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Abstract 

While most of the reports on Mg-Gd-Y-Zr alloys report superplasticity after extrusion or friction 

stir processing, it is important to investigate superplasticity in these alloys after other severe 

plastic deformation processes having greater grain refinement capability. Accordingly, 

superplasticity was studied in an Mg–9Gd–4Y–0.4Zr (GW94) alloy after different high-pressure 

torsion (HPT) conditions. The HPT was performed at room temperature under an applied pressure 

of 6.0 GPa for up to 16 turns. TEM microstructural characterization revealed that the grain size 

was reduced from an initial value of ~8.6 m in the extruded condition to ~95 ± 10 and ~85 ± 10 

nm after 8 and 16 turns, respectively.  A shear punch testing method was used for evaluation of 

superplasticity at 573, 623, 673 and 723 K. Maximum strain rate sensitivities of ~0.51 ± 0.05 and 

~0.48 ± 0.05 were obtained at 623 K for the material processed through 16 and 8 turns, 

respectively. This strain rate sensitivity and an activation energy of ~100 ± 5 kJ mol
–1

 suggests 

the occurrence of grain boundary sliding in the superplastic region.  

Keywords: High-pressure torsion; Mg–Gd–Y–Zr alloys; Nano-grained metals; Shear punch 

testing; Superplasticity 
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1. Introduction 

Magnesium alloys, as the lightest structural materials, have been the subject of 

much research in recent years because of their numerous advantages such as low density 

and high specific strength. Despite these advantages, Mg alloys suffer from poor room 

temperature formability because of the limited slip systems in their hexagonal close-

packed (hcp) structure [1]. In order to overcome these limitations, attempts have been 

made to enhance their formability through the use of superplastic deformation which will 

permit the fabrication of light structural components having complex shapes [2–4]. 

Excellent thermal stability was reported recently in a series of Mg–Gd alloys and this 

permitted the occurrence of extensive superplasticity in these alloys [5]. Nevertheless, 

most of the investigations of the Mg–Gd alloys reported superplasticity after simple 

extrusion [5,6] or friction stir processing (FSP) [7–9] and the minimum grain sizes 

attained by these methods were of the order of 3 m [8]. This suggests that it may be 

advantageous to evaluate the occurrence of superplasticity in these alloys after processing 

using severe plastic deformation (SPD) processes where there is a capability of achieving 

an even greater level of grain refinement.  

It is now well established that processing by high-pressure torsion (HPT) provides 

the capability of producing materials with extremely fine grain sizes which are suitable 

for achieving superplastic flow [10]. There are now several reports of superplastic flow in 

metals processed using SPD techniques [11,12] and Table 1 provides a comprehensive 

summary of the investigations reported to date for superplastic flow in metals processed 

by HPT [13–19]: in this table, the HPT processing conditions are listed in columns 2–4, 

the resultant grain sizes are listed in column 5 and the superplastic testing conditions are 



 2 

given in columns 6–8  where data are included only when the maximum elongations 

exceed the critical requirement of a tensile elongation of at least 400% for superplastic 

flow [20]. It is readily apparent from inspection of Table 1 that all of these materials 

exhibit excellent superplastic properties with a maximum elongation of 1330% reported 

for an Mg–8Li alloy [19]. Nevertheless, there is only a single report of superplasticity in 

an Mg–10Gd alloy [17] and thus it is important to fully investigate superplasticity of the 

HPT-processed Mg-Gd alloys. 

Although tensile testing is the conventional standard procedure for delineating 

superplastic flow, other testing methods are now available for measuring the strain rate 

sensitivity (SRS) and thus providing an indirect method for identifying the possible 

occurrence of superplasticity.  For example, shear punch testing (SPT) was recently 

introduced as a suitable technique for measuring SRS in different materials processed by 

SPD and a summary of the results available to date is given in Table 2 [6,21–24]. It is 

important to note also that the SPT-tensile correlation was already validated several years 

ago [25]. The advantages of studying superplasticity by SPT was reviewed earlier [21] 

and it includes the requirement for using only very small amounts of material as is readily 

produced using HPT processing. Thus, the objective of this research was to use SPT to 

examine the possible occurrence of superplasticity in an Mg–Gd–Y–Zr alloy after 

processing through different HPT conditions. It should be noted also that SPT has the 

advantage of being conducted locally and thus on selected positions of the radius of HPT 

discs.  
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2. Experimental material and procedures 

An Mg–9 wt% Gd–4 wt%Y–0.4 wt% Zr (GW94) alloy was prepared from high 

purity Mg and Mg–30Gd, Mg–30Y and Mg–30Zr master alloys which were melted in an 

electric furnace under a covering flux. The molten material was poured into a steel die 

preheated to 573 K using a tilt-casting system to minimize casting defects and any melt 

turbulence. Extrusion was conducted to a diameter of 10 mm using an extrusion ratio of 

19:1 at a temperature of 673 K and a graphite lubricant. 

Thin slices with thicknesses of ~1.2 mm were cut perpendicular to the extrusion 

direction using an electro-discharge machine (EDM) and both sides of these disks were 

carefully polished using abrasive papers to prepare a series of samples with thicknesses 

of ~0.80 mm. The HPT processing was performed under quasi-constrained conditions 

[26]. The anvils on a quasi-constrained HPT facility contain shallow round cavities 

having depths which are a little less than the one-half thickness of the HPT sample. These 

cavities prevent significant lateral flow of the sample and the reduced depth ensures there 

is no direct contact between the anvils during the HPT operation. All processing was 

conducted at room temperature under an applied pressure, P, of 6.0 GPa. Torsional 

straining was applied by rotating the lower anvil at a constant speed of 1 rpm through 

total numbers, N, of 1/2, 1, 2, 4, 8 and 16 revolutions. No damage or cracking was 

observed after processing by HPT through different numbers of revolutions. The final 

thicknesses of the HPT discs were in the range of 0.500-0.580 mm. 

 An Hitachi S-3400N variable pressure scanning electron microscope (SEM) and 

an FEI Tecnai G2 20 S-TWIN scanning transmission electron microscope (TEM) with a 
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maximum operating voltage of 200 kV were used to study the microstructures of the 

samples after different HPT conditions. The samples for the SEM investigations were 

etched with an acetic-picral solution. TEM samples were cut by punching at a radius of 

1.5 mm from the center of the HPT discs and were prepared by ion beam milling (IBM). 

After grinding the HPT samples to ~100 m thickness, their thicknesses were further 

reduced to ~20 m with a dimpler machine and the TEM samples were finally prepared 

by IBM using a milling angle of 12° with a voltage of 4 kV.  

The occurrence of superplasticity was evaluated after HPT processing using SPT, 

where full details were given earlier [27]. The SPT was performed at temperatures of 

573, 623, 673 and 723 K under strain rates in the range from 3.3 × 10
–3 

to 2.7 × 10
–1

 s
–1 

using a screw-driven MTS testing system equipped with a three-zone split furnace. A 

shear punch fixture with a 2.957 mm diameter flat cylindrical punch and 3.044 mm 

diameter receiving hole was used for SPT. The dimensions of the HPT discs were 

suitable for the SPT die and it was possible to perform SPT directly without any sizing or 

cutting. Both sides of the HPT discs were ground by SiC abrasive paper (grade 800) to 

remove the roughness on the surfaces of the HPT samples. HPT samples were put on the 

center of the SPT die which means the shear deformation is performed at a radius of 1.5 

mm from the center of the HPT discs. The load, F, was measured automatically as a 

function of the punch displacement and the data were recorded by appropriate software to 

determine the shear stress, τ, on the tested material using the relationship [28] 

Dt

F


        (1) 
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where t is the specimen thickness and D is the average of the punch and die hole 

diameters. The SPT curves were then plotted as shear stress against normalized punch 

displacement. 

 

3. Experimental results 

3.1 Microstructural evolution during HPT processing 

When a thin disk is processed by HPT under an applied pressure, the equivalent  

von Mises strain, , imposed on the disk by torsional straining is given by the relationship 

[29] 

 

 

where r is the radial distance from the center of the disk and h is the initial thickness of 

the sample. Eq.(2) shows that the strain varies across the disk. Variations of strain, 

microstructure and hardness both across and within the HPT discs are summarized 

elsewhere [10]. Since the shear punch tests were conducted at a radial distance of  r = 1.5 

mm from the centers of the samples, the equivalent strains were calculated for these 

radial positions and they are recorded in Table 3. For consistency between all results, all 

of the microstructural characterizations were also performed at this radial distance. It is 

readily evident from Table 3 that these positions represent a very large span of strains 

from ~4 to ~145 and this will affect the microstructure and hence the superplastic 

behavior.  

(2) 𝜀 =  
2𝜋𝑁𝑟ℎ 3
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In the initial extruded condition prior to HPT, the material displayed a fairly  

equiaxed and uniform grain structure with an average grain size of ~8.6 m: a detailed 

microstructural characterization of the extruded condition was given earlier [30]. SEM 

micrographs of the alloy at r = 1.5 mm are shown in Fig. 1 after (a) 1/2, (b) 2, (c) 8 and 

(d) 16 HPT turns. During HPT, the imposition of an applied pressure of 6.0 GPa together 

with the torsional straining at room temperature leads to extensive grain refinement. As is 

apparent from Fig. 1, the most important feature of the microstructures after 1/2 turn and 

2 turns is the presence of severely twinned grains. Because of the exceptional grain 

refinement occurring after 8 and 10 turns, the microstructures of these samples were 

examined by TEM and the related images are shown in Fig. 2 after (a) 8 and (b) 16 turns. 

Very small grains were visible in both of these microstructures and measurements gave 

average grain sizes of ~95 ± 10 and ~85 ± 10 nm after 8 and 16 HPT turns, respectively. 

It was also apparent that the microstructures generally become more uniform with 

increasing numbers of turns and the grain boundaries become better defined.  

SEM and TEM micrographs revealed that some cuboidal precipitates, in the range 

of 50 nm to 2 m, exist in the microstructure of the alloy which may have some 

interactions with grain boundaries during high temperature plastic deformation. To 

evaluate the size and distribution of the Gd- and Y-rich precipitates, TEM micrographs 

and the corresponding elemental maps are shown in Figs. 3 and 4 after 8 and 16 turns, 

respectively. It is apparent from Fig. 4 that the Gd- and Y- rich precipitates are smaller 

and more uniformly distributed after 16 turns, thereby demonstrating that increasing 

numbers of turns leads to a refinement in both the grain size and the precipitate size. It 

should be noted that larger particles, in the range 1-2 m, were distributed non-uniformly 
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in the microstructure and their volume fraction was smaller than the nanometer 

precipitates observed in Figs. 3 and 4. To analyze the crystal structure and chemical 

composition of the precipitates more precisely, a selected area electron diffraction 

(SAED) pattern and energy-dispersive X-ray spectroscopy (EDS) from a cuboidal 

precipitate are presented in Fig. 5. The SAED pattern shows that this precipitate has a 

face-centered cubic (FCC) crystal structure with a  0.54 ± 0.2 nm. The EDS results also 

indicate that the chemical composition of this precipitate is close to Mg(Gd,Y)4. 

However, the results of EDS analyses on approximately 10 similar precipitates 

demonstrated that the chemical composition of these cuboidal precipitates lie in the range 

of Mg(Gd,Y)2 to Mg(Gd,Y)5. Also, it should be mentioned that, in accordance with an 

earlier study [30], the EDS results confirm the presence of some small Zr-rich 

precipitates in the microstructure of the alloy. 

 

3.2 Superplastic behavior after HPT processing 

It is reasonable to anticipate that the different microstructures attained after these 

deformation processes will affect the superplastic behavior of the material.  To 

investigate this effect, Fig. 6a shows representative plots of shear stress against the 

normalized displacement for samples processed through 8 turns and then tested at 623 K 

in SPT using a range of shear strain rates from 6.7 × 10
–3

 to 1.3 × 10
–1

 s
–1

. The ultimate 

shear strength (USS, m) can be obtained from these curves and then used to calculate the 

strain rate sensitivity. 
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As noted earlier, the high-temperature shear flow stress, is related to the shear 

strain rate, 𝛾̇, by a power–law relationship [6] 

 

 

where A is a material parameter, b is the Burgers vector, k is Boltzmann’s constant, d is 

the grain size, p is the inverse grain size exponent, G is the shear modulus, m denotes the 

strain rate sensitivity index, Q is the deformation activation energy, R is the universal gas 

constant and T is the absolute temperature.  

From experimental data for the elastic constants of magnesium, the temperature 

dependence of the shear modulus is generally expressed as [31] 

G (MPa) = 19200  8.6T (K)                                                                                  (4) 

Due to the constancy of Q at a given temperature, it is possible to determine the 

value of m from the relationship: 

 

 

 

Fig. 6b shows the variations of the normalized USS of the material after 8 turns 

plotted against the temperature-compensated shear strain rate for different testing 

temperatures. According to Eq. (5), the slopes of these curves give the corresponding 

values of m that are listed in Fig. 6b. 

It is apparent that the dependency of USS on strain rate is linear at 573 K with m   

0.33 ± 0.05. However, the dependency becomes sigmoidal with three distinct regions at 

 𝛾̇𝑇𝐺  =  𝐴𝑏𝑘   𝑏𝑑 𝑝  𝜏𝐺 1𝑚
exp⁡ −𝑄𝑅𝑇  (3) 

𝑚 =  𝜕𝑙𝑛  𝜏𝐺 𝜕𝑙𝑛  𝛾̇𝑇𝐺   𝑇 (5) 
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623 K and the region with maximum slope has m  0.48 ± 0.05 but at the higher 

temperatures of 673 and 723 K the slope is then reasonably linear. To obtain a better 

representation of data, the variation of m with test temperature is plotted in Fig. 6c. It is 

clear that the maximum strain rate sensitivity is achieved at 623 K where m 0.48 ± 0.05.  

To investigate the severity of the grain growth at high temperatures, the 

microstructures of the material after SPT at 623 and 723 K are shown in Fig. 7. These 

microstructures were taken from the die area of the SPT samples. Grain size 

measurements showed that the grain size of the material increased from an initial value of 

~95 ± 10 nm after 8 turns to ~14 ± 5 m after SPT testing at 723 K. By contrast, the alloy 

exhibits reasonable thermal stability at 623 K where the grain growth is restricted. 

After obtaining the optimum temperature of 623 K for achieving the highest SRS, 

shear punch tests were performed on samples processed for different numbers of HPT 

turns. The results are shown in Fig. 8 where SPT data of the extruded material is also 

included for comparison [6]. Figure 8a shows the variation of the USS with the 

temperature-compensated shear strain rate and Fig. 8b shows the variation of m with the 

numbers of turns in HPT. Thus, m increases from the initial value of ~0.13 ± 0.05 in the 

extruded condition to ~0.51 ± 0.05 after 16 turns. Also, the material shows a large value 

of m 0.48 ± 0.05 after 8 turns and therefore increasing the numbers of turns has only a 

minor effect after about 8 turns.   

According to Eq. (3), the deformation activation energy may be calculated at 

constant shear strain rate as: 
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𝑄 = 𝑅𝑚  𝜕𝑙𝑛(𝜏/𝐺)𝜕(1/𝑇)  𝛾̇𝑇𝐺                                                                                                                       (6) 

Consequently, the normalized USS values are plotted against the reciprocal of 

temperature at constant temperature-compensated shear strain on a semi-logarithmic 

scale in Fig. 9 in order to calculate the activation energy of the material after 8 HPT 

turns. Calculations were made in the temperature range of 573–673 K in which the 

material showed a maximum value for the SRS and the average activation energy was 

determined as ~100 ± 5 kJ mol
–1

.  

 

4. Discussion 

4.1. Grain and precipitate refinement during HPT processing 

Microstructural characterization revealed that the microstructure of the material 

was severely twinned in the initial stages of deformation after 0.5 and 2 HPT turns. This 

matches an earlier report of the microstructure of a ZK60 magnesium alloy after HPT 

[15]. In low temperature deformation in hcp metals, deformation twinning occurs at the 

early stage of deformation and serves as an additional deformation mechanism to 

dislocation slip. Additionally, it has been reported that in magnesium alloys, above a 

critical value of the Zener-Holloman parameter (Z), twinning influences the dynamic 

recrystallization process and this produces a more effective grain refinement [32]. 

Accordingly, severely deformed microstructures at the initial stages of deformation by 

HPT can contribute in the grain refinement process with increasing numbers of turns.  

The microstructures of the material after 8 and 16 HPT turns indicate that nano-size 

recrystallized grains are obtained after relatively large strains in the range of ~72–145 at 

room temperature. Previous studies on nickel and copper indicated that recrystallization 
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may occur below an homologous temperature of ~0.4 Tm when the accumulated strain 

during HPT rises above 5, where Tm is the absolute melting temperature of the material 

[33]. Thus, although the situation may be different in Mg-Gd alloys, the results in this 

research confirm the occurrence of recrystallization during HPT processing at room 

temperature at large imposed strains.  

It appears that the present average grain size of ~85 nm after 16 turns is the 

smallest grain size reported to date for the Mg–Gd alloy system. Nevertheless, similar 

exceptionally small grain sizes were reported earlier for other Mg alloys both after HPT 

and after using other deformation processes. For example, a grain size of ~85 nm was 

reported in an AZ31 alloy using two-step friction stir processing [34] and nanometer 

grains with an average size of ~30 ± 5 nm were generated in the surface layer of a single-

phase AZ91D alloy using a surface mechanical attrition treatment [35]. Also, in 

experiments on the magnesium AZ61 alloy it was shown that HPT processing produced 

average grain sizes of ~220 and ~110 nm after HPT at 423 K and room temperature, 

respectively [13]. 

The present results indicate that not only the grains but also the Gd- and Y-rich 

precipitates are refined and become more uniformly distributed after larger strains (Figs. 

3 and 4). Considering the relatively low diffusivity of the Gd and Y elements in Mg 

[36,37], it is concluded that severe deformation at room temperature both refines and 

redistributes these precipitates. It was reported earlier that these precipitates may restrict 

grain growth at high temperatures [30]. Therefore, it is anticipated that these fine 

morphologies of the precipitates in the samples processed for 8 and 16 turns will control 

the growth of these nanometer grains at high temperatures and this will be more effective 
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than the microstructure of the material before HPT processing where there were large 

precipitates having sizes of the order of several microns [30]. 

Regarding the crystal structure and chemical composition of the precipitates, the 

TEM results indicate that the cuboidal precipitates in the microstructure of the alloy have 

an FCC crystal structure (a  0.54 ± 0.2 nm) and their chemical compositions are in the 

range of Mg(Gd,Y)2 to Mg(Gd,Y)5. These results are consistent with previous studies 

which reported a similar FCC crystal structure with  

a  0.54–0.56 nm and chemical compositions of Mg2(Gd,Y) and Mg(Gd,Y)5 [38,39]. The 

EDS results also revealed that the Mg matrix contains about 2.07 and 1.07 at.% Gd and 

Y, respectively. According to the binary Mg-Gd which is not well established at low 

temperatures and the Mg-Y phase diagrams [40], Gd and Y have limited solubility in Mg 

at room temperature. Therefore, it appears that severe plastic deformation by HPT has led 

to the formation of a supersaturated solid solution (SSSS) in the Mg matrix. 

 

4.2. The development of superplasticity at 623 K 

The variation of the SRS after 8 turns shows that the m-value increases from an 

initial value of ~0.33 ± 0.05 at 573 K to ~0.48 ± 0.05 at 623 K and there is a further 

decrease at higher temperatures. The results show that, although the alley contains very 

small grain sizes in the range of ~100 nm, temperatures lower than 623 K are not suitable 

for superplastic deformation. The reason is that superplasticity is associated with the 

occurrence of grain boundary sliding (GBS) [41] and this requires the diffusion and 

redistribution of alloying elements during high temperature deformation. Accordingly, it 
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is reasonable to anticipate that, because of the low diffusion rates of Gd and Y in the Mg 

matrix, these lower deformation temperatures are not suitable for superplastic 

deformation in the Mg–Gd–Y alloys even when the grain sizes are within the nanometer 

range. The observed decrease in the m-values at higher temperatures above 623 K is due 

to an inherent grain growth of the nano-grained structure as demonstrated in Fig. 7 for a 

temperature of 723 K. By contrast, it was shown that the alloy exhibits reasonable 

thermal stability at 623 K where grain growth was restricted in the nano-grains.  

With reference to the number of turns in HPT, the SPT results show that the m-

value at 623 K increases from an initial value of ~0.16 ± 0.05 in the extruded condition 

[6] to ~0.48 ± 0.05 and 0.51 ± 0.05 after 8 and 16 turns, respectively. This increase in 

SRS is related to the finer microstructure of the material, with grains in the range of <100 

nm after processing by HPT. In practice, however, the results suggest that 8 turns at room 

temperature represents an optimum processing procedure for achieving superplasticity in 

the GW94 alloy. 

To investigate the deformation mechanism of the material in the superplastic 

region, it is necessary to consider both the activation energy and the strain rate sensitivity. 

The m–value of ~0.50 is associated with grain boundary sliding [41] and the activation 

energy of ~100 ± 5 kJ mol
–1

 is similar to the activation energy of ~92 kJ mol
–1

 for grain 

boundary diffusion in magnesium [42]. It is concluded, therefore, that GBS 

accommodated by grain boundary diffusion is the dominant deformation mechanism of 

the GW94 alloy in the superplastic region. This conclusion is consistent with the 

exceptionally fine-grained microstructure and the sigmoidal dependence of the SRS on 

the shear strain rate. It is also consistent with a recent analysis showing that superplastic 
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flow in magnesium-based alloys processed by HPT follows the conventional theoretical 

model for grain boundary sliding [12]. 

 

 

5. Summary and conclusions 

1. A GW94 alloy with an initial grain size of ~8.6 m was processed by HPT at 

room temperature to produce refined grain sizes of ~95  10 and ~85  10 nm after 8 and 

16 turns, respectively. The average grain size of 85 ± 10 nm is the smallest grain size 

reported to date for an Mg–Gd alloy.  

2. Shear punch testing was used to investigate the potential for achieving 

superplasticity in this alloy. A maximum strain rate sensitivity of m 0.51  0.05 was 

achieved after 16 turns when testing at 623 K whereas there was grain growth and lower 

values of m at higher testing temperatures. The measured value for the activation energy 

was ~100 ± 5 kJ mol
–1

 which is consistent with grain boundary diffusion in magnesium. 

3. The results suggest that the flow process in the superplastic region at 623 K is 

grain boundary sliding.  
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Legends 

Fig. 1. SEM micrographs of the alloy after (a) 1/2 , (b) 2 , (c) 8 and (d) 16 turns. 

Fig. 2. TEM images of the material after (a) 8 and (b) 16 turns. 

Fig. 3. TEM micrograph of the material (a) after 8 turns and corresponding elemental 

maps of (b) Mg, (c) Gd (c) and (d) Y. 

Fig. 4. TEM micrograph of the material (a) after 16 turns and corresponding elemental 

maps of (b) Mg, (c) Gd and (d) Y. 

Fig. 5. TEM micrograph of the material after 8 HPT turns, showing (a) a cuboidal 

precipitate and EDS results and (b) related SAED pattern with zone axis parallel to [103]. 

Fig. 6. (a) SPT curves of the material after 8 turns at 623 K, (b) normalized USS of the 

material after 8 turns as a function of temperature-compensated shear strain rate at 

different temperatures and (c) variations of m-value with temperature after 8 turns. 

Fig. 7. TEM and SEM micrographs of the material after 8 turns following high 

temperature exposure at (a) 623 K and (b) 723 K.  

Fig. 8. (a) Normalized USS of the material after different turns as a function of 

temperature-compensated shear strain rate and (b) variation of m-value with numbers of 

turns. 

Fig. 9. Temperature dependence of normalized m values at constant temperature-

compensated shear strain rates for the alloy after 8 turns. 

 

Table 1.Summary of superplasticity data in ultrafine- and nano-grained magnesium 

alloys processed by HPT [13–19]. 

Table 2.Summary of superplasticity data for different materials investigated by SPT 

[6,21–24]. 

Table 3. Equivalent imposed strain for different numbers of turns (at r = 1.5 mm). 

 

 

 

 

 



 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

  

 

Fig. 1. SEM micrographs of the alloy after (a) 1/2 , (b) 2 , (c) 8 and (d) 16 turns. 
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Fig. 2. TEM images of the material after (a) 8 and (b) 16 turns. 
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Fig. 3. TEM micrograph of the material (a) after 8 turns and corresponding elemental 

maps of (b) Mg, (c) Gd (c) and (d) Y. 
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Fig. 4. TEM micrograph of the material (a) after 16 turns and corresponding elemental 

maps of (b) Mg, (c) Gd and (d) Y. 
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Fig. 5. TEM micrograph of the material after 8 HPT turns showing (a) a cuboidal 

precipitate and EDS results and (b) related SAED pattern with zone axis parallel to [103]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Element 

(at. %) 
A B 

Mg 96.86 20.14 

Gd 2.07 30.20 

Y 1.07 49.66 

Zr 0.0 0.0 

A B 



 

 

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

 

  

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) SPT curves of the material after 8 turns at 623 K, (b) normalized USS of the 

material after 8 turns as a function of temperature-compensated shear strain rate at 

different temperatures and (c) variations of m-value with temperature after 8 turns. 
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Fig. 7. TEM and SEM micrographs of the material after 8 turns following high 

temperature exposure at (a) 623 K and (b) 723 K.  
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Fig. 8. (a) Normalized USS of the material after different turns as a function of 

temperature-compensated shear strain rate and (b) variation of m-value with numbers of 

turns. 
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Fig. 9. Temperature dependence of normalized tm values at constant temperature-

compensated shear strain rates for the alloy after 8 turns. 
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Table 1. Summary of superplasticity data in ultrafine- and nano-grained magnesium 

alloys processed by HPT [13-19] 

 

Alloys or 

Composition 

(wt%) 

HPT 
Grain 

size 

(nm) 

Superplasticity 

Reference Number 

of turns 

Pressure 

(GPa) 

Temperature 

(K) 

Testing 

temperature 

(K) 

Strain rate 

(s-1) 

Maximum 

elongation 

(%) 

AZ61a 5 3 423 230 473 3.3 × 10-3 620 Harai et al. [13] 

ZK60b 

 

 

5 

 

 

2 

 

 

RT (296) 

 

 

900- 

1000 

 

473 

523 

573 

1.0 × 10-3 

 

 

415 

477 

508 

Torbati-Sarraf 

and Langdon 

[14] 

ZK60 

 

 

5 

 

 

2 

 

 

RT 

 

 

1000 

 

 

473 

 

 

1.0 × 10-4 

 

 

535 

 

 

Torbati-Sarraf 

and Langdon 

[15] 

Mg-9Alc 

 

 

 

Mg-9Ald 

5 

 

 

 

 

3 

 

 

 

 

RT (298) 

423 

 

 

423 

210 

330 

 

 

370 

473 

 

 

 

 

1.0 × 10-3 

5.0 × 10-3 

1.0 × 10-3 

5.0 × 10-4 

1.0 × 10-3 

600 

550 

620 

810 

590 

Kai et al. [16] 

 

 

 

 

Mg-10Gd 

 

5 

 

6 

 

RT 

 
100 

 

673 

 

1.0 × 10-2 

1.0 × 10-3 

470 

580 

Kulyasova et al. 

[17] 

AZ91e 

 

10 

 

3 

 

RT 

 

? 

 

573 

 

1.0 × 10-4 

 

1308 

 

Al-Zubaydi et 

al. [18] 

Mg-8Li 

 

5 

 

3 

 

RT 

 

500 

 

473 

 

1.0 × 10-3 

 

1330 

 

Matsunoshita et 

al. [19] 

 
a AZ61: Mg–6.4Al–0.74Zn–0.35Mn-0.0012Ni-0.001Cu–0.001Fe-0.015Si 
b ZK60: Mg–5.5Zn–0.5Zr 
c The Mg–9Al was cast prior to HPT 
d The Mg–9Al was cast and subsequently extruded prior to HPT 
e AZ91: Mg-9Al-1Zn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 2. Summary of superplasticity data for different materials investigated by SPT 

[6,21-24] 

 
Alloys or 

Composition 

(wt%) 

SPD process 

Superplasticity 

Reference Testing 

temperature (K) 

SRS 

value 

Sn-5Sb ECAPa RT 0.57 Mahmudi et al. [21] 

Mg-9Gd-4Y-0.4Zr Extrusion 723 0.40 Alizadeh et al. [6] 

Mg–12Li–1Zn ECAP 548 0.45 Karami and Mahmudi [22] 

AA5083b DECLEc 673 0.43 Fakhar et al. [23] 

Mg-3Gd-1Zn ECAP 673 0.51 Sarebanzadeh et al. [24] 
a Equal channel angular pressing 

b AA5083: Al-4.2%Mg-0.63%Mn-0.18%Fe 
c Double equal channel lateral extrusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table 3. Equivalent imposed strain for different numbers of turns (at r = 1.5 mm) 

 

Number of turns 0.5 1 2 4 8 16 

Equivalent strain 4.5 9.1 18.1 36.3 72.5 145.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




