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Abstract

This paper presents a self-supervised framework for

training interest point detectors and descriptors suitable

for a large number of multiple-view geometry problems in

computer vision. As opposed to patch-based neural net-

works, our fully-convolutional model operates on full-sized

images and jointly computes pixel-level interest point loca-

tions and associated descriptors in one forward pass. We

introduce Homographic Adaptation, a multi-scale, multi-

homography approach for boosting interest point detec-

tion repeatability and performing cross-domain adapta-

tion (e.g., synthetic-to-real). Our model, when trained on

the MS-COCO generic image dataset using Homographic

Adaptation, is able to repeatedly detect a much richer set

of interest points than the initial pre-adapted deep model

and any other traditional corner detector. The final system

gives rise to state-of-the-art homography estimation results

on HPatches when compared to LIFT, SIFT and ORB.

1. Introduction

The first step in geometric computer vision tasks

such as Simultaneous Localization and Mapping (SLAM),

Structure-from-Motion (SfM), camera calibration, and im-

age matching is to extract interest points from images. In-

terest points are 2D locations in an image which are stable

and repeatable from different lighting conditions and view-

points. The subfield of mathematics and computer vision

known as Multiple View Geometry [9] consists of theorems

and algorithms built on the assumption that interest points

can be reliably extracted and matched across images. How-

ever, the inputs to most real-world computer vision systems

are raw images, not idealized point locations.

Convolutional neural networks have been shown to be

superior to hand-engineered representations on almost all

tasks requiring images as input. In particular, fully-

convolutional neural networks which predict 2D “key-

points” or “landmarks” are well-studied for a variety of

tasks such as human pose estimation [31], object detec-

tion [14], and room layout estimation [12]. At the heart

of these techniques is a large dataset of 2D ground truth lo-
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Figure 1. SuperPoint for Geometric Correspondences. We

present a fully-convolutional neural network that computes SIFT-

like 2D interest point locations and descriptors in a single forward

pass and runs at 70 FPS on 480×640 images with a Titan X GPU.

cations labeled by human annotators.

It seems natural to similarly formulate interest point de-

tection as a large-scale supervised machine learning prob-

lem and train the latest convolutional neural network ar-

chitecture to detect them. Unfortunately, when compared

to semantic tasks such as human-body keypoint estimation,

where a network is trained to detect body parts such as the

corner of the mouth or left ankle, the notion of interest point

detection is semantically ill-defined. Thus training convo-

lution neural networks with strong supervision of interest

points is non-trivial.

Instead of using human supervision to define interest

points in real images, we present a self-supervised solu-

tion using self-training. In our approach, we create a large

dataset of pseudo-ground truth interest point locations in

real images, supervised by the interest point detector itself,

rather than a large-scale human annotation effort.

To generate the pseudo-ground truth interest points, we

first train a fully-convolutional neural network on millions
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Figure 2. Self-Supervised Training Overview. In our self-supervised approach, we (a) pre-train an initial interest point detector on

synthetic data and (b) apply a novel Homographic Adaptation procedure to automatically label images from a target, unlabeled domain.

The generated labels are used to (c) train a fully-convolutional network that jointly extracts interest points and descriptors from an image.

of examples from a synthetic dataset we created called Syn-

thetic Shapes (see Figure 2a). The synthetic dataset con-

sists of simple geometric shapes with no ambiguity in the

interest point locations. We call the resulting trained de-

tector MagicPoint—it significantly outperforms traditional

interest point detectors on the synthetic dataset (see Sec-

tion 4). MagicPoint performs surprising well on real im-

ages despite domain adaptation difficulties [7]. However,

when compared to classical interest point detectors on a di-

verse set of image textures and patterns, MagicPoint misses

many potential interest point locations. To bridge this gap

in performance on real images, we developed a multi-scale,

multi-transform technique − Homographic Adaptation.

Homographic Adaptation is designed to enable self-

supervised training of interest point detectors. It warps the

input image multiple times to help an interest point detec-

tor see the scene from many different viewpoints and scales

(see Section 5). We use Homographic Adaptation in con-

junction with the MagicPoint detector to boost the perfor-

mance of the detector and generate the pseudo-ground truth

interest points (see Figure 2b). The resulting detections are

more repeatable and fire on a larger set of stimuli; thus we

named the resulting detector SuperPoint.

The most common step after detecting robust and repeat-

able interest points is to attach a fixed dimensional descrip-

tor vector to each point for higher level semantic tasks, e.g.,

image matching. Thus we lastly combine SuperPoint with

a descriptor subnetwork (see Figure 2c). Since the Super-

Point architecture consists of a deep stack of convolutional

layers which extract multi-scale features, it is straightfor-

ward to then combine the interest point network with an ad-

ditional subnetwork that computes interest point descriptors

(see Section 3). The resulting system is shown in Figure 1.

2. Related Work

Traditional interest point detectors have been thoroughly

evaluated [24, 16]. The FAST corner detector [21] was the

first system to cast high-speed corner detection as a machine

learning problem, and the Scale-Invariant Feature Trans-

form, or SIFT [15], is still probably the most well-known

traditional local feature descriptor in computer vision.

Our SuperPoint architecture is inspired by recent ad-

vances in applying deep learning to interest point detection

and descriptor learning. At the ability to match image sub-

structures, we are similar to UCN [3] and to a lesser extent

DeepDesc [6]; however, both do not perform any interest

point detection. On the other end, LIFT [32], a recently in-

troduced convolutional replacement for SIFT stays close to

the traditional patch-based detect then describe recipe. The

LIFT pipeline contains interest point detection, orientation

estimation and descriptor computation, but additionally re-

quires supervision from a classical SfM system. These dif-

ferences are summarized in Table 1.

Interest
Points?

Descriptors?
Full Image
Input?

Single
Network?

Real
Time?

SuperPoint (ours) ✓ ✓ ✓ ✓ ✓

LIFT [32] ✓ ✓

UCN [3] ✓ ✓ ✓

TILDE [29] ✓ ✓

DeepDesc [6] ✓ ✓

SIFT ✓ ✓

ORB ✓ ✓ ✓

Table 1. Qualitative Comparison to Relevant Methods. Our Su-

perPoint method is the only one to compute both interest points

and descriptors in a single network in real-time.

On the other extreme of the supervision spectrum, Quad-

Networks [23] tackles the interest point detection problem

from an unsupervised approach; however, their system is

patch-based (inputs are small image patches) and relatively

shallow 2-layer network. The TILDE [29] interest point

detection system used a principle similar to Homographic

Adaptation; however, their approach does not benefit from

the power of large fully-convolutional neural networks.

Our approach can also be compared to other self-

supervised methods, synthetic-to-real domain-adaptation

methods. A similar approach to Homographic Adaptation

is by Honari et al. [10] under the name “equivariant land-

mark transform.” Also, Geometric Matching Networks [20]

and Deep Image Homography Estimation [4] use a similar

self-supervision strategy to create training data for estimat-

ing global transformations. However, these methods lack

interest points and point correspondences, which are typi-

cally required for doing higher level computer vision tasks

such as SLAM and SfM. Joint pose and depth estimation

models also exist [33, 30, 28], but do not use interest points.
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3. SuperPoint Architecture

We designed a fully-convolutional neural network archi-

tecture called SuperPoint which operates on a full-sized im-

age and produces interest point detections accompanied by

fixed length descriptors in a single forward pass (see Fig-

ure 3). The model has a single, shared encoder to pro-

cess and reduce the input image dimensionality. After the

encoder, the architecture splits into two decoder “heads”,

which learn task specific weights – one for interest point de-

tection and the other for interest point description. Most of

the network’s parameters are shared between the two tasks,

which is a departure from traditional systems which first

detect interest points, then compute descriptors and lack the

ability to share computation and representation across the

two tasks.

3.1. Shared Encoder

Our SuperPoint architecture uses a VGG-style [27] en-

coder to reduce the dimensionality of the image. The en-

coder consists of convolutional layers, spatial downsam-

pling via pooling and non-linear activation functions. Our

encoder uses three max-pooling layers, letting us define

Hc = H/8 and Wc = W/8 for an image sized H × W .

We refer to the pixels in the lower dimensional output as

“cells,” where three 2×2 non-overlapping max pooling op-

erations in the encoder result in 8 × 8 pixel cells. The en-

coder maps the input image I ∈ RH×W to an intermediate

tensor B ∈ RHc×Wc×F with smaller spatial dimension and

greater channel depth (i.e., Hc < H , Wc < W and F > 1).

3.2. Interest Point Decoder

For interest point detection, each pixel of the output cor-

responds to a probability of “point-ness” for that pixel in the

input. The standard network design for dense prediction in-

volves an encoder-decoder pair, where the spatial resolution

is decreased via pooling or strided convolution, and then

upsampled back to full resolution via upconvolution oper-

ations, such as done in SegNet [1]. Unfortunately, upsam-

pling layers tend to add a high amount of computation and

can introduce unwanted checkerboard artifacts [18], thus

we designed the interest point detection head with an ex-

plicit decoder1 to reduce the computation of the model.

The interest point detector head computes X ∈
RHc×Wc×65 and outputs a tensor sized RH×W . The 65
channels correspond to local, non-overlapping 8 × 8 grid

regions of pixels plus an extra “no interest point” dustbin.

After a channel-wise softmax, the dustbin dimension is re-

moved and a RHc×Wc×64 ⇒ RH×W reshape is performed.

1This decoder has no parameters, and is known as “sub-pixel convolu-

tion” [26] or “depth to space” in TensorFlow or “pixel shuffle” in PyTorch.
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Figure 3. SuperPoint Decoders. Both decoders operate on a

shared and spatially reduced representation of the input. To keep

the model fast and easy to train, both decoders use non-learned

upsampling to bring the representation back to R
H×W .

3.3. Descriptor Decoder

The descriptor head computes D ∈ RHc×Wc×D and out-

puts a tensor sized RH×W×D. To output a dense map of L2-

normalized fixed length descriptors, we use a model simi-

lar to UCN [3] to first output a semi-dense grid of descrip-

tors (e.g., one every 8 pixels). Learning descriptors semi-

densely rather than densely reduces training memory and

keeps the run-time tractable. The decoder then performs bi-

cubic interpolation of the descriptor and then L2-normalizes

the activations to be unit length. This fixed, non-learned de-

scriptor decoder is shown in Figure 3.

3.4. Loss Functions

The final loss is the sum of two intermediate losses: one

for the interest point detector, Lp, and one for the descrip-

tor, Ld. We use pairs of synthetically warped images which

have both (a) pseudo-ground truth interest point locations

and (b) the ground truth correspondence from a randomly

generated homography H which relates the two images.

This allows us to optimize the two losses simultaneously,

given a pair of images, as shown in Figure 2c. We use λ to

balance the final loss:

L(X ,X ′,D,D′;Y, Y ′, S) =

Lp(X , Y ) + Lp(X
′, Y ′) + λLd(D,D′, S).

(1)

The interest point detector loss function Lp is a fully-

convolutional cross-entropy loss over the cells xhw ∈ X .

We call the set of corresponding ground-truth interest point

labels2 Y and individual entries as yhw. The loss is:

Lp(X , Y ) =
1

HcWc

Hc,Wc
∑

h=1
w=1

lp(xhw; yhw), (2)

where

lp(xhw; y) = − log

(

exp(xhwy)
∑65

k=1 exp(xhwk)

)

. (3)

2If two ground truth corner positions land in the same bin then we ran-

domly select one ground truth corner location.
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Figure 4. Synthetic Pre-Training. We use our Synthetic Shapes dataset consisting of rendered triangles, quadrilaterals, lines, cubes,

checkerboards, and stars each with ground truth corner locations. The dataset is used to train the MagicPoint convolutional neural network,

which is more robust to noise when compared to classical detectors.

The descriptor loss is applied to all pairs of descriptor

cells, dhw ∈ D from the first image and d′
h′w′ ∈ D′

from the second image. The homography-induced corre-

spondence between the (h,w) cell and the (h′, w′) cell can

be written as follows:

shwh′w′ =

{

1, if ||Ĥphw − ph′w′ || ≤ 8

0, otherwise
(4)

where phw denotes the location of the center pixel in the

(h,w) cell, and Ĥphw denotes multiplying the cell location

phw by the homography H and dividing by the last coor-

dinate, as is usually done when transforming between Eu-

clidean and homogeneous coordinates. We denote the entire

set of correspondences for a pair of images with S.

We also add a weighting term λd to help balance the fact

that there are more negative correspondences than positive

ones. We use a hinge loss with positive margin mp and

negative margin mn. The descriptor loss is defined as:

Ld(D,D′, S) =

1

(HcWc)2

Hc,Wc
∑

h=1
w=1

Hc,Wc
∑

h′=1
w′=1

ld(dhw,d
′
h′w′ ; shwh′w′), (5)

where

ld(d,d
′; s) = λd ∗ s ∗max(0,mp − dTd′)

+(1− s) ∗max(0,dTd′ −mn).
(6)

4. Synthetic Pre-Training

In this section, we describe our method for training a

base detector (shown in Figure 2a) called MagicPoint which

is used in conjunction with Homographic Adaptation to

generate pseudo-ground truth interest point labels for un-

labeled images in a self-supervised fashion.

4.1. Synthetic Shapes

There is no large database of interest point labeled im-

ages that exists today. Thus to bootstrap our deep interest

point detector, we first create a large-scale synthetic dataset

called Synthetic Shapes that consists of simplified 2D geom-

etry via synthetic data rendering of quadrilaterals, triangles,

lines and ellipses. Examples of these shapes are shown in

Figure 4. In this dataset, we are able to remove label ambi-

guity by modeling interest points with simple Y-junctions,

L-junctions, T-junctions as well as centers of tiny ellipses

and end points of line segments.

Once the synthetic images are rendered, we apply ho-

mographic warps to each image to augment the number of

training examples. The data is generated on-the-fly and no

example is seen by the network twice. While the types of

interest points represented in Synthetic Shapes represents

only a subset of all potential interest points found in the real

world, we found it to work reasonably well in practice when

used to train an interest point detector.

4.2. MagicPoint

We use the detector pathway of the SuperPoint architec-

ture (ignoring the descriptor head) and train it on Synthetic

Shapes. We call the resulting model MagicPoint.

Interestingly, when we evaluate MagicPoint against

other traditional corner detection approaches such as

FAST [21], Harris corners [8] and Shi-Tomasi’s “Good Fea-

tures To Track” [25] on the Synthetic Shapes dataset, we

discovered a large performance gap in our favor. We mea-

sure the mean Average Precision (mAP) on 1000 held-out

images of the Synthetic Shapes dataset, and report the re-

sults in Table 2. The classical detectors struggle in the pres-

ence of imaging noise – qualitative examples of this are

shown in Figure 4. More detailed experiments can be found

in Appendix B.

MagicPoint FAST Harris Shi

mAP no noise 0.979 0.405 0.678 0.686

mAP noise 0.971 0.061 0.213 0.157

Table 2. Synthetic Shapes Detector Performance. The Magic-

Point model outperforms classical detectors in detecting corners

of simple geometric shapes and is robust to added noise.

The MagicPoint detector performs very well on Syn-
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Figure 5. Homographic Adaptation. Homographic Adaptation is a form of self-supervision for boosting the geometric consistency of an

interest point detector trained with convolutional neural networks. The entire procedure is mathematically defined in Equation 10.

thetic Shapes, but does it generalize to real images? To

summarize a result that we later present in Section 7.2, the

answer is yes, but not as well as we hoped. We were sur-

prised to find that MagicPoint performs reasonably well on

real world images, especially on scenes which have strong

corner-like structure such as tables, chairs and windows.

Unfortunately in the space of all natural images, it under-

performs when compared to the same classical detectors on

repeatability under viewpoint changes. This motivated our

self-supervised approach for training on real-world images

which we call Homographic Adaptation.

5. Homographic Adaptation

Our system bootstraps itself from a base interest point

detector and a large set of unlabeled images from the target

domain (e.g., MS-COCO). Operating in a self-supervised

paradigm (also known as self-training), we first generate a

set of pseudo-ground truth interest point locations for each

image in the target domain, then use traditional supervised

learning machinery. At the core of our method is a process

that applies random homographies to warped copies of the

input image and combines the results – a process we call

Homographic Adaptation (see Figure 5).

5.1. Formulation

Homographies give exact or almost exact image-to-

image transformations for camera motion with only rotation

around the camera center, scenes with large distances to ob-

jects, and planar scenes. Moreover, because most of the

world is reasonably planar, a homography is good model

for what happens when the same 3D point is seen from dif-

ferent viewpoints. Because homographies do not require

3D information, they can be randomly sampled and easily

applied to any 2D image – involving little more than bilin-

ear interpolation. For these reasons, homographies are at

the core of our self-supervised approach.

Let fθ(·) represent the initial interest point function we

wish to adapt, I the input image, x the resulting interest

points and H a random homography, so that:

Root Center 

Crop Translation Scale
In-plane 

Rotation

Symmetric 

Perspective 

Distort

Random 

Homographic 

Crop

** * * =

Figure 6. Random Homography Generation. We generate ran-

dom homographies as the composition of less expressive, simple

transformations.

x = fθ(I). (7)

An ideal interest point operator should be covariant with

respect to homographies. A function fθ(·) is covariant with

H if the output transforms with the input. In other words, a

covariant detector will satisfy, for all H 3:

Hx = fθ(H(I)), (8)

moving homography-related terms to the right, we get:

x = H−1fθ(H(I)). (9)

In practice, a detector will not be perfectly covariant – dif-

ferent homographies in Equation 9 will result in different in-

terest points x. The basic idea behind Homographic Adap-

tation is to perform an empirical sum over a sufficiently

large sample of random H’s (see Figure 5). The resulting

aggregation over samples thus gives rise to a new and im-

proved, super-point detector, F̂ (·):

F̂ (I; fθ) =
1

Nh

Nh
∑

i=1

H−1
i fθ(Hi(I)). (10)

5.2. Choosing Homographies

Not all 3x3 matrices are good choices for Homographic

Adaptation. To sample good homographies which represent

3For clarity, we slightly abuse notation and allow Hx to denote the

homography matrix H being applied to the resulting interest points, and

H(I) to denote the entire image I being warped by H.
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plausible camera transformations, we decompose a poten-

tial homography into more simple, less expressive transfor-

mation classes. We sample within pre-determined ranges

for translation, scale, in-plane rotation, and symmetric per-

spective distortion using a truncated normal distribution.

These transformations are composed together with an ini-

tial root center crop to help avoid bordering artifacts. This

process is shown in Figure 6.

When applying Homographic Adaptation to an image,

we use the average response across a large number of ho-

mographic warps of the input image. The number of homo-

graphic warps Nh is a hyper-parameter of our approach. We

typically enforce the first homography to be equal to iden-

tity, so that Nh=1 in our experiments corresponds to doing

no adaptation. We performed an experiment to determine

the best value for Nh, varying the range of Nh from small

Nh = 10, to medium Nh = 100, and large Nh = 1000. Our

experiments suggest that there is diminishing returns when

performing more than 100 homographies. On a held-out set

of images from MS-COCO, we obtain a repeatability score

of .67 without any Homographic Adaptation, a repeatabil-

ity boost of 21% when performing Nh = 100 transforms,

and a repeatability boost of 22% when Nh = 1000, thus

the added benefit of using more than 100 homographies is

minimal. For a more detailed analysis and discussion of this

experiment see Appendix C.

5.3. Iterative Homographic Adaptation

We apply the Homographic Adaptation technique at

training time to improve the generalization ability of the

base MagicPoint architecture on real images. The process

can be repeated iteratively to continually self-supervise and

improve the interest point detector. In all of our experi-

ments, we call the resulting model, after applying Homo-

graphic Adaptation, SuperPoint and show the qualitative

progression on images from HPatches in Figure 7.

6. Experimental Details

In this section we provide some implementation de-

tails for training the MagicPoint and SuperPoint models.

This encoder has a VGG-like [27] architecture that has

eight 3x3 convolution layers sized 64-64-64-64-128-128-

128-128. Every two layers there is a 2x2 max pool layer.

Each decoder head has a single 3x3 convolutional layer of

256 units followed by a 1x1 convolution layer with 65 units

and 256 units for the interest point detector and descriptor

respectively. All convolution layers in the network are fol-

lowed by ReLU non-linear activation and BatchNorm nor-

malization.

To train the fully-convolutional SuperPoint model, we

start with a base MagicPoint model trained on Synthetic

Shapes. The MagicPoint architecture is the SuperPoint ar-

chitecture without the descriptor head. The MagicPoint

H
o

m
o

g
ra

p
h

ic
 

A
d

a
p

ta
ti

o
n

Figure 7. Iterative Homographic Adaptation. Top row: ini-

tial base detector (MagicPoint) struggles to find repeatable de-

tections. Middle and bottom rows: further training with Homo-

graphic Adaption improves detector performance.

model is trained for 200,000 iterations of synthetic data.

Since the synthetic data is simple and fast to render, the data

is rendered on-the-fly, thus no single example is seen twice

by the network.

We generate pseudo-ground truth labels using the MS-

COCO 2014 [13] training dataset split which has 80,000

images and the MagicPoint base detector. The images

are sized to a resolution of 240 × 320 and converted to

grayscale. The labels are generated using Homographic

Adaptation with Nh = 100, as motivated by our results

from Section 5.2. We repeat the Homographic Adaptation a

second time, using the resulting model trained from the first

round of Homographic Adaptation.

The joint training of SuperPoint is also done on 240×320
grayscale COCO images. For each training example, a ho-

mography is randomly sampled. It is sampled from a more

restrictive set of homographies than during Homographic

Adaptation to better model the target application of pair-

wise matching (e.g., we avoid sampling extreme in-plane

rotations as they are rarely seen in HPatches). The image

and corresponding pseudo-ground truth are transformed by

the homography to create the needed inputs and labels. The

descriptor size used in all experiments is D = 256. We

use a weighting term of λd = 250 to keep the descriptor

learning balanced. The descriptor hinge loss uses a positive

margin mp = 1 and negative margin mn = 0.2. We use a

factor of λ = 0.0001 to balance the two losses.

All training is done using PyTorch [19] with mini-batch

sizes of 32 and the ADAM solver with default parameters of

lr = 0.001 and β = (0.9, 0.999). We also use standard data

augmentation techniques such as random Gaussian noise,

motion blur, brightness level changes to improve the net-

work’s robustness to lighting and viewpoint changes.
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57 Illumination Scenes 59 Viewpoint Scenes

NMS=4 NMS=8 NMS=4 NMS=8

SuperPoint .652 .631 .503 .484

MagicPoint .575 .507 .322 .260

FAST .575 .472 .503 .404

Harris .620 .533 .556 .461

Shi .606 .511 .552 .453

Random .101 .103 .100 .104

Table 3. HPatches Detector Repeatability. SuperPoint is the

most repeatable under illumination changes, competitive on view-

point changes, and outperforms MagicPoint in all scenarios.

7. Experiments

In this section we present quantitative results of the

methods presented in the paper. Evaluation of interest

points and descriptors is a well-studied topic, thus we fol-

low the evaluation protocol of Mikołajczyk et al. [16]. For

more details on our evaluation metrics, see Appendix A.

7.1. System Runtime

We measure the run-time of the SuperPoint architecture

using a Titan X GPU and the timing tool that comes with the

Caffe [11] deep learning library. A single forward pass of

the model runs in approximately 11.15 ms with inputs sized

480 × 640, which produces the point detection locations

and a semi-dense descriptor map. To sample the descrip-

tors at the higher 480× 640 resolution from the semi-dense

descriptor, it is not necessary to create the entire dense de-

scriptor map – we can just sample from the 1000 detected

locations, which takes about 1.5 ms on a CPU implementa-

tion of bi-cubic interpolation followed by L2 normalization.

Thus we estimate the total runtime of the system on a GPU

to be about 13 ms or 70 FPS.

7.2. HPatches Repeatability

In our experiments we train SuperPoint on the MS-

COCO images, and evaluate using the HPatches dataset [2].

HPatches contains 116 scenes with 696 unique images. The

first 57 scenes exhibit large changes in illumination and the

other 59 scenes have large viewpoint changes.

To evaluate the interest point detection ability of the Su-

perPoint model, we measure repeatability on the HPatches

dataset. We compare it to the MagicPoint model (before

Homographic Adaptation), as well as FAST [21], Harris [8]

and Shi [25], all implemented using OpenCV. Repeatabil-

ity is computed at 240 × 320 resolution with 300 points

detected in each image. We also vary the Non-Maximum

Suppression (NMS) applied to the detections. We use a

correct distance of ǫ = 3 pixels. Applying larger amounts

of NMS helps ensure that the points are evenly distributed

in the image, useful for certain applications such as ORB-

SLAM [17], where a minimum number of FAST corner de-

Homography Estimation Detector Metrics Descriptor Metrics

ǫ = 1 ǫ = 3 ǫ = 5 Rep. MLE NN mAP M. Score

SuperPoint .310 .684 .829 .581 1.158 .821 .470

LIFT .284 .598 .717 .449 1.102 .664 .315

SIFT .424 .676 .759 .495 0.833 .694 .313

ORB .150 .395 .538 .641 1.157 .735 .266

Table 4. HPatches Homography Estimation. SuperPoint out-

performs LIFT and ORB and performs comparably to SIFT using

various ǫ thresholds of correctness. We also report related metrics

which measure detector and descriptor performance individually.

tections is forced in each cell of a coarse grid.

In summary, the Homographic Adaptation technique

used to transform MagicPoint into SuperPoint gives a large

boost in repeatability, especially under large viewpoint

changes. Results are shown in Table 3. The SuperPoint

model outperforms classical detectors under illumination

changes and performs on par with classical detectors under

viewpoint changes.

7.3. HPatches Homography Estimation

To evaluate the performance of the SuperPoint interest

point detector and descriptor network, we compare match-

ing ability on the HPatches dataset. We evaluate Su-

perPoint against three well-known detector and descrip-

tor systems: LIFT [32], SIFT [15] and ORB [22]. For

LIFT we use the pre-trained model (Picadilly) provided

by the authors. For SIFT and ORB we use the default

OpenCV implementations. We use a correct distance of

ǫ = 3 pixels for Rep, MLE, NN mAP and MScore. We

compute a maximum of 1000 points for all systems at

a 480 × 640 resolution and compute a number of met-

rics for each image pair. To estimate the homography,

we perform nearest neighbor matching from all interest

points+descriptors detected in the first image to all the in-

terest points+descriptors in the second. We use an OpenCV

implementation (findHomography() with RANSAC)

with all the matches to compute the final homography es-

timate.

The homography estimation results are shown in Table 4.

SuperPoint outperforms LIFT and ORB and performs com-

parably to SIFT for homography estimation on HPatches

using various ǫ thresholds of correctness. Qualitative exam-

ples of SuperPoint versus LIFT, SIFT and ORB are shown

in Figure 8. Please see Appendix D for even more homogra-

phy estimation example pairs. SuperPoint tends to produce

a larger number of correct matches which densely cover

the image, and is especially effective against illumination

changes.

Quantitatively we outperform LIFT in almost all met-

rics. LIFT is also outperformed by SIFT in most metrics.

This may be due to the fact that HPatches includes indoor

sequences and LIFT was trained on a single outdoor se-
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SuperPoint LIFT SIFT ORB

Figure 8. Qualitative Results on HPatches. The green lines show correct correspondences. SuperPoint tends to produce more dense and

correct matches compared to LIFT, SIFT and ORB. While ORB has the highest average repeatability, the detections cluster together and

generally do not result in more matches or more accurate homography estimates (see 4). Row 4: Failure case of SuperPoint and LIFT due

to extreme in-plane rotation not seen in the training examples. See Appendix D for additional homography estimation example pairs.

quence. Our method was trained on hundreds of thousands

of warped MS-COCO images that exhibit a much larger di-

versity and more closely match the diversity in HPatches.

SIFT performs well for sub-pixel precision homogra-

phies ǫ = 1 and has the lowest mean localization error

(MLE). This is likely due to the fact that SIFT performs ex-

tra sub-pixel localization, while other methods do not per-

form this step.

ORB achieves the highest repeatability (Rep.); however,

its detections tend to form sparse clusters throughout the

image as shown in Figure 8, thus scoring poorly on the final

homography estimation task. This suggests that optimizing

solely for repeatability does not result in better matching or

estimation further up the pipeline.

SuperPoint scores strongly in descriptor-focused metrics

such as nearest neighbor mAP (NN mAP) and matching

score (M. Score), which confirms findings from both Choy

et al. [3] and Yi et al. [32] which show that learned repre-

sentations for descriptor matching outperform hand-tuned

representations.

8. Conclusion

We have presented a fully-convolutional neural network

architecture for interest point detection and description

trained using a self-supervised domain adaptation frame-

work called Homographic Adaptation. Our experiments

demonstrate that (1) it is possible to transfer knowledge

from a synthetic dataset onto real-world images, (2) sparse

interest point detection and description can be cast as a sin-

gle, efficient convolutional neural network, and (3) the re-

sulting system works well for geometric computer vision

matching tasks such as Homography Estimation.

Future work will investigate whether Homographic

Adaptation can boost the performance of models such as

those used in semantic segmentation (e.g., SegNet [1] ) and

object detection (e.g., SSD [14]). It will also carefully in-

vestigate the ways that interest point detection and descrip-

tion (and potentially other tasks) benefit each other.

Lastly, we believe that our SuperPoint network can be

used to tackle all visual data-association in 3D computer

vision problems like SLAM and SfM, and that a learning-

based Visual SLAM front-end will enable more robust ap-

plications in robotics and augmented reality.
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APPENDIX
A. Evaluation Metrics

In this section we present more details on the metrics

used for evaluation. In our experiments we follow the

protocol of [16], with one exception. Since our fully-

convolutional model does not use local patches, we instead

compare detection distances by measuring the distance be-

tween the 2D detection centers, rather than measure patch

overlap. For multi-scale methods such as SIFT and ORB,

we compare distances at the highest resolution scale.

Corner Detection Average Precision. We compute

Precision-Recall curves and the corresponding Area-Under-

Curve (also known as Average Precision), the pixel loca-

tion error for correct detections, and the repeatability rate.

For corner detection, we use a threshold ε to determine if

a returned point location x is correct relative to a set of K
ground-truth corners {x̂1, . . . , x̂K}. We define the correct-

ness as follows:

Corr(x) = (min
j

||x− x̂j ||) ≤ ε. (11)

The precision recall curve is created by varying the de-

tection confidence and summarized with a single number,

namely the Average Precision (which ranges from 0 to 1),

and larger AP is better.

Localization Error. To complement the AP analysis,

we compute the corner localization error, but solely for the

correct detections. We define the Localization Error as fol-

lows:

LE =
1

N

∑

i:Corr(xi)

min
j∈{1,...,K}

||xi − x̂j ||. (12)

The Localization Error is between 0 and ε, and lower LE is

better.

Repeatability. We compute the repeatability rate for an

interest point detector on a pair of images. Since the Super-

Point architecture is fully-convolutional and does not rely

on patch extraction, we cannot compute patch overlap and

instead compute repeatability by measuring the distance be-

tween the extracted 2D point centers. We use ε to represent

the correct distance threshold between two points. More

concretely, let us assume we have N1 points in the first im-

age and N2 points in the second image. We define correct-

ness for repeatability experiments as follows:

Corr(xi) = ( min
j∈{1,...,N2}

||xi − x̂j ||) ≤ ε. (13)

Repeatability simply measures the probability that a point

is detected in the second image.

Rep =
1

N1 +N2
(
∑

i

Corr(xi) +
∑

j

Corr(xj)). (14)

Nearest Neighbor mean Average Precision. This met-

ric captures how discriminating the descriptor is by eval-

uating it at multiple descriptor distance thresholds. It is

computed by measuring Area Under Curve (AUC) of the

Precision-Recall curve, using the Nearest Neighbor match-

ing strategy. This metric is computed symmetrically across

the pair of images and averaged.

Matching Score. This metric measures the overall per-

formance of the interest point detector and descriptor com-

bined. It measures the ratio of ground truth correspondences

that can be recovered by the whole pipeline over the number

of features proposed by the pipeline in the shared viewpoint

region. This metric is computed symmetrically across the

pair of images and averaged.

Homography Estimation. We measure the ability of

an algorithm to estimate the homography relating a pair of

images by comparing the estimated homography Ĥ to the

ground truth homography H. It is not straightforward to

compare the 3 × 3 H matrices directly, since different en-

tries in the matrix have different scales. Instead we com-

pare how well the homography transforms the four corners

of one image onto the other. We define the four corners of

the first image as c1, c2, c3, c4. We then apply the ground

truth H to get the ground truth corners in the second im-

age c′1, c
′
2, c

′
3, c

′
4 and the estimated homography Ĥ to get

ĉ′1, ĉ
′
2, ĉ

′
3, ĉ

′
4. We use a threshold ε to denote a correct ho-

mography.

CorrH =
1

N

N
∑

i=1









1

4

4
∑

j=1

||c′ij − ĉ′ij ||



 ≤ ε



 . (15)

The scores range between 0 and 1, higher is better.

B. Additional Synthetic Shapes Experiments

We present the full results of the SuperPoint interest

point detector (ignoring the descriptor head) trained and

evaluated on the Synthetic Shapes dataset.4 We call this de-

tector MagicPoint. The data consists of simple synthetic ge-

ometry that a human could easily label with the ground truth

corner locations. We expect a good point detector to easily

detect the correct corners in these scenarios. In fact, we

were surprised at how difficult the simple geometries were

for the classical point detectors such as FAST [21], Har-

ris [8] and the Shi-Tomasi “Good Features to Track” [25].

We evaluated two models: MagicPointL and Magic-

PointS. Both models share the same encoder architecture,

but differ in the number of neurons per layer. MagicPointL

and MagicPointS have 64-64-64-64-128-128-128-128-128

and 9-9-16-16-32-32-32-32-32 respectively.

We created an evaluation dataset with our Synthetic

Shapes generator to determine how well our detector is able

4An earlier version of our MagicPoint experiments can be found in our

“Toward Geometric DeepSLAM” paper [5].
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Quads/Tris Quads/Tris/Ellipses Cubes Quad Grids All

All (No Random)Checkerboards Lines Stars Quads/Tris/Random

Synthetic Shapes

Figure 9. Synthetic Shapes Dataset. The Synthetic Shapes

dataset consists of rendered triangles, quadrilaterals, lines, cubes,

checkerboards, and stars each with ground truth corner locations.

It also includes some negative images with no ground truth cor-

ners, such as ellipses and random noise images.

Metric Noise MagicPointL MagicPointS FAST Harris Shi

mAP no noise 0.979 0.980 0.405 0.678 0.686

mAP noise 0.971 0.939 0.061 0.213 0.157

MLE no noise 0.860 0.922 1.656 1.245 1.188

MLE noise 1.012 1.078 1.766 1.409 1.383

Table 5. Synthetic Shapes Results Table. Reports the mean Av-

erage Precision (mAP, higher is better) and Mean Localization Er-

ror (MLE, lower is better) across the 10 categories of images on

the Synthetic Shapes dataset. Note that MagicPointL and Magic-

PointS are relatively unaffected by imaging noise.

to localize simple corners. There are 10 categories of im-

ages, shown in Figure 9.

Mean Average Precision and Mean Localization Er-

ror. For each category, there are 1000 images sampled from

the Synthetic Shapes generator. We compute Average Pre-

cision and Localization Error with and without added imag-

ing noise. A summary of the per category results are shown

in Figure 10 and the mean results are shown in Table 5. The

MagicPoint detectors outperform the classical detectors in

all categories. There is a significant performance gap in

mAP in all categories in the presence of noise.

Effect of Noise Magnitude. Next we study the effect

of noise more carefully by varying its magnitude. We were

curious if the noise we add to the images is too extreme and

unreasonable for a point detector. To test this hypothesis,

we linearly interpolate between the clean image (s = 0)

and the noisy image (s = 1). To push the detectors to the

extreme, we also interpolate between the noisy image and

random noise (s = 2). The random noise images contain

no geometric shapes, and thus produce an mAP score of 0.0
for all detectors. An example of the varying degree of noise

and the plots are shown in Figure 11.

Effect of Noise Type. We categorize the noise into eight

categories. We study the effect of these noise types individ-

ually to better understand which has the biggest effect on

the point detectors. Speckle noise is particularly difficult for

traditional detectors. Results are summarized in Figure 12.

Blob Detection. We experimented with our model’s

ability to detect the centers of shapes such as quadrilater-

als and ellipses. We used the MagicPointL architecture (as

Figure 10. Per Shape Category Results. These plots report Av-

erage Precision and Corner Localization Error for each of the 10

categories in the Synthetic Shapes dataset with and without noise.

The sequences with “Random” inputs are especially difficult for

the classical detectors.

More Noise

s=0 s=1 s=2

Image Image+Noise1 Noise2

Linear Interpolation Linear Interpolation
Noise Legend

Linear Interpolation Linear Interpolation

Figure 11. Effect of Noise Magnitude. Two versions of Magic-

Point are compared to three classical point detectors on the Syn-

thetic Shapes dataset (shown in Figure 9). The MagicPoint models

outperform the classical techniques in both metrics, especially in

the presence of image noise.

no noise brightness Gaussian motion speckle shadow all all-speckle

Figure 12. Effect of Noise Type. The detector performance is bro-

ken down by noise category. Speckle noise is particularly difficult

for traditional detectors.

described above) and augmented the Synthetic Shapes train-

ing set to include blob centers in addition to corners. We ob-

served that our model was able to detect such blobs as long

as the entire shape was not too large. However, the con-

fidences produced for such “blob detection” are typically

lower than those for corners, making it somewhat cumber-

some to integrate both kinds of detections into a single sys-

tem. For the main experiments in the paper, we omit train-

ing with blobs, except the following experiment.
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We created a sequence of 96 × 96 images of a black

square on a white background. We vary the square’s width

to range from 3 to 91 pixels and report MagicPoint’s confi-

dence for two special pixels in the output heatmap: the cen-

ter pixel (location of the blob) and the square’s top-left pixel

(an easy-to-detect corner). The MagicPoint blob+corner

confidence plot for this experiment can be seen in Figure 13.

We observe that we can confidently detect the center of the

blob when the square is between 11 and 43 pixels wide (red

region in Figure 13), detect with lower confidence when the

square is between 43 and 71 pixels wide (yellow region in

Figure 13), and unable to detect the center blob when the

square is larger than 71 (blue regions in Figure 13).

Figure 13. MagicPoint: Blob Center Detection Top: we exper-

imented with MagicPoint’s ability to detect the centers of shapes

and plot detection confidences for both the top-left (TL) corner and

the center blob. Bottom: point detection heatmaps (MagicPoint

outputs) superimposed on the black rectangle images. Notice that

our model is able to detect centers of 71 pixel rectangles, meaning

that our network’s receptive field is at least 71 pixels.

C. Homographic Adaptation Experiment

When combining interest point response maps, it is im-

portant to differentiate between within-scale aggregation

and across-scale aggregation. Real-world images typically

contain features at different scales, as some points which

would be deemed interesting in a high-resolution images,

are often not even visible in coarser, lower resolution im-

ages. However, within a single-scale, transformations of the

image such as rotations and translations should not make in-

terest points appear/disappear. This underlying multi-scale

nature of images has different implications for within-scale

and across-scale aggregation strategies. Within-scale ag-

gregation should be similar to computing the intersection

of a set and across-scale aggregation should be similar to

the union of a set. In other words, it is the average re-

a.)

b.)
Figure 14. Homographic Adaptation. Top: we vary the num-

ber of homographies applied during Homographic Adaptation and

report repeatability. Bottom: we isolate the effect of scale.

sponse within-scale that we really want, and the maximum

response across-scale. We can additionally use the average

response across scale as a multi-scale measure of interest

point confidence. The average response across scales will

be maximized when the interest point is visible across all

scales, and these are likely to be the most robust interest

points for tracking applications.

Within-scale aggregation. We use the average response

across a large number of Homographic warps of the input

image. Care should be taken in choosing random homo-

graphies because not all homographies are realistic image

transformations. The number of homographic warps Nh is

a hyper-parameter of our approach. We typically enforce

the first homography to be equal to identity, so that Nh = 1
in our experiments corresponds to doing no homographies

(or equivalently, applying the identity Homography). Our

experiments range from “small” Nh = 10, to “medium”

Nh = 100, and “large” Nh = 1000.

Across-scale aggregation. When aggregating across

scales, the number of scales considered Ns is a hyper-

parameter of our approach. The setting of Ns = 1 corre-

sponds to no multi-scale aggregation (or simply aggregat-

ing across the large possible image size only). For Ns > 1,

we refer to the multi-scale set of images being processed

as “the multi-scale image pyramid.” We consider weighting

schemes that weigh levels of the pyramid differently, giving

higher-resolution images a larger weight. This is important

because interest points detected at lower resolutions have

poorer localization ability, and we want the final aggregated

points to be localized as well as possible.

We experimented with within-scale and across-scale ag-

gregation on a held out test of MS-COCO images. The re-

sults are summarized in Figure 14. We find that within-scale

aggregation has the biggest effect on repeatability.

D. Extra Qualitative Examples

We show extra qualitative examples of SuperPoint, LIFT,

SIFT and ORB on HPatches matching in Figure 15.
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SuperPoint LIFT SIFT ORB

Figure 15. Extra Qualitative Results on HPatches. More examples like in Figure 8. The green lines show correct correspondences, green

dots show matched points, red dots show mis-matched points, blue dots show points outside of the shared viewpoint region.
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