 5 times larger than learning rate than low γ case. The hybrid γ2 used the equivalent
learning rate to low γ case in last convolution layer. Consequently, this experiment shows
that the higher performance can be achieved by setting learning rate of the last layer γ to be
smaller than usual case.

4.3 Pascal Context

For training and testing the Pascal Context data, we used provided train/validation set to
train/test the proposed method. All the image were resized to 448×448, and 750 superpix-
els are used for each image. To analyze the effect of the superpixel method (SLIC), we set
the baseline method which uses the same number of the grid dividing the image. The ‘sam-
ple(superpixel)’ and ‘sample(grid)’ in Table 4 refers to the case using superpixel and grid for
dividing the region of the image. Both sampling methods generate hypercolumn using conv
3, 4, 5 and 6 in Figure 2, but conv 6 was not used for pyramid module. Instead, pooling with
size 14× 14 was used for having same receptive field and convolution filter output feature
depth is 4096 for same depth of feature map with HP-SPS.

For segmentation, we used fully convolution layer (FC). As shown in Table 4, mean
Acc./mean IU were increased when SLIC is used, and HP-SPS which using pyramid module
enhanced the performance more about 2.4% and 1.5% , respectively. This means that large
receptive field is not the sufficient condition of the high performance. In order to show the
effectiveness of SPC, we used two methods each of which uses 3 Resblocks or 2 FCs, respec-
tively, mentioned in Table 1. For Resblock, we do same procedure as described in Section
4.2. For the hybrid γ FC 10 case, FC layers will have 10 times higher learning rate after
sampling and the performance was stable irrespective of the setting of the γ . But hybrid γ

FC 15 case, FC layer have 15 times higher than before sampling and we should adjust γ from
SPC analysis. We reduced the γ of ‘fc7’ and it showed slightly better performance.

PixelNet which uses random sampling is related to our train method. As shown in Table
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proposed method mean Acc. mean IU Others mean Acc. mean IU
sampling (grid) 44.735 33.179 FCN-8s[24] 50.7 37.8

sampling (superpixel) 45.536 34.457 DeepLab (without CRF)[8] - 37.6
HP-SPS 47.95 35.929 CRF+RNN [35] - 39.3

HP-SPS (hybrid γ , FC 10) 51.711 39.071 ParseNet [18] - 40.4
HP-SPS (hybrid γ , FC 15) 52.01 39.248 PixelNet[4] 51.5 41.4

HP-SPS(Resblock) 50.808 37.936 Region based [6] 49.9 32.5
HP-SPS (hybrid γ , Resblock) 51.928 39.659 IFCN [26] 57.7 45

Table 4: Comparison of our results with the baseline methods and others on Pascal context
dataset

(a) input (b) ground truth (c) our result (d) input (e) ground truth (f) our result
Figure 6: Some prediction example of our method on Pascal context dataset

4, Proposed method achieved better mean Acc. but slightly worse mean IU. Compared to
the other similar region based method [6] applying selective search [31] to create the region,
our method achieved much better performance, as shown in Table 4. Figure 6 shows several
results of our method HP-SPS.

4.4 SUN-RGBD dataset

Table 5 shows the performances of various methods. In the experiment, we resized an image
to 448× 448 and extract 750 samples based on Simple Linear Iterative Clustering (SLIC)
[1]. We used pre-trained caffe model of pixelNet [4] using only RGB images like other
works. Our method used fully convolution (FC) layers after sampling for which, a 20-times
increased learning rate was used. The method of Lin et al. [17] calculates potential func-
tion value by convolution neural network (CNN) and applies mean-field approximation for
semantic segmentation. In addition, it applies bilinear upsampling to score map and uses con-
ditional random field (CRF) to sharpen boundaries. It shows state-of-the-art performance but
it uses a very complex model than others. IFCN [26] using VGGNet [28] deals with every

(a) input (b) ground truth (c) our result (d) input (e) ground truth (f) our result
Figure 7: Example of our method on SUN-RGBD dataset
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method pixel Acc. mean Acc. mean IU
HP-SPS (ours) 75.67 50.06 37.96
Lin et al. [17] 78.40 53.40 42.30

IFCN [26] 76.90 53.46 40.74
SegNet [3] 72.63 44.76 31.84

DeepLab [7] 71.90 42.21 32.08
FCN [24] 68.18 38.41 27.39

DeconvNet [21] 66.13 33.28 22.57

Table 5: SUN-RGBD result. DeepLab, FCN and DeconvNet results are copied from [3]
mean ACC mean IU time(sec)

sp(250) 51.33 38.51 2.4
sp(750) 52.01 39.25 3.1

sp(1600) 52.16 39.42 4.4
Table 6: Computational CPU time and performance on 448×448 input

feature map from pool3 for upsampling. However, the pixel Acc. of our method and IFCN
are not significantly different. The proposed method is better than SegNet [3], FCN [24]
and DeconvNet [21] which applying complex methods for upsampling. Also, our method
achieved the better performance than DeepLab [7] which employing the atrous algorithm for
wide receptive field. Figure 7 shows several exemplary results of our method on SUN-RGBD
dataset.

4.5 Speed according to the number of sampling
We reduce the number of sample , and get better speed than pixelNet. With using Intel
(R) Core (TM) i7-4790D CPU 4.00 GHz without GPU, PixelNet used about 30.33 seconds
on 224× 224 image. FCN-8s, One of the popular works, took 6.85 second and SegNet [3]
marked 5.4 second on 448×448 input. We evaluated the performances using various number
of superpixes for Pascal Context dataset on 448 image. Trained model with 750s superpixels
was used for all experiment in Table 6.

5 Conclusion
Because most methods in semantic segmentation perform pixel-wise classification, there are
many redundancy operations in both train and test. More specifically, because neighboring
pixels have a high probability to be the same class, unnecessary operations are needed to
estimate semantic category on all the pixels. In addition, there are also unnecessary oper-
ations in the feature extraction that requires a smaller feature maps enlarged to the size of
the original image. Also, in the training phase, they do not meet the IID assumption of SGD
because neighboring pixels are highly correlated. This paper comprehensively solves these
problems by using superpixel-based sampling and uses hypercolumn with pyramid mod-
ule for robust feature representation. Besides, since only 0.374% of the pixels are sampled, a
learning problem arises, which is solved through statistical process control. We evaluated the
proposed method on the Pascal Context and SUN-RGBD dataset and compared the perfor-
mance with similar methodologies. The proposed method shows equal or better performance
and is more efficient than the compared methods.
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