
Citation: Bae, J.-H.; Yu, G.-H.; Lee,

J.-H.; Vu, D.T.; Anh, L.H.; Kim, H.-G.;

Kim, J.-Y. Superpixel Image

Classification with Graph

Convolutional Neural Networks

Based on Learnable Positional

Embedding. Appl. Sci. 2022, 12, 9176.

https://doi.org/10.3390/app12189176

Academic Editors: Katia

Lida Kermanidis, Phivos Mylonas

and Manolis Maragoudakis

Received: 5 August 2022

Accepted: 9 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Superpixel Image Classification with Graph Convolutional
Neural Networks Based on Learnable Positional Embedding
Ji-Hun Bae 1 , Gwang-Hyun Yu 1, Ju-Hwan Lee 1, Dang Thanh Vu 1 , Le Hoang Anh 1 , Hyoung-Gook Kim 2,*
and Jin-Young Kim 1,*

1 Department of ICT Convergence System Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea

2 Department of Electronic Convergence Engineering, Kwangwoon University, 20 Gwangun-ro, Nowon-gu,
Seoul 01897, Korea

* Correspondence: hkim@kw.ac.kr (H.-G.K.); beyondi@jnu.ac.kr (J.-Y.K.)

Abstract: Graph convolutional neural networks (GCNNs) have been successfully applied to a wide
range of problems, including low-dimensional Euclidean structural domains representing images,
videos, and speech and high-dimensional non-Euclidean domains, such as social networks and
chemical molecular structures. However, in computer vision, the existing GCNNs are not provided
with positional information to distinguish between graphs of new structures; therefore, the per-
formance of the image classification domain represented by arbitrary graphs is significantly poor.
In this work, we introduce how to initialize the positional information through a random walk
algorithm and continuously learn the additional position-embedded information of various graph
structures represented over the superpixel images we choose for efficiency. We call this method the
graph convolutional network with learnable positional embedding applied on images (IMGCN-LPE).
We apply IMGCN-LPE to three graph convolutional models (the Chebyshev graph convolutional
network, graph convolutional network, and graph attention network) to validate performance on
various benchmark image datasets. As a result, although not as impressive as convolutional neural
networks, the proposed method outperforms various other conventional convolutional methods and
demonstrates its effectiveness among the same tasks in the field of GCNNs.

Keywords: graph convolutional neural network (GCNN); superpixel image classification; learnable
positional embedding

1. Introduction

Convolutional neural networks (CNNs) have exhibited the best performance in many
machine learning tasks, especially image processing [1–3]. However, the CNN structure
has a rectangular-based grid data type, and the same input dimensions must be provided.
Therefore, the application of CNNs to irregular atypical data (e.g., social networks and
molecular structures) and 3D modeling, often encountered in real life, is limited. There
are some studies that adapt CNNs on irregular domains but it therefore includes the
design of classical convolutional layers as a particular case, in which the underlying
graph is a grid [4]. Various problems that attempt to capture complex relationships or
interdependencies between data can be expressed and analyzed more naturally in graphs.

Normally, goal of convolution operation is to summarize input data to a reduced form.
Unfortunately, dot product to compute convolution is sensitive to the order, i.e., dot product
is not permutation-invariant. So, convolution requires permutation-invariant operator that
get the same result from a spatial region even if there is randomly shuffled pixels inside
that region. CNNs can detect and recognize the object of image which translate to left or
right by sharing same filter‘s weights across all locations. However, it is difficult to define
convolution on graphs. The main problem is that there is no well de-fined order of nodes

Appl. Sci. 2022, 12, 9176. https://doi.org/10.3390/app12189176 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12189176
https://doi.org/10.3390/app12189176
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8674-8084
https://orcid.org/0000-0003-0743-8251
https://orcid.org/0000-0001-6613-056X
https://doi.org/10.3390/app12189176
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12189176?type=check_update&version=2

Appl. Sci. 2022, 12, 9176 2 of 14

in graphs because nodes are a set. So, unless we learn to order them, or come up with some
heuristic that will result in a canonical order form graph to graph, applying a convolution
to the graphs is meaningless.

Designed to be applied to graph data based on the CNN‘s convolution, graph con-
volutional neural networks (GCNNs) use a permutation-invariant operator to aggregate
information of nodes in any direction. The most popular choices are averaging [5] and
summation [6] aggregator of all neighbors, so that GCNNs overcome the limitation of
the ordering issue. Furthermore, GCNNs are not restricted to fixed dimensions of in-
put and can flexibly treat different types of data in low-dimensional Euclidean (e.g.,
image [7–19], text [20], video [19]), and high-dimensional non-Euclidean domains (e.g.,
social network [21,22], and chemical molecules [23,24]). Based on the flexibility and ex-
tensionality of GCNNs, new approaches have recently been developed through graph
representations of various data used in many deep learning fields.

In computer vision, some research has segmented original images into superpixel
images, grouping perceptually meaningful pixels and preprocessing them into a graph
to display the results in image classification [7–10], object detection [11–14], and semantic
segmentation [15–18] based on GCNNs. Among these areas, we focus on the image
classification task.

Generally, the superpixel image classification task requires procedures. First, a cer-
tain number of superpixels are generated from the original image using segmented al-
gorithms [25–27]. Each superpixel region is defined as a node and connected to an edge
through a region adjacency graph (RAG) [8–10]. These graph-represented images are input
to spectrum-based [7,28,29] or spatial-based [5,30] GCNNs to learn the aggregated graph
information during training and predict the class from it. However, even in the same class,
the generated graph structures are arbitrary according to the different shapes of objects,
and they are not sufficiently provided to the network to distinguish them. Thus, compared
to the CNN, the results of the GCNNs are worse.

In this paper, we improve the power of GCNNs, according to Dwivedi et al. [31], by
learning embedded positional information with structural information to create a more
expressive graph representation in superpixel image classification. Furthermore, we use
a specific loss function called ArcFace [32] that can supervise the learning process by
increasing the angle difference among classes and decreasing it within classes based on the
class-central weight vector and each feature vector to improve the result slightly.

This paper is organized as follows. Section 2 explains the superpixel segmentation
algorithms and development of GCNNs with mathematical formulas and various methods
from related work regarding superpixel image classification with GCNNs and graph
positional embedding. Section 3 proposes the GCNNs with learnable positional embedding
applied on images (IMGCN-LPE) and explains the ArcFace loss function in detail. Section 4
presents the comparative experiments and results with previous studies using various
benchmark image datasets. Finally, the conclusion is drawn in Section 5.

2. Related Work
2.1. Superpixel Segmentation Algorithms

The superpixel method, frequently used in computer vision tasks, clusters pixels that
share various common characteristics (color, location, etc.) in an image into one group. It
is better than the original pixel, as the superpixel increases the computational efficiency
by reducing the input size and number of learnable parameters. Moreover, it is much
more practical for learning models by implicating perceptual information. There are many
effective algorithms for segmenting images into superpixels, typically simple linear iterative
clustering (SLIC) [25], Quickshift [26], and Felzenswalb [27]. Among the algorithms, SLIC
is most commonly used in many studies because of its high stability and fast segmentation
speed. We selected this algorithm for a fair comparison of the related work. Figure 1
presents a sample of the original images and the segmented pixel-based and SLIC-based
graph images.

Appl. Sci. 2022, 12, 9176 3 of 14

Appl. Sci. 2022, 12, 9176 3 of 15

SLIC is most commonly used in many studies because of its high stability and fast seg-
mentation speed. We selected this algorithm for a fair comparison of the related work.
Figure 1 presents a sample of the original images and the segmented pixel-based and
SLIC-based graph images.

Figure 1. Sample of segmenting the original image into pixel-based and SLIC-based graph repre-
sentation.

2.2. Advances in Graph Convolution definition
The application of graph representation in computer vision is usually conducted

based on GCNNs. GCNNs emerged from the spectral-based graph convolution method,
and many studies have been derived from this, as GCNNs produce good result. Therefore,
as a step towards understanding GCNNs, we describe the advances in graph convolution
definition, from the initial definition of graph convolution operation to the recent one, in
this section.

Bruna et al. [28] initially defined the spectral graph convolutional method based on
the convolution theorem in signal and image processing. In this paper, they defined a
symmetric normalized Laplacian matrix (ℒ) with a degree matrix (𝒟) and adjacency
matrix (𝒜) from the structural graph information in Equation (1) and defined graph con-
volution using the eigenvector and eigenvalue from the eigendecomposition of ℒsym in
Equation (2): ℒ = Ι − 𝒟 𝒜𝒟 = 𝑈 𝛬𝑈, (1) 𝑋 = 𝑈 𝑈 𝑋 ⊙ 𝑈 𝑊 . (2)

where Ι denotes the identity matrix, 𝑈 ∈ ℝ is the Fourier basis in which eigenvectors
are treated with column vectors, 𝛬 ∈ ℝ is defined as a diagonal matrix of eigenvalues, 𝑋 ∈ ℝ is a feature vector in 𝑙 layer, ⊙ represents the element-wise Hadamard
product, and 𝑊 ∈ ℝ denotes the spectral convolutional filter.

However, due to the high dependence of graph size encoded by the eigenvector, it
cannot be applied to the variable structure of the large-scale graph data. The computa-
tional cost is high because the complexity of the eigendecomposition related to the Fourier
basis 𝑈 is 𝒪(𝑛), where 𝑛 is the number of nodes in the graph.

To overcome this issue, Defferrard et al. [29] proposed the Chebyshev graph convo-
lutional network (GCN) called ChebNet based on the Chebyshev polynomial in Equation
(3), and the initial term is in Equation (4): 𝑇 (𝑥) = 2𝑥𝑇 (𝑥) − 𝑇 (𝑥), (3)𝑇 (𝑥) = 1, 𝑇 (𝑥) = 𝑥. (4)

Based on the approximated filter by the K-order Chebyshev polynomial, the above
graph convolutional method defines a localized filter by recursively aggregating only the

Figure 1. Sample of segmenting the original image into pixel-based and SLIC-based graph representation.

2.2. Advances in Graph Convolution definition

The application of graph representation in computer vision is usually conducted based
on GCNNs. GCNNs emerged from the spectral-based graph convolution method, and
many studies have been derived from this, as GCNNs produce good result. Therefore, as
a step towards understanding GCNNs, we describe the advances in graph convolution
definition, from the initial definition of graph convolution operation to the recent one, in
this section.

Bruna et al. [28] initially defined the spectral graph convolutional method based on
the convolution theorem in signal and image processing. In this paper, they defined a sym-
metric normalized Laplacian matrix (Lsym) with a degree matrix (D) and adjacency matrix
(A) from the structural graph information in Equation (1) and defined graph convolution
using the eigenvector and eigenvalue from the eigendecomposition of Lsym in Equation (2):

Lsym = I−D−
1
2AD−

1
2 = UTΛU, (1)

Xl+1 = U(UTXl �UTW l
spectral). (2)

where I denotes the identity matrix, U ∈ Rnxn is the Fourier basis in which eigenvectors
are treated with column vectors, Λ ∈ Rnxn is defined as a diagonal matrix of eigenvalues,
Xl ∈ RnxF is a feature vector in lth layer, � represents the element-wise Hadamard product,
and W l

spectral ∈ RnxF denotes the spectral convolutional filter.
However, due to the high dependence of graph size encoded by the eigenvector, it

cannot be applied to the variable structure of the large-scale graph data. The computational
cost is high because the complexity of the eigendecomposition related to the Fourier basis
U is O(n2), where n is the number of nodes in the graph.

To overcome this issue, Defferrard et al. [29] proposed the Chebyshev graph convolu-
tional network (GCN) called ChebNet based on the Chebyshev polynomial in Equation (3),
and the initial term is in Equation (4):

Ti(x) = 2xTi−1(x)− Ti−2(x), (3)

T0(x) = 1, T1(x) = x. (4)

Based on the approximated filter by the K-order Chebyshev polynomial, the above
graph convolutional method defines a localized filter by recursively aggregating only
the information of nodes up to the Kth distance from each node. Equation (5) defines an
approximated filter gθ , and the convolutional operation for the input graph G based on the
filter is defined in Equation (6):

gθ ≈ ΣK−1
k=0 θkTk(Λ̃), (5)

G ∗ gθ ≈ U(ΣK−1
k=0 θkTk(Λ̃))UTG, (6)

Appl. Sci. 2022, 12, 9176 4 of 14

where Tk(Λ̃) ∈ Rnxn denotes the Kth-order Chebyshev polynomial based on the diagonal
matrix of eigenvalues Λ̃, with values from −1 to 1, in Equation (7), and θk ∈ RK represents
the coefficient of the Chebyshev polynomial:

Λ̃ =
2Λ
λmax

− I. (7)

By redefining the graph convolution that is unaffected by the Fourier basis U in
Equation (9), according to Equation (8), Defferrard reduced the computational complexity
to O(K|ε|)� O(n2), where |ε| is the number of edge sets:

Ti(L̃) = UTk(Λ̃)UT , (8)

G ∗ gθ ; ΣK−1
k=0 θkTk(L̃)G, (9)

L̃ =
2L
λmax

− I. (10)

where L̃ denotes the rescaled Laplacian matrix, defined in Equation (10).
According to Equation (9), graph convolution can be widely expanded and applied

regardless of the graph size because it is not necessary to calculate the eigenvectors. How-
ever, the Chebyshev polynomial is recursive, making it impossible to parallelize; thus, it
requires the repeated computation of convolutional operations K times on the forward and
backward passes. Thus, the network is slow to operate. In addition, if K is equal to the
number of graph nodes n, the receptive field of the filter becomes the entire graph, and
the total number of learnable parameters is extremely increased, which is likely to lead to
overfitting. Therefore, K takes a reasonably small value.

Kipf et al. [5] proposed a spatial graph convolutional network (GCN) that aggregates
information from neighbor nodes, the fastest efficient first approximation of the Chebyshev
graph convolution. As indicated in Equation (11), the information of the neighbor nodes
is aggregated based on the adjacency matrix (Ã ∈ Rnxn), including self-information, by
adding the identity matrix in Equation (12) and the degree matrix (D̃ ∈ Rnxn) defined in
Equation (13) to update the node features:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)), (11)

Ã = A+ I , (12)

D̃ = ΣÃij(j ∈ N(i)). (13)

Inspired by the transformer [33] attention mechanism, Veličković et al. [30] proposed
the graph attention network (GAT) that applied a self-attention mechanism using different
weights for each neighbor node in the aggregation process. The GAT did not consider the
importance of neighbor nodes for each node in the same way as the GCN but learned the
relative weights of two connected nodes to assign more weight to more important nodes.
Thus, it has the advantages of being applied to graph nodes with different degrees and is
easily generalized to new graphs. The GAT learns, as revealed in Equation (15), based on
the attention score defined in Equation (14):

αij =
exp (LeakyReLU(

→
a [W

→
h i|W

→
h j]))

Σk∈N(i) exp (LeakyReLU(
→
a [W

→
h i|W

→
h k]))

, (14)

→
h′i = σ(Σj∈Ni αijW

→
h j). (15)

In addition, multihead attention was applied to improve the stability of the self-
attention mechanism, further improving the model performance and obtaining an appro-
priate graph representation according to the data characteristics.

Appl. Sci. 2022, 12, 9176 5 of 14

2.3. Superpixel Image Classification Using Graph Convolutional Neural Networks

Monti et al. [7] proposed the Monet framework that operates by assigning weights to
aggregate information based on the relative distance between the central node and neighbor
nodes. They initially applied the graph neural network (GNN) to the MNIST [34] dataset,
which was segmented into superpixels for the image classification task. However, because
all segmented regions of superpixels are fully connected, it has a high computational cost
and is inefficient for memory.

To solve the above problem, Avelar et al. [8] proposed the RAG-GAT, which segmented
an input image into superpixels and generated the RAG by connecting each region to the
neighbors and supplying it to the GAT. The RAG-GAT performed better than other GNN
models on grayscale images but had very low accuracy on three-channel RGB images
because unnecessary information was aggregated due to the forced connection between
adjacent areas. The original color information was lost by averaging the color values of
each region; thus, it was difficult to optimize the model.

To solve this information loss problem, Jihoon et al. [9] proposed the convolutional
graph attention network (CGAT), which first inputs the superpixel image into the CNN
model to obtain feature maps and then inputs the feature maps into the GAT. However, the
fundamental problem in the graph-generated process was only alleviated by the CNN’s
power, and the information loss and overfitting could not be solved.

Instead of generating a graph fully connected to all superpixel regions (e.g., Monet)
or forcibly connecting to adjacent regions (e.g., RAG-GAT), Youn et al. [35] proposed the
Dynamic superpixel cloud graph convolutional network (DISCO-GCN), which could learn
spatial features and overall graph features at once using the point cloud instead of using
the superpixel method. The DISCO-GCN defined a positional encoder to compensate for
the loss of the positional information, enabling the model to learn in a broad context and
consequently significantly improving the expressive power of the graph. However, using
the fixed central coordinates of input pixels as positional information, DISCO-GCN cannot
embed sufficient information on the arbitrary position of nodes into the feature vector.

Long et al. [10] proposed the Hierarchical graph neural network (HGNN) that embeds
superpixel coordinates and color information into the feature vector of the node. However,
they used the residual connection, the main idea of ResNet [1], and concatenated every
output of the previous layers to overcome the information loss issue. In addition, the
HGNN used the GAT as a base model to aggregate information with different weights for
each neighbor, solving the over-smoothing problem, where the overall node embedding
results become similar as model layers deepen. In addition, Long et al. defined the loss
function by mixing cross-entropy [36] with ArcFace, primarily used in face recognition, to
enhance classification results.

2.4. Graph Positional Embedding Methods

When graph data are input, the existing GCNNs initialize the positional information
by placing nodes in a random order, which is sensitive to the number of nodes. If the
number of nodes is n, the number of cases determining the order of nodes is n!. Thus, the
complexity of GCNNs is high when there are many large graphs. When new graphs have
an arbitrary order, they cannot distinguish them, greatly reducing performance. Therefore,
a positional embedding method with permutation-invariant properties independent of the
graph structure that can obtain the same output from the arbitrary order of the input graph
is required.

Bresson and Dwivedi et al. [37] proposed the graph positional embedding method
based on the global graph information, which could be encoded in eigenvectors from
the eigendecomposition of the graph Laplacian matrix. These eigenvectors maintain the
important characteristics of the graph, so they have the advantages of being robust and
generalizable for arbitrary graphs. However, the vector direction sign was ±1 (+1: forward
vector, −1: reverse vector), so when k eigenvectors are selected, the total number of
directional cases is 2k, resulting in the sign-ambiguity issue.

Appl. Sci. 2022, 12, 9176 6 of 14

Dwivedi et al. [38] defined a learning algorithm in which GCNNs could learn the
invariance of the eigenvector sign. This method minimizes problematic cases by choosing a
small value of k� n and randomly selecting eigenvectors within directional cases (2k � n).

In addition, Li et al. [39] proposed a method in which GCNNs could learn distance-
based positional encoding as a node feature. In addition, You et al. [40] proposed a learnable
positional embedding method based on anchor node sets randomly selected using the
minimum vertex cover algorithm.

3. Proposed Method

In Section 3, we describe a novel approach to learning by supplying embedded posi-
tional information for each node with the neighbor features in the standard MP. Section 3.1
presents the basic graph notation related to the proposed method, and Section 3.2 briefly
details the standard MP. Next, Section 3.3 explains how to embed the proposed learnable
positional information, and Section 3.4 describes the loss function in this paper.

3.1. Notation

We describe the basic graph notation used in the proposed method. For the input
graph G = (V , E), V indicates a set of nodes, and E represents a set of edges. In the graph,
n = |V| is the number of nodes, and E = |E | is the number of edges. The feature vector of
node i ∈ V is hi. The positional vector is denoted by pi, and the edge feature connected to
neighbor node j ∈ Ni is represented by eij ∈ E , where Ni is a neighbor node of node i. The
depth of the layer is l, where the input layer is l = 0, and the message-passing function for
the information of each feature is indicated by Fh, Fp, and Fe.

3.2. Standard Message-Passing Process

Based on the available node and edge feature information, the standard MP is defined
in Equation (16), considering the updated graph G at each convolutional layer l:

MP =

{
hl+1

i = Fh(hl
i , {hl

j}j∈Ni
, el

ij)

el+1
ij = Fe(hl

i , hl
j, el

ij)
, (16)

where Fh and Fe are selected differently depending on the structure of the GCNNs. In
addition, in the case of undirected graphs, the usage of edge features is optional because
the edge features are not included in updating the node feature in the MP. The features
hIN

i ∈ Rdυ and eIN
ij ∈ Rde of the input data are supplied to the input layer l = 0 as

hl=0
i ∈ Rd and el=0

ij ∈ Rd through the linear embedding function (LL) in Equation (17):{
hl=0

i = LLh(hIN
i) = A0hIN

i + a0

el=0
ij = LLe(eIN

ij) = B0eIN
ij + b0 , (17)

where A0 ∈ Rd×dυ , B0 ∈ Rd×de , and a0, b0 ∈ Rd are the learnable parameters of the
linear layers. In the standard MP of integrating positional information in Equation (18),
embedded positional information based on the transformer method is commonly used by
concatenating it with the initial node feature:

hl=0
i = LLh

([
hIN

i
pIN

i

])
= C0

([
hIN

i
pIN

i

])
+ c0. (18)

where pIN
i ∈ Rk is the embedded input positional information, and C0 ∈ Rd×(dυ+k) and c0 ∈ Rd

are the learnable parameters of the linear layers, and [] is the concatenate operation.
However, this MP only initially merges the graph structural and positional information;

thus, the GCNNs learn based on the fixed positional information. When the position is
newly changed, it cannot be recognized.

Appl. Sci. 2022, 12, 9176 7 of 14

3.3. Learnable Positional Embedding Methods

Instead of initially merging fixed positional information with structural information,
we propose initializing the information separately and integrating it after learning. In this
paper, we call this method IMGCN-LPE. The overall architecture of the IMGCN-LPE is
depicted in Figure 2.

Appl. Sci. 2022, 12, 9176 7 of 15

where 𝐴 ∈ ℝ × , 𝐵 ∈ ℝ × , and 𝑎 , 𝑏 ∈ ℝ are the learnable parameters of the linear
layers. In the standard MP of integrating positional information in Equation (18), embed-
ded positional information based on the transformer method is commonly used by con-
catenating it with the initial node feature: ℎ = 𝐿𝐿 ℎ𝑝 = 𝐶 ℎ𝑝 + 𝑐 . (18)

where 𝑝 ∈ ℝ is the embedded input positional information, and 𝐶 ∈ℝ ×() and 𝑐 ∈ ℝ are the learnable parameters of the linear layers, and is the con-
catenate operation.

However, this MP only initially merges the graph structural and positional infor-
mation; thus, the GCNNs learn based on the fixed positional information. When the posi-
tion is newly changed, it cannot be recognized.

3.3. Learnable Positional Embedding Methods
Instead of initially merging fixed positional information with structural information,

we propose initializing the information separately and integrating it after learning. In this
paper, we call this method IMGCN-LPE. The overall architecture of the IMGCN-LPE is
depicted in Figure 2.

Figure 2. Main architecture of the graph convolutional network with learnable positional embed-
ding applied on images (IMGCN-LPE).

The procedure of initializing the positional information before supplying it in the
IMGCN-LPE is essential. Initializing the positional information is defined based on a ran-
dom walk (𝑅𝑊), as presented in Equation (19), and the initial positional embedding at the
input layer 𝑙 = 0 in Equation (20): 𝑝 = {𝑅𝑊 , 𝑅𝑊 , … , 𝑅𝑊 }, (19)𝑝 = 𝐿𝐿 (𝑝) = 𝐷 𝑝 + 𝑑 , (20)

where the 𝑅𝑊 operator is defined in Equation (21): 𝑅𝑊 = 𝒜𝒟 . (21)

Figure 2. Main architecture of the graph convolutional network with learnable positional embedding
applied on images (IMGCN-LPE).

The procedure of initializing the positional information before supplying it in the
IMGCN-LPE is essential. Initializing the positional information is defined based on a
random walk (RW), as presented in Equation (19), and the initial positional embedding at
the input layer l = 0 in Equation (20):

pRW
i =

{
RW1

ii , RW2
ii , . . . , RWk

ii

}
, (19)

pl=0
i = LLp(pRW

i) = D0 pRW
i + d0, (20)

where the RW operator is defined in Equation (21):

RW = AD−1. (21)

This paper considers only the probability of returning to itself through random steps
on each node, which solves the direction problem of Laplacian-based positional embedding
methods. If the embedding dimension k is sufficiently large, it is possible to express the
unique graph topology by learning the broad positional information up to the node reached
by k hops. Figure 3 illustrates an example of an RW-based initialization of positional
embedding with k = 4.

Appl. Sci. 2022, 12, 9176 8 of 14

Appl. Sci. 2022, 12, 9176 8 of 15

This paper considers only the probability of returning to itself through random steps
on each node, which solves the direction problem of Laplacian-based positional embed-
ding methods. If the embedding dimension 𝕜 is sufficiently large, it is possible to express
the unique graph topology by learning the broad positional information up to the node
reached by 𝕜 hops. Figure 3 illustrates an example of an RW-based initialization of posi-
tional embedding with 𝕜 = 4.

Figure 3. Example of initialization of positional embedding based on the random walk algorithm
(𝕜 = 4).

The learning process of IMGCN-LPE is defined in Equation (22):

𝐼𝑀𝐺𝐶𝑁 − 𝐿𝑃𝐸 ∶
⎩⎪⎪⎨
⎪⎪⎧ℎ = ℱ ℎ𝑝 , ℎ𝑝 ∈𝒩 , 𝑒

𝑝 = ℱ 𝑝 , 𝑝 ∈𝒩 , 𝑒𝑒 = ℱ ℎ , ℎ , 𝑒
. (22)

The difference between IMGCN-LPE and the standard MP defined in Equation (18)
is that it continues updating the feature and positional embedding using learned posi-
tional embedding 𝑝 , initialized based on the RW in 𝑙 = 0. In addition, using an activa-
tion function, such as rectified linear unit (ReLU), for selecting the message-passing func-
tion is the same, but in the case of ℱ , 𝑡𝑎𝑛ℎ is used to allow both positive and negative
values for position coordinates.
3.4. ArcFace Loss Function

The ArcFace [32] loss function, primarily used in face recognition, focuses on the dif-
ference of angle between the class vector set 𝒲 and data feature vector 𝓍, minimizing it
within the class and maximizing it among classes. In addition, the angle differences are
further emphasized using the angular margin penalty (m) and scaling parameter (s), al-
lowing GCNNs to learn boundary formations better between classes. The operation of
ArcFace is presented in Figure 4.

Figure 3. Example of initialization of positional embedding based on the random walk algorithm
(k = 4).

The learning process of IMGCN-LPE is defined in Equation (22):

IMGCN − LPE :

hl+1

i = Fh

[hl
i

pl
i

]
,

{[
hl

j
pl

j

]}
j∈Ni

, el
ij

pl+1

i = Fp(pl
i , {pl

j}j∈Ni
, el

ij)

el+1
ij = Fe(hl

i , hl
j, el

ij)

. (22)

The difference between IMGCN-LPE and the standard MP defined in Equation (18) is
that it continues updating the feature and positional embedding using learned positional
embedding pl

i , initialized based on the RW in l = 0. In addition, using an activation
function, such as rectified linear unit (ReLU), for selecting the message-passing function is
the same, but in the case of Fp, tanh is used to allow both positive and negative values for
position coordinates.

3.4. ArcFace Loss Function

The ArcFace [32] loss function, primarily used in face recognition, focuses on the
difference of angle between the class vector setW and data feature vector §, minimizing
it within the class and maximizing it among classes. In addition, the angle differences
are further emphasized using the angular margin penalty (m) and scaling parameter (s),
allowing GCNNs to learn boundary formations better between classes. The operation of
ArcFace is presented in Figure 4.

Appl. Sci. 2022, 12, 9176 9 of 15

Figure 4. Configuration of the ArcFace loss function.

Similarly to the HGNN, in this paper, we combined ArcFace and cross-entropy to
define the final loss function (𝕃) in Equation (23): 𝕃 = 𝛼 × 𝐴𝑟𝑐𝐹𝑎𝑐𝑒 + 𝛽 × 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝛼 𝛽). (23)

The main difference is that HGNN assigned the same weights as the loss functions,
but we assigned different weights so that the learning process can concentrate on a specific
loss function.

4. Experiments
In Section 4.1, we briefly summarize the basic information and preprocessing method

about datasets we used for experiments. In the next Section 4.2, we present the experiment
details about image preprocessing method and design of model architecture and hyper-
parameters of experiments. Finally, in the last section (Section 4.3), we present the com-
parison of results of our proposed method with related studies and baseline GCNNs mod-
els and analysis of why the performance improved significantly on the results of ChebNet.
In addition, we conclude the section by presenting the results of adding the ArcFace loss
function.

4.1. Datasets
We experimented with the learnable positional embedding-based GCNNs perfor-

mance on six benchmark datasets: FashionMNIST [41], CIFAR10 [42], SVHN [43], CAR196
[44], CUB200-2011 [45], and EuroSAT [46]. First, FashionMNIST is a grayscale image da-
taset of 10 kinds of fashion products with a size of 28 × 28 and consists of 60,000 training
data and 10,000 testing data. Next, CIFAR10 is an RGB color-based image dataset of 10
categories with a size of 32 × 32, consisting of 50,000 training data and 10,000 testing data.
The SVHN is an RGB street house-number image dataset divided into 10 numeric catego-
ries of 32 × 32 size and consists of 73,257 training data and 26,082 testing data. In addition,
CAR196 is an RGB image dataset of 196 types of automobile brands with various sizes,
consisting of 8,041 training data and 8,144 testing data. In the following dataset, we ad-
justed the image size equally to 224 × 224. Further, CUB200-2011 is an RGB image dataset
of 200 kinds of birds of various sizes, consisting of 5794 training data and 8994 testing
data. In this case, we adjusted the image sizes to 64 × 64 and 128 × 128. Finally, EuroSAT

Figure 4. Configuration of the ArcFace loss function.

Appl. Sci. 2022, 12, 9176 9 of 14

Similarly to the HGNN, in this paper, we combined ArcFace and cross-entropy to
define the final loss function (L) in Equation (23):

L = α× ArcFace + β× CrossEntropy (α 6= β). (23)

The main difference is that HGNN assigned the same weights as the loss functions,
but we assigned different weights so that the learning process can concentrate on a specific
loss function.

4. Experiments

In Section 4.1, we briefly summarize the basic information and preprocessing method
about datasets we used for experiments. In the next Section 4.2, we present the experi-
ment details about image preprocessing method and design of model architecture and
hyper-parameters of experiments. Finally, in the last section (Section 4.3), we present the
comparison of results of our proposed method with related studies and baseline GCNNs
models and analysis of why the performance improved significantly on the results of
ChebNet. In addition, we conclude the section by presenting the results of adding the
ArcFace loss function.

4.1. Datasets

We experimented with the learnable positional embedding-based GCNNs performance
on six benchmark datasets: FashionMNIST [41], CIFAR10 [42], SVHN [43], CAR196 [44],
CUB200-2011 [45], and EuroSAT [46]. First, FashionMNIST is a grayscale image dataset of
10 kinds of fashion products with a size of 28 × 28 and consists of 60,000 training data and
10,000 testing data. Next, CIFAR10 is an RGB color-based image dataset of 10 categories
with a size of 32 × 32, consisting of 50,000 training data and 10,000 testing data. The SVHN
is an RGB street house-number image dataset divided into 10 numeric categories of 32 × 32
size and consists of 73,257 training data and 26,082 testing data. In addition, CAR196 is
an RGB image dataset of 196 types of automobile brands with various sizes, consisting of
8041 training data and 8144 testing data. In the following dataset, we adjusted the image
size equally to 224 × 224. Further, CUB200-2011 is an RGB image dataset of 200 kinds of
birds of various sizes, consisting of 5794 training data and 8994 testing data. In this case,
we adjusted the image sizes to 64 × 64 and 128 × 128. Finally, EuroSAT is a dataset of 27,000
Sentinel-2 satellite RGB-based 64 x 64 images divided into 10 categories. We split this dataset
into 80% training data (approximately 21,600) and 20% testing data (approximately 5400).

In this paper, we compare the graph-represented superpixel image classification
results with the state-of-the-art paper using the same dataset. Both FashionMNIST and
CIFAR10 are compared with RAG-GAT [8], DISCO-GCN [35], and HGNN [10], whereas
SVHN and EuroSAT are compared to RAG-GAT and HGNN, respectively. Moreover,
CAR196 and CUB200-2011 compare the results of the IMGCN-LPE with the baseline
models (ChebNet [29], GCN [5], and GAT [30]) because we could not find a paper that
provided results on the same datasets.

4.2. Experiment Details

In this paper, when segmenting the benchmark images to superpixels, we equally
used the SLIC algorithm and generated 75 superpixel regions. All baseline models initialize
the positional vector of all nodes based on the RW algorithm. The vector dimension k was
set to the same value as the Chebyshev polynomial order K for ChebNet and was set to a
fixed value of 4 for the GCN and GAT.

The configuration of the baseline model is described as follows. Similar to all datasets,
ChebNet has two graph convolutional layers consisting of aggregating the information for
K hop nodes and the ReLU activation function and a graph max-pooling layer in order
after passing the last convolution layer. In addition, it has two fully connected layers and
has class prediction accuracy based on the softmax regression classifier.

Appl. Sci. 2022, 12, 9176 10 of 14

Unlike ChebNet, we designed a different GCN configuration for one-channel and
three-channel datasets. The FashionMNIST dataset is passed two graph convolutional
layers based on the MP and the readout layer defined as the mean function, graph max-
pooling layer, and fully connected layer in order. Furthermore, its accuracy is based on the
softmax regression classifier. The other RGB datasets are passed four graph convolutional
layers, mean-readout, graph max-pooling, and three fully connected layers to obtain a result.

The GAT, similar to all datasets, has two layers of graph convolution based on two
multihead attention mechanisms and readout layers, defined by the sum function, and
passes the multilayer perceptron as a fully connected layer to obtain the results.

The learning procedures of the baseline models with the learnable positional embedding
method are provided in Equations (24)–(26) in the order of the ChebNet, GCN, and GAT:

Cheb− LPE :

hl+1

i = ReLU
(

BN
([

Al
1

[
hl

i
pl

i

]
,
(

K−1
∑

k=1
Al

2

[
hl

k
pl

k

])]))
el+1

ij = ReLU (BN(
K−1
∑

k=1
(Bl

2el
ik)),

pl+1
i = tanh(Cl

1 pl
i + ∑j∈Ni

Cl
2 pl

j)

(24)

GCN − LPE :

hl+1

i = ReLU(BN(Al
1

[
hl

i
pl

i

]
+ ∑j∈Ni

Al
2

[
hl

j
pl

j

]
)),

el+1
ij = ReLU(BN(Bl

1hl
i + Bl

2hl
j + el

ij)),
pl+1

i = tanh(Cl
1 pl

i + ∑j∈Ni
Cl

2 pl
j)

(25)

GAT− LPE :

eij =
→
a (Al

1

[
hl

i
pl

i

]
, Al

2

[
hl

j
pl

j

]
), αij = So f tmax(eij)

hl+1
i = ELU(1

K

K
∑

k=1
∑j∈Ni

αk
ij A

l
2hl

j),

el+1
ij = ReLU(BN(Bl

1hl
i + Bl

2hl
j + Bl

3el
ij)

pl+1
i = tanh(Cl

1 pl
i + ∑j∈Ni

Cl
2 pl

j)

(26)

where BN denotes batch normalization.
We set the hyperparameters that the epoch was 100, the batch size was 64, the learning

rate was 0.001, and the dropout rate was 0.5. For optimization, we used the stochastic
gradient descent [47] with a momentum of 0.9 for ChebNet and Adam [48] with a weight
decay of 0.95 for the GCN and GAT. In addition, the scale parameter (s) and the angular
margin penalty (m) were set to 64 and 0.5 radian (approximately 29◦), respectively. The
weight of ArcFace was set to 0.2.

4.3. Results Details

The results of SLIC and IMGCN-LPE for the six benchmark image datasets are listed
in Table 1, and the best results are marked in bold. When the baseline model is ChebNet,
the performance decreases significantly when the superpixel images are supplied because
the filter of ChebNet is isotropic. The concept of direction does not exist, and it cannot
clearly distinguish the different graphs represented in each image. However, in the case
of IMGCN-LPE, the filter has obtained orientation by continuously learning positional
information in training and can understand the graph topology in a broad context so that
the power of distinguishing various graph structures increases and achieves better results.

Appl. Sci. 2022, 12, 9176 11 of 14

Table 1. Detailed experimental results of baseline models (Chebyshev graph convolutional net-
work (ChebNet) of aggregating maximum K = 25 neighbors information, graph convolutional net-
work(GCN) with stacking single layer (1Layer) or two layers (2Layers), and graph attention network
(GAT) with single head (1Head) or two multi-heads attention (2Heads)) and IMGCN-LPE applied to
SLIC-75 images.

Preprocess Model

Dataset

F-MNIST
(28 × 28)

CIFAR10
(32 × 32)

SVHN
(32 × 32)

CAR196
(224 × 224)

CUB200
(64 × 64)

CUB200
(128 × 128)

EuroSAT
(64 × 64)

SLIC-75

GCN-1Layer 87.542 46.497 72.682 51.498 58.477 58.070 66.487
GCN-2Layers 89.794 57.219 73.454 53.842 62.813 63.466 67.921
GAT-1Head 89.688 57.693 79.211 58.903 65.813 67.544 71.608
GAT-2Heads 90.874 61.103 80.726 59.582 67.560 69.620 74.863

ChebNet (K = 25) 79.167 33.297 52.045 27.663 47.093 45.647 54.236

IMGCN-LPE
GCN-1Layer 89.183 50.563 74.133 55.712 61.916 64.866 65.736
GCN-2Layers 90.561 60.464 75.486 57.808 65.848 67.212 66.388
GAT-1Head 90.618 66.480 80.511 61.438 68.223 69.838 74.758
GAT-2Heads 92.013 68.632 81.986 62.729 70.192 72.101 76.373

ChebNet (K = 25) 91.21 73.086 80.714 60.861 70.484 69.637 75.482

The comparison of the experimental results with the related work is presented in
Table 2. Compared to the previous state-of-the-art models, the IMGCN-LPE method in
FashionMNIST is about 2% higher than the DISCO-GCN, about 2.5% higher than the
HGNN in CIFAR10, and about 1.2% higher than the HGNN in EuroSAT. For CAR196 and
CUB200-2011, IMGCN-LPE is better by about 1.9% to 2.5% compared to the baseline models.

Table 2. Comparison of the experimental results with related studies.

Method Model

Dataset

F-MNIST
(28 × 28)

CIFAR10
(32 × 32)

SVHN (32
× 32)

CAR196
(224 × 224)

CUB200
(64 × 64)

CUB200
(128 × 128)

EuroSAT
(64 × 64)

SLIC-75

RAG-GAT 83.07 45.93 80.72 - - - -
DISCO-GCN 90.02 70.01 - - - - -

HGNN - 70.61 - - - - 75.22
GCN-2Layers - - - 53.84 62.81 63.49 -
GAT-2Heads - - - 59.58 67.56 69.62 -

IMGCN-LPE
Baseline models 92.01 73.09 81.99 62.73 70.48 72.10 76.37

When determining the final loss function, experimentally, a higher weight for the
cross-entropy loss function provides better results. Compared to using just cross-entropy,
the performance improves by about 0.2% to 5.3%. The experimental results with the 0.2
weighted ArcFace loss function are presented in Table 3.

Appl. Sci. 2022, 12, 9176 12 of 14

Table 3. Experimental results of ChebNet, GCN, and GAT after adding the ArcFace loss function
with a weight of 0.2.

Preprocess Model

Dataset

F-MNIST
(28 × 28)

CIFAR10
(32 × 32)

SVHN
(32 × 32)

CAR196
(224 × 224)

CUB200
(64 × 64)

CUB200
(128 × 128)

EuroSAT
(64 × 64)

SLIC-75

IMGCN-LPE

GCN-1Layer 89.18→
89.32

50.56→
55.85

74.13→
75.38

55.71→
55.79

61.92→
63.01

65.74→
65.93

65.74→
66.04

GCN-2Layers 90.56→
90.98

60.46→
60.84

75.47→
76.61

57.61→
57.88

65.85→
65.92

67.21→
67.74

66.39→
66.77

GAT-1Head 90.62→
90.90

66.46→
67.28

80.51→
81.17

61.44→
61.76

68.22→
69.06

69.90→
72.45

74.76→
74.96

GAT-2Heads 92.01→
92.25

68.63→
69.71

81.99→
82.52

62.73→
63.46

70.19→
70.62

72.10→
73.85

76.37→
76.96

ChebNet (K = 25) 91.21→
91.63

73.09→
73.22

80.71→
82.02

60.86→
61.20

70.48→
72.99

69.64→
71.26

75.48→
76.61

5. Conclusions

In this paper, we present a new approach to the problem of superpixel image classifica-
tion based on GCNNs. Using an SLIC algorithm, the distance between pixels is calculated
based on each positional coordinate and is segmented into a specific number of superpix-
els. The RAG algorithm creates a graph using the central coordinates as new positional
information for each region. However, it is not robust to various graph structures due to
the fixed positional information defined by the central coordinates, which is the main issue
of the degradation of the ability of the GCNNs.

The IMGCN-LPE method we proposed makes GCNNs powerful enough to extend
its coverage to various graph structures by continuously learning the positional property.
As shown by the experiment results of various benchmark image datasets, it outperforms
other related work on various benchmark image datasets that improve about 1.2% to 2.5%
of accuracy. In addition, it is confirmed that adding ArcFace to the cross-entropy as loss
function increases performance about 0.2% to a maximum of 5.3% more.

Although the proposed method does not perform as impressively as the CNN, it
can provide a useful framework for graph representation-based computer vision tasks.
Moreover, it is also a good indicator for more advanced ideas regarding more complicated
visual issues in the future.

Author Contributions: Conceptualization, J.-H.B., G.-H.Y. and J.-Y.K.; methodology, J.-H.B., D.T.V.
and H.-G.K.; formal analysis, J.-H.L.; investigation, J.-H.B. and J.-Y.K.; resources, L.H.A. and J.-Y.K.;
data curation, J.-H.B.; writing—original draft preparation, D.T.V.; writing—review and editing,
J.-H.B., G.-H.Y., H.-G.K. and J.-Y.K.; visualization, J.-H.L. and L.H.A.; supervision, J.-Y.K.; project
administration, G.-H.Y., H.-G.K. and J.-Y.K.; funding acquisition, H.-G.K. and J.-Y.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partly supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2021-0-02068,
Artificial Intelligence Innovation Hub) and the present Research has been conducted by the Research
Grant of Kwangwoon University in 2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The FashionMNIST dataset can be found at https://github.com/
zalandoresearch/fashion-mnist, and the CIFAR10 dataset can be found at https://www.cs.toronto.
edu/~kriz/cifar.html. SVHN can be found at http://ufldl.stanford.edu/housenumbers, and CAR196
can be found at https://ai.stanford.edu/~jkrause/cars/car_dataset.html. The CUB200-2011 dataset

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers
https://ai.stanford.edu/~jkrause/cars/car_dataset.html

Appl. Sci. 2022, 12, 9176 13 of 14

can be found at http://www.vision.caltech.edu/datasets/cub_200_2011, and the EuroSAT dataset
can be found at https://github.com/phelber/EuroSAT.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
4. Pasdeloup, B.; Gripon, V.; Vialatte, J.C.; Pastor, D.; Frossard, P. Convolutional neural networks on irregular domains based on

approximate vertex-domain translations. arXiv 2017, arXiv:1710.10035.
5. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
6. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
7. Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.; Bronstein, M.M. Geometric deep learning on graphs and manifolds using

mixture model cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017.

8. Avelar, P.H.; Tavares, A.R.; da Silveira, T.L.; Jung, C.R.; Lamb, L.C. November. Superpixel image classification with graph
attention networks. In Proceedings of the 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de
Galinhas, Brazil, 7–10 November 2020.

9. Bae, J.H.; Vu, D.T.; Kim, J.Y. Superpixel Image Classification based on Graph Neural Network. In Proceedings of the Korea
Telecommunications Society Conference, Pyeongchang, Korea, 9–11 February 2022; pp. 971–972.

10. Long, J.; Yan, Z.; Chen, H. A Graph Neural Network for superpixel image classification. J. Phys. Conf. Ser. 2021, 1871, 012071.
[CrossRef]

11. Dadsetan, S.; Pichler, D.; Wilson, D.; Hovakimyan, N.; Hobbs, J. Superpixels and Graph Convolutional Neural Networks for
Efficient Detection of Nutrient Deficiency Stress from Aerial Imagery. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, virtual, 19–25 June 2021; pp. 2950–2959. [CrossRef]

12. Wang, K.; Li, L.; Zhang, J. End-to-end trainable network for superpixel and image segmentation. Pattern Recognit. Lett. 2020, 140,
135–142. [CrossRef]

13. Yang, C.; Zhang, L.; Lu, H.; Ruan, X.; Yang, M.H. Saliency detection via graph-based manifold ranking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3166–3173.

14. Zhang, K.; Li, T.; Shen, S.; Liu, B.; Chen, J.; Liu, Q. Adaptive graph convolutional network with attention graph clustering for
co-saliency detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 13–19 June 2020; pp. 9050–9059.

15. Diao, Q.; Dai, Y.; Zhang, C.; Wu, Y.; Feng, X.; Pan, F. Superpixel-Based Attention Graph Neural Network for Semantic Segmentation
in Aerial Images. Remote Sens. 2022, 14, 305. [CrossRef]

16. Mentasti, S.; Matteucci, M. Image Segmentation on Embedded Systems via Superpixel Convolutional Networks. In Proceedings
of the European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019; pp. 1–7.

17. Zhang, C.; Lin, G.; Liu, F.; Guo, J.; Wu, Q.; Yao, R. Pyramid graph networks with connection attentions for region-based
one-shot semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27
October–2 November 2019; pp. 9587–9595.

18. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional
Networks. In European Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2018; pp. 593–607. [CrossRef]

19. Pradhyumna, P.; Shreya, G.P. Graph neural network (GNN) in image and video understanding using deep learning for computer
vision applications. In Proceedings of the Second International Conference on Electronics and Sustainable Communication
Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 1183–1189.

20. Wu, L.; Chen, Y.; Shen, K.; Guo, X.; Gao, H.; Li, S.; Pei, J.; Long, B. Graph neural networks for natural language processing: A
survey. arXiv 2021, arXiv:2106.06090.

21. Zhong, T.; Wang, T.; Wang, J.; Wu, J.; Zhou, F. Multiple-Aspect Attentional Graph Neural Networks for Online Social Network
User Localization. IEEE Access 2020, 8, 95223–95234. [CrossRef]

22. Li, Y.; Ji, Y.; Li, S.; He, S.; Cao, Y.; Liu, Y.; Liu, H.; Li, X.; Shi, J.; Yang, Y. Relevance-aware anomalous users detection in social
network via graph neural network. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Shenzhen,
China, 18–22 July 2021; pp. 1–8.

23. Wang, Y.; Wang, J.; Cao, Z.; Farimani, A.B. Molclr: Molecular contrastive learning of representations via graph neural networks.
arXiv 2021, arXiv:2102.10056.

24. Godwin, J.; Schaarschmidt, M.; Gaunt, A.L.; Sanchez-Gonzalez, A.; Rubanova, Y.; Veličković, P.; Kirkpatrick, J.; Battaglia, P.
Simple gnn regularisation for 3d molecular property prediction and beyond. In Proceedings of the International Conference on
Learning Representations, Virtual Event, 3–7 May 2021.

http://www.vision.caltech.edu/datasets/cub_200_2011
https://github.com/phelber/EuroSAT
http://doi.org/10.1145/3065386
http://doi.org/10.1088/1742-6596/1871/1/012071
http://doi.org/10.1109/cvprw53098.2021.00330
http://doi.org/10.1016/j.patrec.2020.09.016
http://doi.org/10.3390/rs14020305
http://doi.org/10.1007/978-3-319-93417-4_38
http://doi.org/10.1109/ACCESS.2020.2993876

Appl. Sci. 2022, 12, 9176 14 of 14

25. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef] [PubMed]

26. Vedaldi, A.; Soatto, S. Quick shift and kernel methods for mode seeking. In Proceedings of the European Conference on Computer
Vision, Marseille, France, 12–18 October 2008; pp. 705–718.

27. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [CrossRef]
28. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013,

arXiv:1312.6203.
29. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In

Advances in Neural Information Processing Systems 29 (NIPS 2016); Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 29.
30. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
31. Dwivedi, V.P.; Luu, A.T.; Laurent, T.; Bengio, Y.; Bresson, X. Graph neural networks with learnable structural and positional

representations. arXiv 2021, arXiv:2110.07875.
32. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4690–4699.
33. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Advances in Neural Information Processing Systems 30 (NIPS 2017); Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.
34. LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed

on 4 August 2022).
35. Youn, C.H. Dynamic graph neural network for super-pixel image classification. In Proceedings of the International Conference

on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 20–22 October 2021; pp. 1095–1099.
36. De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19–67.

[CrossRef]
37. Dwivedi, V.P.; Bresson, X. A generalization of transformer networks to graphs. arXiv 2020, arXiv:2012.09699.
38. Dwivedi, V.P.; Joshi, C.K.; Laurent, T.; Bengio, Y.; Bresson, X. Benchmarking graph neural networks. arXiv 2020, arXiv:2003.00982.
39. Li, P.; Wang, Y.; Wang, H.; Leskovec, J. Distance encoding: Design provably more powerful neural networks for graph representa-

tion learning. In Advances in Neural Information Processing Systems 33 (NIPS 2020); Curran Associates, Inc.: Red Hook, NY, USA,
2020; Volume 33, pp. 4465–4478.

40. You, J.; Ying, R.; Leskovec, J. Position-aware graph neural networks. In Proceedings of the International Conference on Machine
Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 7134–7143.

41. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

42. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009.
43. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with unsupervised feature

learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 12–17
December 2011.

44. Krause, J.; Stark, M.; Deng, J.; Fei-Fei, L. 3d object representations for fine-grained categorization. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 2–8 December 2013; pp. 554–561.

45. Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-UCSD Birds-200-2011 Dataset; California Institute of
Technology: Pasadena, CA, USA, 2011.

46. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land
Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [CrossRef]

47. Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of the 19th International Conference
on Computational Statistics, Paris, France, 22–27 August 2010; pp. 177–186. [CrossRef]

48. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://doi.org/10.1023/B:VISI.0000022288.19776.77
http://yann.lecun.com/exdb/mnist/
http://doi.org/10.1007/s10479-005-5724-z
http://doi.org/10.1109/JSTARS.2019.2918242
http://doi.org/10.1007/978-3-7908-2604-3_16

	Introduction
	Related Work
	Superpixel Segmentation Algorithms
	Advances in Graph Convolution definition
	Superpixel Image Classification Using Graph Convolutional Neural Networks
	Graph Positional Embedding Methods

	Proposed Method
	Notation
	Standard Message-Passing Process
	Learnable Positional Embedding Methods
	ArcFace Loss Function

	Experiments
	Datasets
	Experiment Details
	Results Details

	Conclusions
	References

