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Superpixel Endmember Detection
David R. Thompson, Lukas Mandrake, Martha S. Gilmore, and Rebecca Castaño

Abstract—Superpixels are homogeneous image regions com-
prised of multiple contiguous pixels. Superpixel representations
can reduce noise in hyperspectral images by exploiting the spatial
contiguity of scene features. This paper combines superpixels
with endmember extraction to produce concise mineralogical
summaries that assist in browsing large image catalogs. First,
a graph-based agglomerative algorithm oversegments the image.
We then use segments’ mean spectra as input to existing statis-
tical endmember detection algorithms such as sequential maxi-
mum angle convex cone (SMACC) and N-FINDR. Experiments
compare automatically detected endmembers to target minerals
in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
scene of Cuprite, Nevada. We also consider a planetary science
data set from the Compact Reconnaissance Imaging Spectrometer
(CRISM) instrument that benefits from spatial averaging due
to higher noise. In both cases, superpixel representations signif-
icantly reduce the computational complexity of later processing
while improving endmembers’ match to the target spectra.

Index Terms—Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS), Compact Reconnaissance Imaging Spectrometer
(CRISM), endmember detection, hyperspectral images, planetary
geology, segmentation, superpixels.

I. INTRODUCTION

S TATISTICAL analysis of hyperspectral image data gener-

ally starts with one of two representations: 1) Independent

measurements taken one per pixel; or 2) large segmented re-

gions that correspond directly to the scene features of interest.

Pixels taken independently are sensitive to instrument noise and

intraclass variability. Scene segmentation can reduce noise and

variability but can be difficult to automate, and segmentation

may incorrectly mask spectral features. This paper explores a

superpixel representation [1], [2] that combines some benefits

of both extremes. Superpixels are homogeneous image regions

comprised of several contiguous pixels having similar value

(e.g., grayscale, color). They are generated by an intentional

oversegmentation that forms a one-to-many partitioning of

scene features into smaller segments (Fig. 1). Our use of the

term superpixel is distinct from its occasional use to describe

spatial binning in a uniform grid; we impose no morphological

constraints except spatial contiguity.

Superpixels are a common preprocessing step before ob-

ject segmentation in RGB and single-channel images [1]–[3].
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Fig. 1. Segmentation of an image patch from CRISM frt00003e12, originally
from [4] (R : 2.0 µm, G : 1.5 µm, B : 1.1 µm). (Left) Original subimage.
(Center) Coarse segmentation, minimum region size 100. (Right) Fine seg-
mentation, minimum region size 20. Finer segmentations provide additional
resolution at the cost of greater computation time and sensitivity to noise. Image
courtesy NASA / John Hopkins.

They could also benefit hyperspectral images by identifying

populations of adjacent spectra that serve as independent and

identically distributed (IID) samples of each surface feature.

This additional spatial information distinguishes real spectral

features from noise artifacts and permits more robust estima-

tion of spectral properties. Note that a “perfect” (i.e., most

physically meaningful) scene segmentation would also provide

these advantages, but automating such segmentation is gener-

ally quite difficult. Oversegmentation is a pragmatic alternative

when features have diverse scales or when they are not known in

advance. Additionally, superpixel representations can improve

the computational efficiency of later processing; depending

on the spatial complexity of the image, they can reduce the

number of distinct spectra to analyze by one or more orders

of magnitude.

This paper uses superpixel representations to identify pure

materials, or endmembers, of hyperspectral images. Our mo-

tivating application is the challenge of browsing and summa-

rizing large hyperspectral archives. Here, endmember detection

can provide fast automated summaries to guide analysts’ at-

tention to regions of interest. Our primary focus is planetary

science data sets with low signal-to-noise ratios (SNRs) and at-

mospheric or instrument variability at the pixel level. We review

the endmember detection task, describe our segmentation ap-

proach, and evaluate both pixel and superpixel representations

for recovering known image features.

The evaluation uses two distinct data sets. We first consider

an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

image [5] to test the technique with well-studied data of high

SNR. We also examine the Compact Reconnaissance Imaging

Spectrometer (CRISM) aboard the Mars Reconnaissance Or-

biter [6], a planetary data set for which we anticipate superpixel

methods could enhance classification. While superpixels may

mask the mineralogy of very small or subpixel outcrops, they

offer significantly improved recall and spectral accuracy for

scenes dominated by large features. In all cases, the data

reduction yields significant benefits for run time.
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II. RELATED WORK

According to the geographic mixing assumption observed,

reflectances are linear combinations of a small number of end-

member materials. We use the standard linear mixing model,

with m endmember spectra in w wavelengths generating each

image pixel independently according to the expression

ρj = Qaj +N (0,σ2) (1)

All the pixels in the image share a w ×m matrix Q whose

columns are the endmember spectra. Here, a is an m-vector

of nonnegative mixing coefficients whose entries give each

endmember’s contribution to the observation. Gaussian noise

of variance σ2 is independent in each channel. Excluding

the noise term, the spectral observations ρ then lie on the

m-simplex with vertices defined by the endmembers. Endmem-

ber detection aims to identify the vertices of this simplex, which

typically correspond to the purest examples of the materials in

the scene. Typically, endmember extraction fits a simplex to

the convex hull of the data. A wide range of algorithms exist;

Plaza et al. offer a comprehensive review [7]. In fact, nearly

any statistical endmember extraction strategy could operate on

superpixel representations.

We are interested primarily in automated search, so we focus

on fully unsupervised endmember detection strategies that do

not require significant user intervention. This also prevents

operator performance from influencing evaluation results. The

following experiments consider two representative algorithms.

The sequential maximum angle convex cone (SMACC) method

typifies sequential endmember detection [8]. It iteratively adds

endmember spectra to a basis of increasing dimensionality.

At each step. it adds as an endmember of the spectrum with

the largest orthogonal projection onto the current basis. The

SMACC method requires little tuning to achieve reasonable

performance. In contrast, the N-FINDR algorithm exemplifies

simultaneous methods that choose all endmembers at once [9].

It randomly initializes the set of endmembers and then modifies

it by identifying the endmember position and pixel that best

improves the volume of the resulting simplex. Multiple random

initializations help prevent convergence to a local minimum.

Endmember extraction based on convex geometry favors

outlier spectra and is sensitive to measurement noise. Noisy

observations distort the geometry of the convex hull, appear

as false endmembers, and hide real ones. Spectral smoothing

(through PCA, for example) can reduce this effect but it also

masks subtle spectral features. This has led researchers to

consider methods of utilizing spatial information to improve

endmember detection.

Some endmember extraction algorithms incorporate spatial

information directly. This can recognize subtle spectral features

near the noise level by exploiting features’ presence in multiple

neighboring pixels. For instance, Rogge et al.’s Spatial-Spectral

Endmember Extraction estimates endmember pixels’ spectra by

averaging similar candidates within a local spatial window [10].

The Successive Projection Algorithm (SPA) of Zhang et al. also

uses spatial averaging [11]. It chooses candidate pixels based

on their orthogonal projection onto the subspace spanned by

existing endmembers. Noise is reduced by averaging spectrally

similar target pixels within a local spatial window around the

candidate.

Conversely, Zortea and Plaza use spatial information for

endmember selection but draw each spectrum from the original

pixel [12]. During selection of candidate endmember pixels,

they weight each pixel’s orthogonal projection based on its

similarity to neighbors inside a local square image window.

This biases the endmember selection process to favor pix-

els from homogeneous image regions. Finally, another spatial

technique, Automated Morphological Endmember Extraction,

modifies the definition of endmember to include spatial con-

siderations in addition to spectral purity [13]. It defines a local

morphological eccentricity index (MEI) for each pixel through

local operators. It selects endmembers by segmenting the MEI

image to find spectra that are both spatially and spectrally

distinctive.

There are several ways superpixel representations differ from

previous endmember detection methods that use spatial infor-

mation. First, existing spatial endmember detection generally

assume spatial relationships are constant throughout the image;

they describe spatial similarity using a constant distance metric

or membership to a fixed-size window. This is certainly ap-

propriate when spectral variation is smooth and constant over

the scene. In contrast, our segmentation uses pixel connec-

tivity; it describes similarity relationships based on pairwise

differences between neighboring pixels. This permits spatially

adaptive influence; superpixels warp to cover the features of

interest (Fig. 1). This could benefit natural scenes where fea-

tures have arbitrary morphologies or sharp boundaries. Another

difference with existing spatial endmember detection algo-

rithms is modularity. In principle, superpixel representations

could pair with virtually any statistical endmember extraction

algorithm.

It is worth noting a related class of spatial smoothing strate-

gies. Anisotropic diffusion [14]–[17] could also reduce image

noise as a preprocessing step prior to endmember extraction. It

obtains a smoothed image through a partial differential equa-

tion where the smoothing scale varies according to a locally

varying diffusion conductance function of the base image. By

basing diffusion conductance on the image gradient, one can

denoise the image while preserving edges. Diffusion methods

and superpixels have similar disadvantages and advantages for

endmember extraction. Both can reduce spatially uncorrelated

noise at the cost of intraclass variability and potentially spectral

purity. However, they also differ in their treatment of spatial

similarity. Most diffusion filters use a smooth differentiable

function. This contrasts with superpixels’ arbitrary morpholo-

gies and discrete all-or-nothing memberships.

A final benefit of superpixel representations vis a vis other

spatial processing is that it decreases the number of spectra in

the image. This diversity-preserving data reduction improves

computational complexity both for the endmember detection

stage or any additional analysis that follows. The segmentation

operation is O(n log n) in the number of pixels [18] and time

required for segmentation is generally far less than for later

processing. In the experiments of Section IV, the speed benefit

is sufficient to make an offline N-FINDER algorithm suitable

for interactive use.
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Fig. 2. Graph representation of pixels in a hyperspectral image. (Left) An
example edge (vi, vj) connects vertices vi and vj . (Right) We consider joining
segments Sa and Sb. We compare the minimum internal distance in their span-
ning trees MInt(Sa, Sb) with the minimum connecting distance Dif(Sa, Sb).
Here, the candidate edge with minimum distance is denoted by a dashed line.
All vertices are part of some segment, although for clarity we label only Sa

and Sb.

III. SUPERPIXEL SEGMENTATION APPROACH

Superpixel representations split an image into a set of seg-

ments S, each containing one or more contiguous image pixels.

The physical features also partition the image, and a valid

superpixel segmentation should be a refinement of this parti-

tion. In other words, each superpixel should intersect at most a

single scene feature. We will call this the refinement criterion.

Note that this standard is impossible to satisfy for subpixel

features. Otherwise, it is trivially satisfied whenever superpixels

are reduced to the size of single-image pixels. The refinement

criterion becomes more difficult to enforce as superpixel size

increases.

Any segmentation of an image into contiguous regions

could produce superpixels; candidate algorithms include wa-

tershed methods [19] or Markov Random Field Models [20].

Here, we use a graph-based approach based on the work of

Felzenszwalb and Huttenlocher [18]. It has several advantages

for our application:

• The resulting segments are spatially contiguous and rela-

tively uniform in area.

• Computation is efficient and scales with n log(n) for

images of n pixels. Thus the algorithm is suitable for

hyperspectral images of megapixel size or larger.

• It can accommodate any desired spectral divergence func-

tion (e.g., Euclidean distance, spectral angle).

The algorithm has been used for superpixels in three-channel

images [21] and translates easily to the hyperspectral domain.

We represent the image of n pixels as an eight-connected

graph of vertices V = {vi}ni=1
. Each vertex vi is associated

with a spectrum ρi, and edges (vi, vj) that connect the vertex to

its neighbors (Fig. 2). These edges carry weights corresponding

to a function d(vi, vj), describing the divergence between the

two spectra. An agglomerative clustering algorithm partitions

the graph into segments S. Each pixel starts as a separate

segment which trivially satisfies the refinement criterion. We

merge neighboring subgraphs whenever there is no evidence of

a boundary between the two regions. The Felzenszwalb algo-

rithm [18] determines the boundary evidence by comparing the

weight associated with segments’ smallest connecting edge to

the maximum internal weight in either subgraph. Following this

previous work, we represent the maximum internal difference

of a segment S by the largest edge weight in the segment’s

minimum spanning tree MST(S).

Int(S) = max
vi,vj

d(vi, vj) ∀ vi ∈ S, vj ∈ S,

(vi, vj) ∈ MST(S) (2)

For the set of all graph edges E, any adjacent superpixels

Sa and Sb have a minimum connecting weight given by the

minimum distance between candidate connecting edges

Dif(Sa, Sb) = min
vi,vj

d(vi, vj) ∀vi ∈ Sa, vj ∈ Sb,

(vi, vj) ∈ E. (3)

A boundary between neighboring regions is preserved when

this intersegment distance is larger than the minimum of either

internal weight Int(S), where Int(S) is the largest distance in

the minimum spanning tree of a segment. This threshold is bi-

ased by a constant k and inversely proportional to a superpixel’s

area |S|

MInt(Sa, Sb) = min

(

Int(Sa) +
k

|Sa|
, Int(Sb) +

k

|Sb|

)

. (4)

The bias k inflates the internal variability of the smallest

regions, controlling the size of the resulting superpixels. A

final step cleans any remaining small noise regions by merging

segments less than a minimum size with their spectrally closest

neighbors. Designers can trade speed for accuracy by changing

this merging threshold to produce coarser or finer segmenta-

tions as desired (Fig. 1).

We tried two spectral divergence measures: 1) The Euclidean

distance de across all wavelengths λ; and (2) the spectral angle

distance (SAD) given by dsa

de(vi, vj) =

√

∑

λ

(ρiλ − ρjλ)2 (5)

dsa(vi, vj) =
∑

λ

ρiλρjλ

|ρi||ρj|
. (6)

After segmentation, we exclude any pixels with obvious bad

data or instrument errors and compute the mean spectrum for

each superpixel. This represents the population of member

pixels for future processing. Assume that a feature is associated

with a single vector of mixing coefficients a. If the refinement

criterion is satisfied, the feature’s superpixels are internally

homogeneous and its member pixels share mixing coefficients.

The component image pixels constitute IID measurements from

a common distribution. For a pixel vj ∈ Si, this produces a

revised sampling distribution

ρ′j = Xi =
1

|Si|

∑

ρk∈Si

ρk = Qaj +N

(

0,
σ2

|Si|

)

. (7)

We have transformed the original endmember detection task of

(1) into an equivalent problem with a new noise variance re-

duced proportionally to the superpixel area. This limits outliers’

influence on endmember extraction, and can improve spectral
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fidelity since the recovered spectrum will be closer to the real

noise-free reflectances.

This noise reduction comes with a risk. If the refinement

criterion is not satisfied, or scene features are not homogeneous,

then the new representation will degrade endmembers’ spectral

purity with respect to the original data set. This tradeoff is

probably justified in planetary geology where instrument and

atmospheric anomalies are pervasive. Planetary geologists re-

port spectral averages from small contiguous regions, accepting

a reduction in purity to improve detection confidence and

interpretability [22]–[25].

Violations of the refinement criterion would also impact

fractional abundance estimation for raw pixels because su-

perpixel endmembers would be less “convex” in the original

image. For this reason, we advise caution in using superpixel

endmembers for unmixing raw pixels, particularly when the

targets of interest are likely to be small. Note that superpixel

endmembers are still valid endmembers within the superpixel

image, so abundance estimation within this representation is

still meaningful.

IV. EVALUATION METHODOLOGY

We evaluate pixel- and superpixel-based endmember detec-

tion for a guided search task. Here, an analyst browsing a large

image database desires a fast summary of scene constituents to

identify outliers and trends. A good automated system would

detect the same features that would have been found from

an exhaustive manual search. Our tests use a list of manually

selected target regions as a performance standard. We evaluate

superpixel-augmented endmember detection using an AVIRIS

image of Cuprite [9], as well as images from the Compact

Reconnaissance Imaging Spectrometer (CRISM) aboard the

Mars Reconnaissance Orbiter [6].

A. Data Sets

Our first data set consists of AVIRIS f970619t01p02, an over-

flight of Cuprite Nevada. This region is well studied both geo-

logically and through hyperspectral remote imaging [26], [27].

We use wavelengths from 1.0 to 2.5 µm, excluding absorption

bands at 1.9 and 1.35 µm. SNR is estimated to vary between

1:400 and 1:1000 in this spectral range [28]. The scene typifies

terrestrial high-resolution low-noise hyperspectral imagers. An

expert analyst performed a manual study to find the purest

examples of minerals identified previously by Rowan et al. [29].

The analyst labeled regions of interest comprised of several tens

to hundreds of pixels using techniques documented by Gilmore

[25]. These classes often included multiple spatially separated

regions.

We used the mean spectrum of each class as a target for

automatic endmember detection. Fig. 3 shows an example—the

“strong calcite” class. Red pixels in the insert show the man-

ually identified region of interest. Blue pixels show the cor-

responding endmember superpixel identified automatically by

N-FINDR. A wide range of minerals have been found at

Cuprite; we limited our evaluation to the dominant mineral

classes in the Rowan et al.’s study and with distinguishing

features apparent in the 1.0–2.5 µm window.

Fig. 3. (Top) AVIRIS image f970619t01p02_r02_sc04 of Cuprite, Nevada,
covering a region 10 km at 19 m/pixel (R : 636.07 nm, G : 557.07 nm, B :
468.31 nm). (Bottom) The “Calcite Strong” region from the geologist’s target
list, and an endmember superpixel detected by N-FINDR. Holes in the region
are due to the eight-connectivity of the segmentation graph. A spectrum drawn
from a typical member pixel appears in black.

We also consider images from the CRISM instrument which

is typical of planetary science data having high noise and

relatively low spatial resolution. CRISM offers multispectral

survey and hyperspectral targeted modes. The hyperspectral

mode yields a megapixel-scale image covering 1.0 to 4.0 µm

with over 400 measurement channels at approximately 18 m

per pixel. Full Width at Half Maximum is 7.9–10.1 nm across

the VNIR range [6]. This spatial and spectral resolution is

inferior to the best terrestrial instruments but unprecedented for

the Mars surface. We examine three well-studied full resolu-

tion CRISM scenes: 1) 3e12; 2) 3fb9; and 3) 863e (omitting

the FRT0000 catalog prefix). These contain diverse spectra

consistent with olivine, phyllosilicate, and carbonate minerals

[22]–[24]. We also consider scene 8158 where recent studies

have found spectra consistent with sulfate deposits [25].

Several characteristics of CRISM data make it a good test

case for guided search. The actual minerals present on the

surface are unknown which favors an unsupervised approach.

Also, CRISM’s data volumes outpace scientists’ capacity for

exhaustive manual study. CRISM will return over a terabyte of

data to earth over the course of its mission, and automated sum-

mary analysis could benefit investigations by identifying novel

mineralogy. Note that CRISM exhibits high noise relative to

terrestrial instruments. Estimated instrument SNR from VNIR
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laboratory calibration data, for average material at a 30◦ phase

angle, is 425. However, in practice, spectral features are quite

subtle or obscured by instrument noise, atmospheric noise, or

surface dust. They may be present in just a few contiguous

pixels; these smallest features are easily masked and challenge

the limits of spatial noise reduction. In the evaluations that

follow, we will reference AVIRIS and CRISM as representative

examples of high and low noise extremes.

The CRISM spectra cover infrared wavelengths from 1.0

to 2.5 µm, avoiding thermal emission present in the spectrum

longward of 2.5 µm. The Brown CRISM Analysis Tool applies

radiometric and atmospheric corrections to each image [30].

Atmospheric absorption correction uses a standard approach

based on spectral observations of the Olympus Mons volcano

at different altitudes [31]. In all data sets, we apply a radius 1

median filter in the spectral domain to reduce single-shot noise.

After atmospheric correction, photometric correction, and

preprocessing, the CRISM labeling procedure is the same as

the AVIRIS data set. The geologist identified the primary con-

stituents in each image along with the image pixels containing

the purest examples of each mineral. Sometimes, constituent

spectra could be identified as a single mineral, while others are

mineral mixtures with a dominant mineral. Such mixed con-

stituents are likely to be common in moderate resolution data on

planetary surfaces. Identification of the dominant mineralogy

within these pixels is geologically important and an optimal

result given the limitations of the instrument. Fig. 4 shows

CRISM image 3fb9 along with manually labeled “kaolinite”

regions. High noise in the single-pixel spectrum underscores

the ambiguity of these nonaveraged observations.

B. Methods

We choose segmentation parameters to minimize spectral an-

gle error for the CRISM 3fb9 image and apply these parameters

universally for all tests. Appendix discusses the tests in greater

detail. The designer can affect superpixels through the choice

of distance metric, the minimum region size, and the bias k.

Of these, only the minimum region size has a clear consistent

effect on performance. The bias parameter appears quite stable;

one can still vary it far enough to cause catastrophic failure,

but short of this, it has little effect on segmentation size or

morphology. In the experiments that follow, we use k = 0.001
for all images. Additionally, the different spectral divergence

functions yield no obvious performance difference and we use

the SAD measure for all segmentations. We found that the

best minimum size parameter was different for N-FINDR and

SMACC. We use a minimum region size of 15 pixels for N-

FINDR which produced superpixel areas from 15 to over 100,

similar to the fine segmentation of Fig. 1. SMACC favors

slightly larger regions, and we use a minimum size parameter

of 50 (Appendix).

After segmentation, we test both SMACC and N-FINDR

algorithms on pixel and superpixel representations. All pre-

processing is the same for both data sets aside from the seg-

mentation step. To avoid local minima with N-FINDR, we use

ten random restarts and keep the best scoring result. Fig. 5

shows N-FINDR endmembers from the 3fb9 image. The first

Fig. 4. CRISM image 3fb9, covering 10 km at 18 m/pixel (R : 2.0 µm, G :
1.5 µm, B : 1.1 µm). The insert shows specific pixels identified by the geolo-
gist as belonging to the “kaolinite” class (in red). N-FINDR identifies the blue
superpixel as an endmember; this region partially intersects the geologist’s pixel
selections and the resulting spectrum is a close match. Pixels taken individually
have ambiguous classifications due to noise.

column displays target mineralogical classes reported in the

literature and corroborated with the exhaustive manual study.

We use general descriptive terms where exact classifications are

uncertain. The targets include carbonate, kaolinite, olivine, and

a phyllosilicate. We also include a neutral (i.e., mineralogically

bland) lava spectrum. The center and right columns show the

best matching endmembers obtained from both superpixel and

(median-filtered) pixel representations. Noise reduction bene-

fits from segmentation are particularly evident in the detected

phyllosilicate, kaolinite, and lava classes.

C. Performance Metrics

The number of targets differs between images raises the

question of how many endmembers to request. Analysts of-

ten estimate this number directly from using the intrinsic di-

mensionality or similar measures [32]. In guided search, the

primary goal is not to produce spectra for abundance estima-

tion but rather to detect interpretable features of interest for

manual followup. Thus, the appropriate number of detections

also depends on our tolerance for recall error and the cost
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Fig. 5. Spectral classes derived from the CRISM 3fb9 image, with wavelengths in micrometers. (Left) Manual spectra identified by an expert. (Center)
Superpixel-based endmember extraction. (Right) Endmembers from traditional pixel-based endmember detection. Note the loss of fidelity in the Phyllosilicate,
Kaolinite, and Lava classes.

of the analysts’ time to investigate each result. Analysts with

little time available would opt for smaller sets that minimize

redundancy. Conversely, an analyst free to investigate many

detections would prefer larger sets that are more certain to

include all relevant materials. For a set of endmembers E
and target list T , we hypothesize a total score f(E , T ) that

is a weighted combination of terms corresponding to spectral

accuracy Acc(E , T ), recall rate Rec(E , T ), and the time cost of

followup analysis T im(E). Here, time cost is related to the total

number of targets detected but might also include computa-

tion time.

f(E , T ) = α1Acc(E , T ) + α2Rec(E , T ) + α3T im(E) (8)

Rather than impose specific weighting values, we will compare

recall and accuracy scores at many endmember list sizes. This

reveals the envelope of possibilities for different accuracy/time

tradeoffs. Our geologist identified 20 endmembers as the ceiling

for a mineralogical search task, so we evaluate the detection

process for list sizes ranging from 3–19 endmembers.

We measure spectrum accuracy by computing each target

mineral’s spectral angle distance to each spectrum in the re-

trieved endmember list. We report the mean spectral angle of

the best matches. We also computed RMS errors but these

differences were virtually identical to the spectral angle results

across all images and provide no extra information. We report

SAD exclusively for clarity.

We measure the recall score with a metric that matches

each detection against all possible targets in the detection list.

To count as having been “detected,” a target must have an

associated endmember that is more similar in spectral angle

to that target than to any other. The recall improves as more

endmembers are requested, so we report the first endmember

list size at which each target signal appears. Together, the recall

Fig. 6. SAD error of best matching endmembers for different numbers
of requested endmembers. The mean score over all images and targets is
shown. Translucent bands show 95% confidence intervals assuming Gaussian-
distributed errors.

and accuracy scores describe both the ability of the endmember

detection to find all the scene’s constituents and the fidelity of

retrieved spectra to these targets.

V. RESULTS

Fig. 6 shows the mean spectral accuracy score for all images

with different numbers of requested endmembers. Translucent

bars show 95% confidence intervals for the mean, presuming

Gaussian error. This is a tenuous assumption but it provides

some intuition about the spread of the data. We chart per-

formance for both N-FINDR and SMACC; neither offers a
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Fig. 7. SAD error of best matching endmembers for different numbers of
requested endmembers (AVIRIS Cuprite image).

Fig. 8. SAD error of best matching endmembers for different numbers of
requested endmembers (CRISM image 3e12).

conclusive benefit over the other for this data set. However, on

average, superpixel representations improve both methods and

benefit the SAD accuracy score by factors of 20–25%. Note

that the SMACC score is monotonic decreasing because it is

sequential and each additional spectrum can only improve the

best matches. In contrast, the simultaneous N-FINDR algorithm

is more unstable and increasing the set size occasionally hurts

accuracy by dropping previous detections. In general, accuracy

improves as more endmembers are requested.

Scores from individual AVIRIS and CRISM scenes appear

in Figs. 7–11. Benefits appear most significant for those scenes

with larger targets, such as the AVIRIS image and CRISM

8158. CRISM 3fb9 and 3e12 have several small and disjoint

features for which the refinement criterion is more difficult

to satisfy. On these images, there is a range of list sizes for

which superpixels provide no performance benefit over pixel

representations for the N-FINDR method. In general, however,

superpixel combinations perform at least as well as, or better

than, the pixel representations.

Fig. 9. SAD error of best matching endmembers for different numbers of
requested endmembers (CRISM image 3fb9).

Fig. 10. SAD error of best matching endmembers for different numbers of
requested endmembers (CRISM image 8158).

Fig. 11. SAD error of best matching endmembers for different numbers of
requested endmembers (CRISM image 863e).
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TABLE I
SPECTRAL ANGLE DISTANCE BETWEEN THE TARGET AND ITS CLOSEST

DETECTED ENDMEMBER. THE PIXEL SIZE OF EACH TARGET APPEARS IN

PARENTHESIS. THIS CHART SHOWS THE RESULT AFTER REQUESTING

THE MAXIMUM NUMBER OF ENDMEMBERS (19 FOR OUR TESTS)

Table I compares the spectrum accuracy for each target

class. Columns show scores for pixel- and superpixel-based

methods requesting the maximum number of endmembers. The

leftmost column lists a tentative classification for each of the

geologist’s targets. We use general descriptive terms where

the classification is uncertain. The total pixel size of each

labeled region appears in parenthesis; it ranges widely with the

smallest deposits having only a few tens of pixels. The top-

performing combination for each row appears in bold. Here,

again, results suggest an advantage to superpixel methods; a

pixel-based method scores best for just one of the targets in

the data set and ties for another. There are no obvious patterns

across scenes or region sizes that predict whether SMACC or

N-FINDR will outperform.

We also evaluate run time for each method. SMACC is quite

fast and computation speed is not a significant factor to analysis

time. In contrast, the N-FINDR routine requires multiple runs

of a computationally demanding combinatorial optimization.

Fig. 12 shows how N-FINDR run times vary with the number

of endmembers requested, using a modern single-core desktop

processor. A typical run of N-FINDR on each pixel represen-

tation took several hours. Superpixel representations execute

in several minutes including the cost of segmentation, which

makes the N-FINDR strategy feasible for use in an interactive

session.

We compare spectral accuracy for different SNR levels.

Fig. 13 shows retrieved spectrum accuracy for an image cor-

rupted by synthetic instrument noise. We start with the AVIRIS

scene (which has a high intrinsic SNR) and add additional zero-

Fig. 12. Runtime for the N-FINDR algorithm increases with the number
of requested endmembers. This image shows run times for CRISM 3fb9.
(Black line) Superpixel. (Gray line) Pixel.

Fig. 13. SAD error of best matching endmembers for the AVIRIS Cuprite
image with various simulated SNRs. We apply Gaussian noise across all
hyperspectral channels. Note the log scale.

mean Gaussian noise of increasing variance to all channels.

This simulates more difficult imaging conditions. The graph

shows SAD error score for a midrange list size of ten requested

endmembers and the standard minimum region sizes. Super-

pixels shift the curve both downward and to the left. This

suggests relative improvements in overall accuracy as well an

improved margin of resistance to small amounts of noise.

Fig. 14 shows a similar test for impulse noise. Here, each

pixel has a small probability of corruption in a single random

spectral channel. The alteration is additive noise with a Gaus-

sian distribution of mean zero and standard deviation equal to

three times the mean intensity of the image. This noise profile is

more typical of CRISM and is particularly damaging to pixel-

based representations. Relative benefits of spatial averaging

become more pronounced as the pulse probability increases.

Note that the SMACC version, which uses a minimum region

size of 50, yields slightly larger pixels than the N-FINDR runs.

The larger averaging regions are the top performers at very low

SNR for both impulse and uniform noise, corroborating our

intuition from (7).

Our hypothetical cost function includes a term describing

recall, or the ability to find all the significant targets in a scene.

We compare recall scores using the pairwise matching method

defined in Section IV-C. Table II reports the smallest end-

member set size for which each target spectrum was detected.
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Fig. 14. SAD error of best matching endmembers for the AVIRIS Cuprite
image with various simulated SNRs. Each pixel has a small probability of
corruption by impulse noise of Gaussian-distributed amplitude. Note the log
scale.

TABLE II
TARGET RECALL PERFORMANCE USING IMAGE PIXELS AND

SUPERPIXELS. WE REPORT THE LOWEST ENDMEMBER LIST SIZE AT

WHICH EACH TARGET APPEARS AS A DETECTION (LOW SCORES

ARE BETTER). A SUCCESSFUL DETECTION REQUIRES THAT SOME

ENDMEMBER BE A BETTER MATCH TO THAT TARGET THAN

ANY OTHER TARGET IN THE LIST. A DASH ‘-’ INDICATES

TARGETS THAT WERE NOT DISCOVERED

For example, for image 3e12, the superpixel/SMACC approach

first detects the magnesite class when four endmembers are re-

quested. Five endmembers are required to reveal the lava class.

Every trial requests at least three endmembers, so this is the

minimum number in the table. The top-performing combination

for each target appears in bold. A missed target, denoted by a

dash, does not preclude a good spectral angle score (in Table I)

since a detected endmember can be spectrally close to a target

that is not its best pairwise match.

Neither superpixel nor pixel representations provide a clear

advantage for recall scores with either data set. Only the

N-FINDR/Superpixel combination finds all of the targets in

every image, but the pixel-based N-FINDR also performs well

and the recall difference may not be significant. While we had

anticipated that small or highly disjoint regions would be the

most difficult to find, spectral distinctiveness appears to have a

larger effect. The Kieserite C class of image 8158 contains over

738 pixels, but it is quite similar to other endmembers and only

the superpixel combinations detect it.

VI. CONCLUSION

Superpixel endmember detection holds promise for fast sum-

mary analysis of large hyperspectral image catalogs. Automatic

detection methods to find subtle mineralogical signatures can

alleviate a main bottleneck to the science return of planetary

missions and enable new and more comprehensive investiga-

tions. The reduction in data set size could permit more sophis-

ticated processing on the ground, or automated data analysis by

remote spacecraft.

No planetary data set yet approaches the SNR, atmospheric

control, or lack of dust evidenced in the AVIRIS Cuprite scene.

But these tests suggest that superpixel representations could

benefit both domains in several aspects:

• spectral interpretability due to a better match with human-

selected features;

• detection confidence due to combining multiple pixels;

• computational complexity for endmember detection and

additional processing that follows.

The main disadvantage is that if the refinement criterion

is not satisfied, small spectral features may be masked. In

this case, the detected endmembers will not be suitable for

abundance estimation of the raw pixels.

Future evaluations could quantify drawbacks for the smallest

single-pixel or subpixel targets where spatial information is

not expected to be useful. It would also be helpful to test

the proposed approach against alternative smoothing methods

(e.g., diffusion) and other spatially-sensitive endmember de-

tection methods. There is also scope for improving algorithm

performance. Learned or application-specific distance metrics

might produce superior superpixels. Entirely new segmentation

strategies such as a normalized cuts approach [13] might yield

different or better results. Finally, alternatives to the sample

mean such as robust estimators might improve recovery of

features’ true spectra.

APPENDIX

SETTING THE SEGMENTATION PARAMETER

Superpixels that satisfy the refinement criterion must be at

least as large as the scene features. Actual superpixel sizes

vary over the image; they are dependent both on segmen-

tation parameters and the data. Here, we determine optimal
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Fig. 15. SAD error of best matching endmembers across different minimum
sizes (CRISM image 3fb9).

Fig. 16. SAD error of best matching endmembers across different values of
the minimum size parameter (average over all images). We show the results of
segmentations using both SAD and Euclidean distance metrics.

segmentation parameters empirically. There was no consistent

difference in segmentation quality or overall performance be-

tween the two distance measures (Euclidean and SAD), so

we use the SAD measure exclusively in the experiments. The

segmentation is also robust to different choices of k, and a

value of k = 0.001 works well for all images we have analyzed.

This leaves the minimum region size as the significant free

parameter. This parameter is the dominant factor controlling

the resolution of the final segmentation and accounts for all the

differences between the three panels of Fig. 1.

We establish an optimal minimum size parameter to maxi-

mize performance on image 3fb9, the first in our study. Fig. 15

charts mean SAD scores as a function of the minimum size

parameter for this image. The best minimum size appears

different for N-FINDR and SMACC algorithms. For N-FINDR,

maximum performance was achieved at a value of 15 where

it outperformed the pixel-based representations. SMACC per-

formed better for slightly larger regions, reflecting conventional

wisdom that this method is more sensitive to noise. The local

minimum appeared to be near 50 pixels. We used these values

exclusively in all the experiments of Section IV.

Fig. 16 shows the overall average over the entire data set.

We apply a local running average window of 5 to smooth

the graph for clarity. While N-FINDR performance is some-

what unstable, it consistently shows a local performance peak

near a minimum size near 15. A minimum size value of

50–60 is more appropriate for SMACC. Once the analyst has

chosen an endmember detection algorithm, they could use

a single minimum size value across different scenes during

automated guided search. Fig. 16 also shows segmentation

performance with both Euclidean and SAD divergence

metrics.
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