
Superposition Based on Watson-Crick-like
Complementarity

Paolo Bottoni Anna Labella
Department of Computer Science
University of Rome “La Sapienza”
Via Salaria 113, 00198 Rome, Italy

{ bottoni,labella}@dsi.uniroma1.it

Vincenzo Manca
Department of Computer Science

University of Pisa
Corso Italia, 40 - 56125 Pisa, Italy

mancav@di.unipi.it

Victor Mitrana1

Faculty of Mathematics and Computer Science,
University of Bucharest,

Str. Academiei 14, 70109, Bucharest, Romania
and

Research Group in Mathematical Linguistics
Rovira i Virgili University,

Pça. Imperial Tarraco 1, 43005, Tarragona, Spain
vmi@correu.urv.ro

1Work supported by the departments of Computer Science from the universities of Roma and Pisa

1

Abstract.

In this paper we propose a new formal operation on words and languages, called
superposition. By this operation, based on a Watson-Crick-like complementarity, we
can generate a set of words, starting from a pair of words, in which the contribution of a
word to the result need not be one subword only, as happens in classical bio-operations
of DNA computing. Specifically, starting from two single stranded molecules x and y
such that a suffix of x is complementary to a prefix of y, a prefix of x is complementary
to a suffix of y, or x is complementary to a subword of y, a new word z, which is
a prolongation of x to the right, to the left, or to both, respectively, is obtained by
annealing. If y is complementary to a subword of x, then the result is x. This operation
is considered here as an abstract operation on formal languages. We relate it to other
operations in formal language theory and we settle the closure properties under this
operation of classes in the Chomsky hierarchy. We obtain a useful result by showing
that unrestricted iteration of the superposition operation, where the “parents” in a
subsequent iteration can be any words produced during any preceding iteration step,
is equivalent to restricted iteration, where at each step one parent must be a word
from the initial language. This result is used for establishing the closure properties
of classes in the Chomsky hierarchy under iterated superposition. Actually, since the
results are formulated in terms of AFL theory, they are applicable to more classes
of languages. Then we discuss “adult” languages, languages consisting of words that
cannot be extended by further superposition, and show that this notion might bring
us to the border of recursive languages. Finally, we consider some operations involved
in classical DNA algorithms, such as Adleman’s, which might be expressed through
iterated superposition.

Keywords: Watson-Crick complementarity, superposition, restricted superposi-
tion closure, unrestricted superposition closure, maximal word.

2

1 Introduction

A DNA molecule consists of a double strand, each DNA single strand being composed
by nucleotides which differ from each other by their bases: A (adenine), G (guanine),
C (cytosine), and T (thymine). The two strands which form the DNA molecule are
kept together by the hydrogen bond between the bases: A always bonds with T, while
C with G. This paradigm of Watson-Crick complementarity will be one of the main
concepts used in defining the formal operation of superposition investigated in the
present paper.

Two other biological principles used as sources of inspiration in this paper are
that of annealing and that of lengthening DNA by polymerases. The first principle
refers to fusing two single stranded molecules by complementary base pairing while
the second one refers to adding nucleotides to one strand (in a more general setting
to both strands) of a double stranded DNA molecule. The former operation requires
a heated solution containing the two strands which is cooled down slowly. The latter
one requires two single strands such that one (usually called primer) is bonded to a
part of the other (usually called template) by Watson-Crick complementarity and a
polymerization buffer with many copies of the four nucleotides that polymerases will
concatenate to the primer by complementing the template.

We now informally explain the superposition operation and how it can be related
to the aforementioned biological concepts. Let us consider the following hypothetical
biological situation: two single stranded DNA molecules x and y are given such that a
suffix of x is Watson-Crick complementary to a prefix of y or a prefix of x is Watson-
Crick complementary to a suffix of y, or x is Watson-Crick complementary to a subword
of y. Then x and y get annealed in a DNA molecule with a double stranded part by
complementary base pairing and then a complete double stranded molecule is formed by
DNA polymerases. The mathematical expression of this hypothetical situation defines
the superposition operation. Assume that we have an alphabet and a complementary
relation on its letters. For two words x and y over this alphabet, if a suffix of x is
complementary to a prefix of y or a prefix of x is complementary to a suffix of y, or x
is complementary to a subword of y, then x and y bond together by complementary
letter pairing and then a complete double stranded word is formed by the prolongation
of x and y. Now the upper word is considered to be the result of the superposition
applied to x and y. Of course, all these phenomena are considered here in an idealized
way. For instance, we allow polymerase to extend the shorter strand in either end (3’
or 5’) as well as in both, despite that in biology almost all polymerases extend in the
direction from 5’ to 3’.

This operation resembles some other operations on words: sticking investigated in
[11, 6, 15] (a particular type of polyominoes with sticky ends are combined provided
that the sticky ends are Watson-Crick complementary), PA-matching considered in
[12] which is related to both the splicing and the annealing operations, as well as the
superposition operation introduced in [2] (two words which may contain transparent
positions are aligned one over the other and the resulting word is obtained by reading

3

the visible positions as well as aligned transparent positions).
The paper is organized as follows. In Section 2, we fix the terminology and give

preliminary definitions. In Section 3 we formally introduce the superposition operation,
relate it to other operations in formal language theory like PA-matching (Theorem 1),
and settle the closure properties of classes in the Chomsky hierarchy under it. Actu-
ally, since the results are formulated in terms of AFL theory, they are applicable to
more classes of languages than just those of the Chomsky hierarchy (Theorem 2, 3).
In Section 4 we introduce the iterated superposition operation. A similar investigation
concerning the closure properties of some AFLs under iterated superposition is done
with direct consequences to the families in the Chomsky hierarchy (Theorem 4). Then
we give a way of generating every regular language: we start from three finite lan-
guages to which we apply the iterated and non-iterated superposition and finally take
the projection of the obtained language (Theorem 5). We obtain a useful result by
showing that unrestricted iteration, where the “parents” in a subsequent iteration can
be any words produced during any preceding iteration step, is equivalent to restricted
iteration, where at each step one parent must be a word from the initial language
(Theorem 6). Section 5 defines maximal (“adult”) languages with respect to the iter-
ated superposition closure of a language, i.e., informally, languages consisting of words
which cannot be extended by further superposition, and shows that the membership
problem is decidable for maximal languages w.r.t. the iterated superposition closure
of finite languages (Theorem 9) but fails to be decidable for maximal languages w.r.t.
the iterated superposition closure of context-sensitive languages (Theorem 10). Section
6 discusses how some DNA algorithms can be mathematically expressed in terms of
superpositions. The paper ends by some final remarks.

2 Preliminaries

We assume the reader to be familiar with the fundamental concepts of formal language
theory and automata theory, particularly the notions of grammar and finite automaton
[20].

An alphabet is always a finite set of letters. For a finite set A we denote by card(A)
the cardinality of A. The set of all words over an alphabet V is denoted by V ∗. The
empty word is written ε; moreover, V + = V ∗ \ {ε}. Given a word w over an alphabet
V , we denote by |w| its length. If w = xyz for some x, y, z ∈ V ∗, then x, y, z are called
prefix, subword, suffix, respectively, of w.

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet considered
in this paper is a subset of Ω. In other words, Ω is the universe of the languages
in this paper, i.e., all words and languages are over alphabets that are subsets of
Ω. An involution over a set S is a bijective mapping σ : S −→ S such that σ =
σ−1. Any involution σ on Ω such that σ(a) 6= a for all a ∈ Ω is said to be here a
Watson-Crick involution. Despite that this is nothing more than a fixed point-free
involution, we prefer this terminology since the superposition defined later is inspired

4

by the DNA lengthening by polymerases, where the Watson-Crick complementarity
plays an important role. Let · be a Watson-Crick involution fixed for the rest of the
paper. The Watson-Crick involution is extended to a morphism from Ω∗ to Ω∗ in the
usual way. We say that the letters a and a are complementary to each other. For an
alphabet V , we set V = {a | a ∈ V }. Note that V and V can intersect and they can
be, but need not be, equal. Remember that the DNA alphabet consists of four letters,
VDNA = {A, C,G, T}, which are abbreviations for the four nucleotides and we may set
A = T , C = G.

A morphism h : V ∗ −→ U∗ such that h(a) ∈ U for all a ∈ V is said to be a coding.
If U ⊆ V and h(a) = a, provided a ∈ U , and h(a) = ε for all a ∈ V \ U , then h is
said to be a projection (of V on U) and is denoted by prV,U . If L ⊆ V ∗, k ≥ 1, and
h : V ∗ −→ U∗ is a morphism such that h(x) 6= ε for all the subwords x of any word
in L, |x| = k, then we say that h is k-restricted erasing on L. We stress that any
morphism as above is actually the restriction of a morphism Ω∗ −→ Ω∗.

A finite transducer is a 6-tuple M = (Q, Vi, Vo, q0, F, δ) where Q, Vi, Vo are finite
and nonempty sets (the set of states, the input alphabet, and the output alphabet,
respectively), q0 ∈ Q (the initial state), F ⊆ Q (the set of final states), and δ is the
(transition-and-output) function from Q× (Vi ∪ {ε}) to finite subsets of Q× V ∗

o . This
function is extended in a natural way to Q× V ∗

i . Every finite transducer M as above
defines a finite transduction

M(α) = {β ∈ V ∗
o | there exists q ∈ F such that (q, β) ∈ δ(q0, α)}, α ∈ V ∗

i .

If M(α) 6= ∅, then we say that α is “accepted” by M . The language accepted by a
finite transducer M is the set of all α such that M(α) 6= ∅. The finite transduction
M is extended to languages L ⊆ V ∗

i in the obvious way, namely M(L) =
⋃

α∈L M(α).
If we ignore Vo and the output part of δ, then we obtain a finite automaton (with ε
moves). A finite automaton is denoted (Q, V, q0, F, δ). A language is regular iff it is
accepted by a finite automaton.

3 Non-Iterated Superposition

Given two words x ∈ V +
1 and y ∈ V +

2 we denote by � the superposition operation
defined as follows:

x � y = {z ∈ (V1 ∪ V 2)
+ | one of the following conditions is satisfied:

1. there exist u ∈ V ∗
1 , w ∈ V +

1 , v ∈ V ∗
2 such that

x = uw, y = wv, and z = uwv.

2. there exist u, v ∈ V ∗
1 such that x = uyv and z = uyv.

3. there exist u ∈ V ∗
2 , w ∈ V +

1 , v ∈ V ∗
1 such that

x = wv, y = uw, and z = uwv.

4. there exist u, v ∈ V ∗
2 such that y = uxv and z = uxv.}

5

This operation is schematically illustrated in Figure 1.

4.
x

x
u v

vu y = uxv
z = uxv

3.
u

u

w

w

v
x = wv, w 6= ε

2.

u y v

y
x = uyv

z = uyv

y = uw
z = uwv

y = wv
z = uwv

u w v

vw
x = uw, w 6= ε

1.

Figure 1: Superposition

More informally, starting from two single stranded molecules x and y such that a
suffix of x is complementary to a prefix of y (case 1), a prefix of x is complementary
to a suffix of y (case 3), or x is complementary to a subword of y (case 4), a new
word z, which is a prolongation of x to the right, to the left, or to both, respectively,
is obtained by annealing. If y is complementary to a subword of x, then the result
is x (case 2). By this operation, based on the Watson-Crick complementarity, we can
generate a finite set of words, starting from a pair of words, in which the contribution
of a word to the result need not be one subword, as happens in classical bio-operations
of DNA computing [14].

We stress from the very beginning the mathematical character of this definition:
nature cannot distinguish which is the upper or the lower strand in the process of
constructing a double stranded molecule from two single strands. Note that y � x =
x � y. Further, our model reflects polymerase reactions in both 5’−→ 3’ and 3’−→ 5’
directions. Due to the greater stability of 3’ when attaching new nucleotides, DNA
polymerase can act continuously only in the 5’−→ 3’ direction. However, polymerase
can also act in the opposite direction, but in short “spurts” (Okazaki fragments).

We extend this operation to languages by

L1 � L2 =
⋃

x∈L1,y∈L2

x � y.

We write �(L) instead of L � L.

6

Note that superposition is not associative. Indeed, take the alphabet {a, b, ā, b̄} and
the words x = ab, y = b̄a, z = aa. It is easy to see that (x � y) � z = {abāā} while
x � (y � z) = ∅.

As observed in the Introduction, this operation is considered here as an abstract
operation on formal languages. We relate it to other operations in formal language
theory and we settle the closure properties of the families in the Chomsky hierarchy
under it. Then, we consider the iterated version of this operation and define two types
of languages obtained by iterated superposition.

We first recall a closely related operation on words, mentioned in the Introduction,
inspired by the operation used in [18]. This operation, called the PA-matching, was
defined in [12]. It belongs to “cut-and-paste” operations much investigated as basic
operations for theoretical models of DNA computing (see details in [14]). Informally
speaking, starting from two single stranded molecules x, y, such that a suffix w of x is
a prefix of y, we can form the molecule with a double stranded part (both strands are
identical) and the remaining sticky ends specified by x and y. The matching part is
then ignored (removed), so that the resulting word consists of the prefix of x and the
suffix of y which were not matched.

Formally, given two words x ∈ V +
1 and y ∈ V +

2 , one defines

PAm(x, y) = {uv | x = uw, y = wv, for some w ∈ (V1 ∩ V2)
+, and u ∈ V ∗

1 , v ∈ V ∗
2 }.

The operation is naturally extended to languages by

PAm(L1, L2) =
⋃

x∈L1,y∈L2

PAm(x, y).

We recall that a family of languages F is said to be a trio if it is closed under
non-erasing morphisms, inverse morphisms and intersection with regular sets. A trio
closed under arbitrary morphisms is called full trio known also as cone. We recall that
all families of languages considered are restricted to languages in the letters of Ω and
the morphisms do not map outside the universe Ω.

Theorem 1 Every full trio closed under superposition is closed under PA-matching.

Proof. Let Li ⊆ V ∗
i , i = 1, 2, be two languages in a given full trio. We will show that

PAm(L1, L2) is in the trio. We consider two new symbols (note that here, and in the
later proofs, the new symbols together with their complements, which are also new,
are taken from Ω) #, $, and two morphisms

h1 : (V1 ∪ {#, $})∗ −→ V1 by h1(a) = a, a ∈ V1,

h1(a) = ε, otherwise

h2 : (V 2 ∪ {#, $})∗ −→ V2 by h2(a) = a, a ∈ V2,

h2(a) = ε, otherwise .

7

Note that h1 is a projection. Words in the set

S = (h−1
1 (L1) ∩R1) � (h−1

2 (L2) ∩R2)

with
R1 = V ∗

1 #V +
1 $ and R2 = #V +

2 $V ∗
2

are either of the form

#u$w#v$, w ∈ (V1 ∪ V2)
+, u, v ∈ (V1 ∪ V2)

∗,

or of the form
u#w$v, w ∈ (V1 ∩ V2)

+, u, v ∈ (V1 ∪ V2)
∗.

In the former case, the words resulted from a superposition as shown in Figure 2, while
in the latter case the words resulted from a superposition as shown in Figure 3.

$v

$u

Figure 2: Useless superposition

u # w $

w $ v

Figure 3: Useful superposition

By the hypothesis, S is in the same trio. There exists a finite transducer M which
does not accept any input word of the first form while it deletes the segment #y$ from
each input word of the second form, thus simulating the effect of PA-matching. It fol-
lows that PAm(L1, L2) = M(S). Since any full trio is closed under finite transductions,
the assertion follows. 2

Theorem 2 Every family of languages closed under coding, projection, concatenation
with symbols, and superposition is closed under intersection and concatenation.

Proof. The following equality is immediate

L1 ∩ L2 = g((#L1$) � (#L2$))

8

where # and $ are two new symbols, and g is a morphism which erases the two new
symbols and leaves the others unchanged, i.e., it is a projection. Moreover, the equality

L1 · L2 = g((#L1$) � ($L2$))

is also immediate. Since · is a coding, the proof follows. 2

Corollary 1 The family of context-free languages fails to be closed under superposi-
tion.

We observe that one can easily prove, using Post’s Correspondence Problem, that
the following problem is undecidable: Is �(L) context-free for a given context-free
language L?

A family of languages F is closed under right superposition with regular languages
if for any language L ∈ F and any regular language R, L � R ∈ F holds. In a similar
way the closure under left superposition with regular languages may be defined.

Theorem 3 1. Every trio is closed under superposition iff it is closed under intersec-
tion.

2. Every trio is closed under right and left superposition with regular languages.

Proof. 1. Let L1, L2 be two languages in the trio F , Li ⊆ V ∗
i , i = 1, 2. We define the

new alphabets V ′
2 = {a′ | a ∈ V2} and U = {a′′ | a ∈ V1 ∩ V 2}. Then

L1 � L2 = g(h−1
1 (L1) ∩ h−1

2 (L2) ∩R),

where the morphisms h1, h2, g are defined by

h1 : (V1 ∪ V ′
2 ∪ U)∗ −→ V ∗

1 , h1(a) = h1(a
′′) = a, h1(a

′) = ε,

h2 : (V1 ∪ V ′
2 ∪ U)∗ −→ V ∗

2 , h2(a) = ε, h2(a
′′) = a, h2(a

′) = a,

g : (V1 ∪ V ′
2 ∪ U)∗ −→ (V1 ∪ V 2)

∗, g(a) = g(a′′) = a, g(a′) = a,

and R is a regular language (the four parts of R correspond to cases 1-4 in Figure 1 in
the same order) defined by

R = V ∗
1 U+(V ′

2)
∗ ∪ V ∗

1 U+V ∗
1 ∪ (V ′

2)
∗U+V ∗

1 ∪ (V ′
2)

∗U+(V ′
2)

∗.

Thus, if F is closed under intersection, then L1 � L2 ∈ F .
Conversely, by the proof of Theorem 2 it follows that every trio closed under su-

perposition is closed under intersection, since the concatenation with symbols can be
accomplished by an inverse morphism followed by intersection with a regular language,
and the projection g from that proof is actually a 2-restricted erasing morphism on
(#L1$)� (#L2$). Moreover, it is known (see Theorem IV 2.5 in [22]) that every trio F
is closed under restricted erasing morphisms in the sense that f(L) lies in F provided
that L ∈ F and f is k-restricted erasing on L for some k ≥ 1.

2. The second statement follows directly from the above proof. 2

Corollary 2 1. The families of regular, context-sensitive and recursively enumerable
languages are closed under superposition.

2. The family of context-free languages is closed under left and right superposition
with regular languages.

9

4 Iterated Superposition

Given a language L we define the language obtained from L by unrestrictedly iter-
ated application of superposition. This language, called the unrestricted superposition
closure of L is denoted by �∗u(L) and defined by

µ0(L) = L,

µi+1(L) = µi(L) ∪ �(µi(L)), i ≥ 0,

�∗u(L) =
⋃
i≥0

µi(L).

Clearly, �∗u(L) is the smallest language containing L and closed under superposition.
More precisely, it is the smallest language K such that L ⊆ K and �(K) ⊆ K. In words,
one starts with the words in L and applies iteratively superposition to any pair of words
previously produced. Note the lack of any restriction in choosing the pair of words.
All the obtained words are collected in the set �∗u(L).

We say that a family F of languages is closed under unrestrictedly iterated super-
position if �∗u(L) is in F for any language L ∈ F . A trio closed under union is called a
semi-AFL.

Theorem 4 Every semi-AFL closed under unrestrictedly iterated superposition is closed
under superposition.

Proof. We take two languages Li ⊆ V ∗
i , i = 1, 2, in such a family and consider three

new symbols a, b, c. Then we construct the languages

E1 = aL1 ∪ L2b E2 = cL2c ∪ a(h−1
1 (L1) ∩R1)b

E3 = L1b ∪ aL2 E4 = cL1c ∪ a(h−1
2 (L2) ∩R2)b,

where

– h1 = prV1∪{c},V1 , h2 = prV2∪{c},V2

– R1 is the regular language R1 = V ∗
1 cV +

1 cV ∗
1

– R2 is the regular language R2 = V ∗
2 cV +

2 cV ∗
2 .

As observed in the proof of Theorem 3, concatenation with symbols can be realized
by an inverse morphism followed by the intersection with a regular language, hence E1,
E2, E3, and E4 are still in the given family. We now show that

L1 � L2 = g((
⋃

i∈{1,3,4}
�∗u(Ei)) ∩ a(V1 ∪ V 2 ∪ {c})∗b) ∪

g(�∗u(E2) ∩ a(V2 ∪ V 1 ∪ {c})∗b), (1)

with g being a projection which erases all the new symbols. First, it is plain that �∗u(Ei)
is actually �(Ei)∪Ei, 1 ≤ i ≤ 4. Second, the intersection of �(Ei)∪Ei, i = 1, 3, 4, with
the regular language a(V1 ∪ V 2 ∪ {c})∗b selects only those words t in �(Ei) such that:

10

(i) If i = 1, 3, then t = azb, z ∈ (V1 ∪ V 2)
+, and z can be obtained in L1 � L2 as

shown in the cases 1 or 3 of Figure 1.
(ii) If i = 4, then t = az1cz2cz3b, z1, z3 ∈ V

∗
2, z2 ∈ V +

1 , and z = z1z2z3 can be
obtained in L1 � L2 as shown in the case 4 of Figure 1.

Third, the intersection of �(E2) ∪ E2 with the regular language a(V2 ∪ V 1 ∪ {c})∗b
selects only those words t in �(E2) such that t = az1cz2cz3b, z1, z3 ∈ V

∗
1, z2 ∈ V +

2 , and
z = z1z2z3 can be obtained in L2 �L1 as shown in the case 4 of Figure 1. Consequently,
z can be obtained in L1 � L2 as shown in the case 2 of Figure 1. By these three facts
the equality (1) follows. 2

Corollary 3 The family of context-free languages fails to be closed under unrestrictedly
iterated superposition.

We do not know whether the family of regular languages is closed under unrestrict-
edly iterated superposition. However, we show below how any regular language can be
obtained starting from finite languages my means of superposition, iterated superpo-
sition and projection. Note that this is not a characterization of the class of regular
languages since we do not know whether or not the unrestricted superposition closure
of a finite language is regular.

Theorem 5 Every regular language R can be written as

R = h((L1 � (�∗u(L2))) � L3),

where h is a projection and L1, L2, L3 are finite languages.

Proof. Let us consider a finite automaton A = (Q, V, q0, F, δ) that accepts R such that
q0 /∈ δ(q, a) for any q ∈ Q and a ∈ V ∪ {ε}, F = {qf}, q0 6= qf , and δ(qf , a) = ∅ for all
a ∈ V ∪ {ε}. We define the finite languages:

L1 = {q0},
L2 = {sas′ | s′ ∈ δ(s, a), s, s′ ∈ Q, a ∈ V ∪ {ε}} ∪

{sas′ | s′ ∈ δ(s, a), s, s′ ∈ Q, a ∈ V ∪ {ε}},
L3 = {qf}.

Words in the set �∗u(L2) are of the form

s1a1s2a2 . . . snansn+1 (2)

with si+1 ∈ δ(si, ai) for all 1 ≤ i ≤ n, as well as their Watson-Crick complements.
It follows that words in the set L1 � (�∗u(L2)) are of the same form (2) but with s1 =
q0. Furthermore, only those words which have sn = qf are selected by applying the
superposition to the previous language and L3. Now h removes all symbols not in V
and the proof is complete. 2

11

We now introduce another superposition closure of a language which may be viewed
as a “normal form” of iterated superposition. This is suggested by the proof of the
previous theorem which holds for restricted superposition closure without any change.

The restricted superposition closure of L denoted by �∗r(L) is defined in the following
way:

�0
r(L) = L,

�k+1
r (L) = ((�k

r(L)) � L) ∪ (L � (�k
r(L))) ∪ �k

r(L)

�∗r(L) =
⋃
k≥0

�k
r(L).

Note the main difference between the unrestricted and restricted way of iterating
superpositions. In the latter case, superposition takes place between a word produced so
far and an initial word only. Note that �∗r(L) ⊆ �∗u(L) for any language L. Surprisingly
enough (remember that � is not associative), we have an equality between the two
superposition closures of any language. In order to prove this “normal form” we need
some preliminaries.

Given a word x ∈ �∗r(L) we define

ordr(x) = min{i | x ∈ �i
r(L)}.

Remark. Note that for any word x ∈ �∗r(L) with ordr(x) ≥ 1, we have that x ∈ �∗r(L)
and ordr(x) ≤ ordr(x). Actually, only for some x ∈ �∗r(L) with ordr(x) = 1 it is
possible to have x ∈ L. This remark will be very useful in the proof of the next
theorem.

Theorem 6 [Normal Form] �∗r(L) = �∗u(L) for any language L.

Proof. Since �∗u(L) is the smallest language containing L and closed under superpo-
sition, and since �∗r(L) contains L, the proof is complete if we prove that �∗r(L) is
closed under �. Assume that this is not true, hence there exist α, β ∈ �∗r(L) such that
α � β 6⊆ �∗r(L). We take such a pair of words (α, β) with ordr(α) + ordr(β) being min-
imal among all these pairs and ordr(β) being minimal among all pairs (α, β) having
ordr(α) + ordr(β) minimal. Clearly, ordr(α) · ordr(β) 6= 0 (i.e., α /∈ L and β /∈ L).

Let γ be an arbitrary element of α�β. The following two cases of producing γ from
α and β have to be considered. They are schematically illustrated in Figure 4.

(1)

(2)

α
β

α
β

Figure 4: The two cases of producing γ

12

We shall consider the former case in detail; the latter follows from (1) by taking
complements. We distinguish the following nine cases presented in Figure 5. In each
case, the first segment represents α and the next two ones represent the two words
to which a superposition was applied for producing β. Furthermore, one of these two
words is in �∗r(L) while the other is in L, both of them having an order with respect to
the restricted superposition closure strictly smaller than β. For a better understanding,
we have followed the order of the cases 1,4,3 of Figure 1 for the second and the third
word. For a fixed case, we have ordered the possible situations depending on whether
they overlap outside α, they overlap with α, or they overlap inside α.

We now examine each of the nine cases:

(a) If vt ∈ L then xyuv ∈ yuv � xy ⊆ �∗r(L), since ordr(yuv) + ordr(xy) < ordr(α) +
ordr(β). Now γ ∈ vt � xyuv which implies that γ ∈ �∗r(L). Assume now that
vt 6∈ L, hence yuv ∈ L. Then xyuv ∈ �∗r(L) and ordr(xyuv) ≤ ordr(α)+1, hence
ordr(xyuv) + ordr(vt) ≤ ordr(α) + ordr(β). But since ordr(vt) ≤ ordr(vt) <
ordr(β), from the choice of α and β it follows that γ ∈ xyuv � vt ⊆ �∗r(L).

(b) If tuv ∈ L, then γ ∈ tuv � xy ⊆ �∗r(L), otherwise γ ∈ xy � tuv ⊆ �∗r(L) holds
because ordr(xy) + ordr(tuv) < ordr(α) + ordr(β).

(c,h,i) Clearly, γ ∈ xy � tuv ⊆ �∗r(L).

(d) Clearly, γ ∈ ytuv � xy ⊆ �∗r(L), since α /∈ L so that ordr(α) ≤ ordr(α).

(e,f) Clearly, γ ∈ stuv � xy ⊆ �∗r(L), since α /∈ L so that ordr(α) ≤ ordr(α).

(g) This case is similar to (a). If yuv ∈ L, then xyuv ∈ yuv � xy ⊆ �∗r(L) and
γ ∈ xyuv � vt. Since ordr(xyuv) + ordr(vt) ≤ ordr(α) + ordr(β) and ordr(vt) <
ordr(β), it follows that γ ∈ �∗r(L). If yuv 6∈ L, then xyuv ∈ xy � yuv ⊆ �∗r(L).
We have that γ ∈ xyuv � vt which is included in �∗r(L) because vt ∈ L.

As one can see, all cases lead to the fact that γ ∈ �∗r(L), which is a contradiction.
2

By this theorem we do not distinguish anymore the two languages defined by iter-
ated superpositions applied to a language L and denote by �∗(L) the common language.

13

(a)

(b)

(e)

(h)

(i)

(f)

(d)

(g)

x y

y u v
v t

x y

s t u
t u v

x y

t u
s t u v

x y

t u v
uts

x y

t u v
s t

x y

t
s t u v

x y

u
y t u v

x y

v t
vuy

x y

ts
t u v

(c)

Figure 5: The nine cases

Since the class of context-sensitive languages is a space complexity class, we now
show that such classes are closed under iterated superposition.

Theorem 7 NSPACE(f(n)), where f(n) ≥ log n is a space-constructible function,
is closed under iterated superposition.

Proof. Let us consider the following recursive boolean function which determines
whether or not a given word x is in �∗(L):

14

Function Membership(x, �∗(L));
begin
Membership:=false;
if x ∈ L then Membership:=true; endif; halt;
if (x is a letter) and (x /∈ L) then halt; endif;
choose nondeterministically a decomposition x = uvw, with v 6= ε;
proceed nondeterministically with
1. if ((Membership(uv, �∗(L)) and (vw ∈ L)) or ((uv ∈ L) and Membership(vw, �∗(L)))

then Membership:=true; halt; endif;
2. if ((Membership(vw, �∗(L)) and (uv ∈ L)) or ((vw ∈ L) and Membership(uv, �∗(L)))

then Membership:=true; halt; endif;
3. if ((Membership(v, �∗(L)) and (uvw ∈ L)) or ((v ∈ L) and Membership(uvw, �∗(L)))

then Membership:=true; halt; endif;

end

As one can easily see, the algorithm is based on the Normal Form stated in Theorem
6 and actually closely follows the definition of �∗r(L). This function can clearly be
implemented on a nondeterministic (multi-tape) Turing machine in f(n) space provided
that L is accepted by a nondeterministic (multi-tape) Turing machine in f(n) space.

Note that log n is needed in order to store the left- and right-hand border of the
current subword within the input word. By finite state one can keep track of whether
or not this subword is complemented. 2

Corollary 4 The families of context-sensitive and recursively enumerable languages
are closed under iterated superposition.

Proof. This statement is obvious for the family of recursively enumerable languages
and follows from Theorem 7 for the family of context-sensitive languages because this
family equals NSPACE(n). 2

We finish this section by pointing out an intriguing problem that remains without
any answer. It is the version for superposition of a problem posed by T. Head in [10]
and solved in [4] and [17] via rather complicated proofs. The problem is: Is �∗(L)
regular, provided that L is regular? We strongly conjecture a positive answer as it was
the case for the problem posed by Head. By Theorem 7 we infer that NLOG is closed
under iterated superposition, hence �∗(L) ∈ NLOG for any regular language L.

5 Maximal (Adult) Languages

As in the case of L systems, see, e.g., [19], we consider the maximal (adult) words
with respect to the iterated superposition closure of some language L. A word x is a
maximal word w.r.t. �∗(L) if x ∈ �∗(L) and x � (�∗(L)) ⊆ {x}.

We denote by max �∗ (L) the set of all maximal words w.r.t. �∗(L). This language
will be called the maximal language w.r.t. the iterated superposition closure of L. The
result of Theorem 5 can now be written simpler as:

15

Theorem 8 Every regular language is the projection of a maximal language w.r.t. the
iterated superposition closure of a finite language.

Proof. The equality R = h(max �∗ (L2)), where R, h, and L2 are defined in the proof
of Theorem 5, is immediate. 2

An interesting problem in our view is to determine, if possible, the maximal lan-
guage w.r.t. the iterated superposition closure of a regular language. A first and natural
question regards the decidability of the membership problem for this language. The
next result gives an answer to this problem for a particular case: the initial language
is finite.

Theorem 9 If L is a finite language, then max �∗ (L) is recursive.

Proof. Let L be a finite language over an alphabet and y be an arbitrary word over
the same alphabet. We put

m = max{|w| | w ∈ L} and t = max(m, |y|) + 1.

Denote by

– Pref≤k(A) the set of all prefixes of length at most k of the words in A,
– Suf≤k(A) the set of all suffixes of length at most k of the words in A,
– Subk(A) the set of all subwords of length k of the words in A.

Let k0 be the smallest number k ≥ t such that

Pref≤t(�k−1(L)) = Pref≤t(�k(L)),

Suf≤t(�k−1(L)) = Suf≤t(�k(L)),

Subt(�k−1(L)) = Subt(�k(L)).

It is obvious that k0 exists and the above sets can be algorithmically computed by a
standard iterative procedure.

Claim:

1. Y = Pref≤t(�k0(L)) = Pref≤t(�∗(L)).

2. Y ′ = Suf≤t(�k0(L)) = Suf≤t(�∗(L)).

3. V = Subt(�k0(L)) = Subt(�∗(L)).

Proof of the claim. We denote

Z = Pref≤t(�k0+1
r (L)), Z ′ = Suf≤t(�k0+1

r (L)), W = Subt(�k0+1
r (L)).

It is sufficient to prove that Y = Z, Y ′ = Z ′, and V = W . We shall prove the first
equality (the second one can be proved analogously) and the third one.

We proceed to prove Y = Z, actually Z ⊆ Y which suffices. We distinguish
the following five cases, each of them considering a possible generation of a word in

16

�k0+1
r (L) \ �k0

r (L) for which we prove that all its prefixes of length at most t are in Y .
To improve the readability we indicated the prefix by a long vertical line.

u v

v s z

v s z

u v s

v s z

u v

v

u v s z

v s

u v s z

(a)

(b)

(c)

(d)

(e)

Figure 6

(i) uvs ∈ Z obtained from a word in uv � vsz as shown in Figure 6(a). Since
|x| ≥ ordr(x) + 1 for all x ∈ �∗(L), it follows that ordr(uv) < k0, otherwise
|uv| ≥ k0 > t. Consequently, ordr(vsz) = k0 which implies that vs ∈ Y = X,
hence uvs ∈ Y .

(ii) uv ∈ Z obtained from a word in vsz�uvs as shown in Figure 6(b). If ordr(uvs) =
k0, then ordr(uvs) = k0, hence uv ∈ Y . If ordr(vsz) = k0, then vs ∈ Y = X
because |uvs| < t (uvs ∈ L). But vs ∈ X implies uv ∈ Y .

(iii) uvs ∈ Z obtained from a word in vsz � uv as shown in Figure 6(c). Clearly,
uv ∈ L and ordr(vsz) = k0. Since vs ∈ Y = X, uvs ∈ Y follows.

(iv) uvs ∈ Z obtained from a word in v�uvsz as shown in Figure 6(d). Clearly, v ∈ L
and ordr(uvsz) = k0. Consequently, ordr(uvsz) = k0, hence uvs ∈ Y .

(v) uv ∈ Z obtained from a word in vs�uvsz as shown in Figure 6(e). If ordr(uvsz) <
k0, then ordr(vs) = k0 and uvsz ∈ L. The former implies |vs| ≥ k0 > t while the
latter implies |uvsz| ≤ t. Therefore, ordr(uvsz) = k0, hence ordr(uvsz) = k0,
which leads to uv ∈ Y .

Since these cases are the only ones which might produce new prefixes, the first item of
our claim is proved.

We now proceed to prove in a similar way the last item of the claim. An analysis of
all the possibilities of getting new subwords of length t leads to the following six cases
(to improve the readability we indicated the subword by two long vertical lines):

17

s u v

u v x z(a)

(b)
s u v

v x z

x z s

zxvu(c)

x z s

xvu(d)

x z

u v x z s(e)

x

u v x z s(f)

Figure 7

(i) vx ∈ W obtained as shown in Figure 7(a). If ordr(uvxz) = k0, then ordr(uvxz) =
k0, hence vx ∈ V . If ordr(suv) = k0, then uv ∈ Y ′ = X ′, hence vx ∈ V .

(ii) uvx ∈ W obtained as shown in Figure 7(b). If ordr(vxz) = k0, then vx ∈ Y = X,
hence uvx ∈ V . If ordr(suv) = k0, then uv ∈ Y ′ = X ′, hence uvx ∈ V .

(iii) vx ∈ W obtained as shown in Figure 7(c). If ordr(uvxz) = k0, then ordr(uvxz) =
k0, hence vx ∈ V . If ordr(xzs) = k0, then xz ∈ Y = X, hence vx ∈ V .

(iv) vxz ∈ W obtained as shown in Figure 7(d). If ordr(uvx) = k0, then vx ∈ Y ′ =
X ′, hence vxz ∈ V . If ordr(xzs) = k0, then xz ∈ Y = X, hence vxz ∈ V .

(v) vx ∈ W as shown in Figure 7(e). The unique possibility is ordr(uvxzs) = k0,
that is ordr(uvxzs) = k0 as well, hence vx ∈ V .

(vi) vxz ∈ W as shown in Figure 7(f). This case leads to vxz ∈ V in the same way
as the previous case.

Now, it is easy to note that

y ∈ max �∗ (L) if and only if (y ∈ �∗(L)) and (y � (Y $ ∪ $Y ′ ∪ $V $) ⊆ {y}),

where $ is a new symbol. The former condition is decidable since L is finite, �∗(L)
is context-sensitive by Corollary 4, and hence it is recursive, and the latter one is
decidable since Y, Y ′, V are finite. 2

18

Theorem 10 There exist context-sensitive languages such that the maximal language
w.r.t. iterated superposition closure of such a language is not recursive.

Proof. It is known that for any recursively enumerable language L ⊆ V ∗ there exist
a context-sensitive language E and three new symbols a, b, c not in V such that E ⊆
Labc∗, and for any w, w ∈ L iff there exists i ≥ 0 such that wabci ∈ E, see, e.g.,
Theorem III 9.9 in [22]. Let L ⊆ V ∗ be a recursively enumerable language as above
and w ∈ V + an arbitrary word. We consider the new alphabet

U = V ∪ V ∪ {a, b, c, d, a, b, c, d},

where d is a further new symbol, and the context-sensitive language F = dE ∪ {dxa |
x ∈ V ∗}. We claim that

dwa ∈ max �∗ (F) iff w /∈ L.

If w ∈ L, then there exists i ≥ 0 such that dwabci ∈ F , hence dwa is obviously not
maximal w.r.t. �∗(F). If dwa is not maximal w.r.t. �∗(F), then there exists y ∈ E
such that dwa � dy contains a word other than dwa. This is possible only if y = wabci

for some i ≥ 0, hence w ∈ L.
Since there exist recursively enumerable languages that are not recursive the proof

is complete. 2

We give below another partial answer to the aforementioned problem; if our con-
jecture in the previous section turns out to be true, this partial answer will become a
complete answer.

Theorem 11 If the iterated superposition closure of a language L is a regular set, then
the maximal language w.r.t. this closure is regular, too.

Proof. We reduce the proof to a proof for the following statement: Given a regular
language K ⊆ V ∗ the language {x ∈ V ∗ | x �K ⊆ {x}} is regular. Obviously, we may
assume that ε /∈ K. Let A = (Q, V, q0, {qf}, δ) be a finite automaton without ε-moves
which accepts K and satisfies the following conditions:

– q0 6= qf ,
– δ(qf , a) is undefined for all a ∈ V ,
– q0 /∈ δ(q, a) for any q ∈ Q and a ∈ V .

For each pair of states q, s we define the set

E(q, s) = {w ∈ V + | s ∈ δ(q, w)}.

We further assume that for every state s /∈ {q0, qf} both sets E(q0, s) and E(s, qf) are
nonempty. Clearly, E(q0, qf) = K.

We define the following sets:

Pref =
⋃{E(q0, s) | s ∈ Q \ {q0, qf}} (the set of proper prefixes of the words in K),

19

Suf =
⋃{E(s, qf) | s ∈ Q \ {q0, qf}} (the set of proper suffixes of the words in K),

Sub =
⋃{E(q, s) | q, s ∈ Q \ {q0, qf}} (the set of subwords that are neither prefix
nor suffix, of the words in K).

Then the required set {x ∈ V ∗ | x �K ⊆ {x}} equals K \ (V ∗Pref ∪ SufV ∗ ∪ Sub).
By the closure properties of the family of regular languages we are done. 2

6 Solutions to Two NP-Complete Problems Based

on Superpositions Suggested by DNA Manipula-

tion

The first problem of this section is the Hamiltonian Path Problem (HPP). Let us
consider a directed graph G = (V, E), with V = {x1, x2, . . . , xn} for which we are
looking for a Hamiltonian path starting with x1. A Hamiltonian path in a directed
graph is a path which contains all vertices exactly once. It is known that the HPP is
an NP -complete problem.

We consider the following idealized DNA-based algorithm which is quite similar in
nature to that proposed in [1]: assume that we have put into a test tube the multiset
of single strand DNA molecules (each molecule appears in a sufficiently large number
of copies)

A = {#c1#cj | (x1, xj) ∈ E} ∪ {#ci#cj | (xi, xj) ∈ E},

where ci is an oligonucleotide which encodes the vertex xi, for each 1 ≤ i ≤ n and #
is a distinct oligonucleotide which does not complementarily match any subsegment
of any ci. Clearly, this technique requires an amount of DNA exponential in the
size of the problem instance which is not practical. This is a common difficulty with
such techniques as was pointed out originally by Hartmanis, see [9]. By annealing,
polymerase and melting the test tube will contain u � (A). We now add again A to
the current content of the test tube and resume the process. Hence, by iterating this
process for sufficiently long time, we may assume that the test tube contains all words
in u �∗ (A) long enough for encoding a possible solution to our problem. Let B the
contents of the test tube at this stage.

In order to look for a molecule encoding a Hamiltonian path among the molecules
in B we apply a procedure known as the filter method which consists in keeping all
the strands where all the nodes are present, by using some separation procedure (e.g.
biotyne-streptavidine affinity) and finally we check whether or not there is a molecule
of length

n · |#|+ |c1c2 . . . cn|

which might be realized by using the gel electrophoresis.
The following mathematical algorithm based on the superposition operation is in-

spired by the first two steps of the aforementioned DNA-based algorithm:

20

Procedure Hamiltonian Path;
begin
B := µn·|#|+|c1c2...cn|(A);
for each 2 ≤ i ≤ n

B := B � {#ci#};
endfor

end

To our best knowledge, this is a purely mathematical algorithm, unlikely to be
realized in a lab context for the time being, because it is based on a noncommutative
operation, an intrinsic commutativity being assumed when one tries to implement it.

The second problem we discuss here is the Bipartite Covering Problem (BCP) which
can be formulated in the following way [13]. Given a finite set C and n pairs of mutually
disjoint subsets of C, (Ai, Bi), 1 ≤ i ≤ n, decide whether or not there exist a subset Xi

in each pair 1 ≤ i ≤ n such that C = X1 ∪X2 ∪ . . . ∪Xn. It can be easily shown that
BCP is equivalent to the NP -complete problem, SAT problem, which can be stated
as follows: Given a propositional formula, decide whether or not it can be satisfied for
some values of its propositional variables (see also [13]).

Assume that C = {x1, x2, . . . , xm} for some m ≥ 1; each set Ai, 1 ≤ i ≤ n,
is encoded by an oligonucleotide $d(i,1)$. . . $d(i, ji)$, where Ai = {x(i,1) . . . d(i, ji)},
$d(i,1)$. . . $d(i,ji)$, where Ai = {x(i,1) . . . d(i,ji)}, and consider the distinct oligonu-
cleotides #i, 1 ≤ i ≤ n, and #. Now put

X = {#1} ∪ {#sds#s+1 | 1 ≤ i ≤ n− 1} ∪ {#ndn#}

and proceed as above to generate max �∗ (X). By the separation sequence in the
above abstract algorithm, inspired from the filter method, one checks the existence of
a maximal word which contains all segments di, 1 ≤ i ≤ m. Such a maximal word
exists if and only if the given instance of BCP has solutions.

7 Final Remarks

We have presented a new operation which provides a way to simulate (in well-defined
cases) several formal operations commonly employed in DNA computing. In particular,
we have shown how the iteration of this operation provides a theoretical model for some
concrete operations performed in DNA-based procedures.

It is easy to notice that many results obtained here remain valid for a definition
which makes use of commutativity, namely the result of superposition applied to x and
y is the union x � y ∪ y � x.

We recall here two open problems which appear attractive to us:

1. Is �∗(L) regular, provided that L is regular?
2. If the answer is no, is the maximal language w.r.t. the iterated superposition

closure of a regular language recursive?

21

We now briefly discuss a few other possible formal operations on words inspired
by the three biological phenomena which the superposition operation is based on. It
is known that a single stranded DNA molecule might produce a hairpin structure. In
many DNA-based algorithms, these DNA molecules cannot be used in the subsequent
computations. In a series of papers (see, e.g., [5, 7, 8]) the problem of finding sets of
DNA sequences which are unlikely to lead to “bad” hybridizations is considered. On the
other hand, these molecules which may form a hairpin structure have been used as the
basic feature of a new computational model reported in [21], where an instance of the 3-
SAT problem has been solved by a DNA-algorithm in which the second phase is mainly
based on the elimination of hairpin structured molecules. Different types of hairpin
languages are defined in [16] and [3] where they are studied from a language theoretical
point of view. One more superposition operation, which is now a unary operation,
might be defined as follows: a word uvwvxy in which a hairpin structure determined by
the complementarity of v and v appears produces the new word yuvwvxy. This hairpin
superposition operation which seems to be mathematically attractive is schematically
illustrated in Figure 8.

�

u v

wvxy

y

Figure 8: Hairpin superposition

Another superposition operation, more complicated, but based on a fact rather
frequent in nature, is informally described for two single stranded DNA molecules x
and y as follows: in the aim of being Watson-Crick complementary to a prefix of y,
a suffix of x makes some loops. Then x and y get annealed in a DNA molecule with
a double stranded part (the upper strand having some loops) by complementary base
pairing and then a complete double stranded molecule is formed by DNA polymerases.
Clearly, the same may happen with the prefix of y. Furthermore, all cases 1-4 of Figure
1 may be modified in this respect. We call it superposition with compensation loops.
For a better understanding we illustrate this case in Figure 9, where the superposition
with compensation loops applied to the pair of words (x, y) results in the word xz.

t u v w

wvu z

z

t

α
β

x = tuαvβw

y = uvwz

Figure 9: Superposition with compensation loops

Once again, it turns out that manipulation of DNA molecules is the source of
inspiration for interesting operations from the formal language theory point of view.
We hope to return to these topics in a forthcoming paper.

22

Acknowledgments. The authors are thankful to the editor as well as to the referees
for their valuable comments and suggestions which improved the presentation.

References

[1] L.M. Adleman, Molecular computation of solutions to combinatorial problems,
Science, 226(1994), 1021–1024.

[2] P. Bottoni, G. Mauri, P. Mussio, Gh. Păun, Grammars working on layered strings,
Acta Cybernetica, 13(1998), 339–358.

[3] J. Castellanos, V. Mitrana, Some remarks on hairpin and loop languages, Words,
Semigroups, and Tranlations, (M. Ito, Gh. Păun, S. Yu, eds.), World Scientific,
Singapore, 2001 47–59.

[4] K. Culik II, T. Harju, The regularity of splicing systems and DNA, Proc. ICALP
1989, LNCS 372, 1989, 222–233.

[5] R. Deaton, R. Murphy, M. Garzon, D.R. Franceschetti, S.E. Stevens, Good en-
codings for DNA-based solutions to combinatorial problems, Proc. of DNA-based
computers II, (L.F. Landweber, E. Baum, eds.), DIMACS Series, vol. 44, 1998,
247–258.

[6] R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, Bidirectional sticker systems,
Third Annual Pacific Conf. on Biocomputing, Hawaii, 1998 (R.B. Altman, A.K.
Dunker, L. Hunter, T.E. Klein, eds.), World Scientific, Singapore, 1998, 535–546.

[7] M. Garzon, R. Deaton, P. Neathery, R.C. Murphy, D.R. Franceschetti, E. Stevens,
On the encoding problem for DNA computing, The Third DIMACS Workshop on
DNA-Based Computing, Univ. of Pennsylvania, 1997, 230–237.

[8] M. Garzon, R. Deaton, L.F. Nino, S.E. Stevens Jr., M. Wittner, Genome encoding
for DNA computing, Proc. Third Genetic Programming Conference, Madison, MI,
1998, 684–690.

[9] J. Hartmanis, On the weight of computations, Bulletin of the EATCS, 55(1995),
136–138.

[10] T. Head, Formal language theory and DNA: an analysis of the generative capacity
of recombinant behaviors, Bulletin of Mathematical Biology, 49(1987), 737–759.

[11] L. Kari, Gh. Păun, G. Rozenberg, A. Salomaa, S. Yu, DNA computing, sticker
systems, and universality, Acta Informatica, 35, 5(1998), 401–420.

[12] S. Kobayashi, V. Mitrana, Gh. Păun, G. Rozenberg, Formal properties of PA-
matching, Theoretical Comput. Sci., 262, 1-2(2001), 117–131.

[13] V. Manca, S. Di Gregorio, D. Lizzari, G. Vallini, C. Zandron, A DNA algorithm for
3-SAT(11,20), Proc. 7th Intern. Meeting on DNA Based Computers (N. Jonoska,
N.C. Seeman, eds.), Tampa, Florida, USA, 2001, 167–177.

[14] Gh. Păun, G. Rozenberg, and A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998, Tokyo, 1999.

23

[15] Gh. Păun, G. Rozenberg, Sticker systems, Theoret. Comput. Sci., 204(1998), 183–
203.

[16] Gh. Păun, G. Rozenberg, T. Yokomori, Hairpin languages, Intern. J. Found.
Comp. Sci. 12, 6(2001), 837–847.

[17] D. Pixton, Regularity of splicing languages, Discrete Applied Mathematics 69,
1-2(1996), 101–124.

[18] J.H. Reif, Parallel molecular computation: Models and simulations, Proc. of Sev-
enth Annual ACM Symp. on Parallel Algorithms and Architectures, Santa Bar-
bara, 1995, 213–223.

[19] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems. Academic
Press, New York, 1980.

[20] G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, Heidelberg, 1997.

[21] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and
M. Hagiya, Molecular computation by DNA hairpin formation, Science 288(2000),
1223–1226.

[22] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

24

