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Abstract

This paper extends the asymptotic results for ordinary renewal processes to the super-
position of independent renewal processes. In particular, the ordinary renewal functions,
renewal equations, and the key Renewal Theorem are extended to the superposition of in-
dependent renewal processes. We fix the number of renewal processes, p. and study the
asymptotic behavior of the superposition process when time, ¢, is large. The Key Superpo-

sition Renewal Theorem is applied to the study of (3-7_, G'1,)/M/1/1 queueing systems.

S-RENEWAL FUNCTIONS; S-RENEWAL EQUATIONS; KEY SUPERPOSITION RE-
NEWAL THEOREM; (YY_, GI;)/M/1/1 QUEUEING SYSTEMS

1 Introduction

In queueing or production networks, an individual service facility may receive inputs from many
different sources, some of which are outputs from other servers. To model the queue at some
server, it may, therefore. be reasonable to postulate that the arrival process to that server is a

superposition of (nearly) statistically independent component processes.
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As pointed out by Albin (1982), if the arrival process to a queue is a superposition of many
independent, relatively sparse component processes, one can invoke the theorem that a super-
position process converges to a Poisson process as the number of component processes tend
to infinity, and approximately represent the analytically difficult superposition process by the
simple Poisson process [Cinlar (1972)]. For example, the stream of calls arriving at a telephone
exchange is the superposition of thousands of streams of calls generated by the individual cus-
tomers. Albin (1982) did extensive simulations for a single server with exponentially distributed
service times and with an arrival process which is the superposition of p independent renewal
processes (the (3., GIL;)/M/1 system). She showed that as p increases the average queue
length approaches that of an A /M/1 system. but that, for fixed p, the difference in average
queue length between the (30, G1,)/M /1 and M/M/1 systems dramatically increases as the

traffic intensity increases from 0.5 to 0.9.

In 1982, Whitt used the stationary-interval method and the asymptotic method to approx-
imate the superposition arrival process of the (3-?_, GI;)/M /1 queue by a single renewal pro-
cess. It is then easy to describe the steady-state distribution of the number of customers iu the
resulting GI/M/1 system. Whitt (1982) then compared the two approximating steady-state
distributions with the actual distribution as estimated by computer simulation. Albin (198:)

? GI)/G/1 system can be approximated by

showed that the mean queue length for the (
that of a suitably chosen GI/G/1 system. The appropriate independent interarrival time dis-
tribution is found as a function of p, the traffic intensity, and p by fitting curves of various
forms to simulation results. Newell (1984) described in detail some of the qualitative proper-
ties of (3_7_, GI;)/G/1 systems and, in particular, showed that they approach limiting M /G/!
behavior when p(1 — p)? is large. Suppose there is only a small number of arrival streams. sav
2 to 10, and the traffic intensity is close to 1, so that the expected queue size is large. Newell

(1984) showed that the Poisson approximation can be disastrous. and the queueing system with

a superposition arrival process should be analyzed more carefully.

The superposition of point processes has been widely discussed since the original investigation
by Cox and Smith (1954). Surveys or reviews have appeared by Cox (1962) and Cinlar (1972).

The emphasis of much of the early work has been either on the Poisson nature of a large number



of superpositions, or on the distribution of counts of events in superpositions. Lawrance (1973)
studied the distributions and the dependency of the intervals between events. Cherry (1972} con-
sidered the problem of superposing two independent renewal processes and two Markov renewal
processes. He applied his results to describe the joint departure process of two independent
M /G /1 queues and a classic problem in machine repair and maintenance. For more details. see
Cherry and Disney (1973, 1983) and Disney (1975). Kshirsagar and Becker {1981) generalized
some of the results in Cox and Smith (1954) to the superposition of Markov Renewal processes.
In particular, the interval between two successive visits to a particular state and the asymptotic
variance of the number of visits to a state in the superposed process are considered. However,
none of these authors have dealt with the extension of the fundamental concepts of renewal
processes, namely renewal functions. renewal equations, and the Key Renewal Theorem to the
superposition of renewal processes. The Key Renewal Theorem for ordinary renewal processes
is useful in studying the behavior of the process remote from the time origin or when it is in
equilibrium. A generalization of the Key Renewal Theorem is therefore useful in studying the
asymptotic behavior of the process formed by superposing independent renewal processes. A
detailed study of the extension of ordinary renewal functions, renewal equations, and the Key

Renewal Theorem to the superposition of independent renewal processes is given in this paper.

In this paper, we fix the number of renewal processes. p. and study the asymptotic hehavior
of the superposition process when the time t is large. In particular, we define the S-renewal
functions and the S-renewal equations. The S-renewal function is defined to be the sum of
the ordinary renewal functions of the component renewal processes. The S-renewal equation
is derived by conditioning on the time of the first event which occurs in the superposition
process. The solution of the S-renewal equations is derived in Section 2, and in Section 3 by
letting t — oo, we derive the Key Superposition Renewal Theorem. Just like the ordinary Ney
Renewal Theorem, the Key Superposition Renewal Theorem is useful in studying the asymptotic
behavior of the superposition process. In particular, we study its application to the calculation
of the excess life, current life and the total life in the superposition process. We also apply
the Key Superposition Renewal Theorem to the study of (30, GI;)/M/1/1 queueing systems.
Numerical studies are carried out to compare various characteristics of the (}/_, GL;)/M/1/1

with that of the M/M/1/1 systems.



The S-renewal function, S-renewal equation and the Key superpositon theorem we derive in
this paper is a continuous state space version of the Markov renewal function, Markov renewal
equation and the limit theorems given in Chapter 10 of Cinlar (1975). In a Markov renewal
process, the transition state space is a countable set. In the superposition of renewal processes

case, the state space is the set of all possible ages of the processes at the time when an event

occurs in the superposition process.

This paper is organized as follows : In Section 2 of this paper, we generalize the definitions
of renewal functions and renewal integral equations associated with ordinary renewal processes
to the S-renewal functions and S-renewal equations of p independent renewal processes. The
solution of this S-renewal equation is presented. In Section 3, we study the asymptotic behavior
of the solution of the S-renewal equations and apply it to various examples. This leads to
the generalization of the Ordinary Kev Renewal Theorem to the Key Superposition Renewal
Theorem. Theorems stated in Sections 2 and 3 are proved in Section 4. The Central Limit
Theorem for the superposition process will be proved in Section 5. In addition, the asymptotic
results for the renewal function associated with ordinary renewal processes will be extended to

the S-renewal function of the superposition process.

2 S-Renewal Functions and S-Renewal Equations

In this section, the definitions of the S-renewal function and the S-renewal equation for the super-
position of renewal processes are given. The solution of the S-renewal equation is derived. Sup-
pose that there are p independent ordinary renewal processes in operation simultaneously. Let
Fi,1=1,2,...,p, be the probability distribution functions for the successive interevent times of
the sth process. Consider the sequence of events formed by superposing the individual processes.
At the time when an event occurs in the superposition process, one of the processes. sav pro-
cess i, probabilistically starts over. In addition, the others have age Dy,.... D1, Di41..... D,
respectively, where the [; s are random variables. Suppose that at time 0. the processes have

age di,...,d, respectively. Let d = (d;,do,...,d,) and N(t,d) be the number of events that



occur in the superposition of these p renewal processes during the time interval (0. t]. Then
“ d
N(t,d) =Y N (2.1)
=1
{Nid'(t);t > 0} is an ordinary renewal process with initial age d;, 1 < 7 < p. It is also a
delayed renewal process such that the successive occurrence times between events have a common

distribution function Fj. The initial delay distribution function is Fid’, some of the d; s may be

zero, and

_ B(t+ di) - Fi(dy) (22)
1~ F(d;)
provided that Fi(t) < 1 for all t > 0. Here F'(1) = P(XE < t) = P(X, < t+d; | X; > dy).
Xfi' is the initial time to the first renewal of the ith process, and X; has a distribution function
F;. Before the S-renewal function for the superposition process {N(t,d);t > 0} is defined,
let us define the concept of the convolution of any two increasing functions. Let 4 and B

be nondecreasing functions, continuous from the right, with A(0) = B(0) = 0. Define the

convolution of 4 and B, denoted A + B, by
Ax B(t /Bt—s dA(s), t>0. (2.3)

The expected number of events that occur in the time interval (0,¢] is given by

]

14
S(N(t,d)) = Y E(NMt))

P o0
= Y HM) = Fr (R, ZW'HHH (2.4)

where (F})o(t) = 1 and Fﬁ‘ * (F;)o(t) = Fld'(t) for all t. (F});(t) = (F}),—1 = Fi(t) is the j-fold

H(t,d)

convolution of the distribution function F;. H,-d'(t) is the expected number of renewals in the
delayed renewal process {V );t 2 0} in the time interval (0,t]. Hi(t) = Y2, (Fi)(t) is the
renewal function associated with the distribution F;. Define H(t,d) to be the S-renecwal function
of the superposition process {N(¢,d),t > 0}. H(t,d) is finite for all finite t and d;. i = 1..... P,

because the H;(t)s are.

Theorem 2.1

H(t.d)=h{t. d)+ I(H(t.d)) (2.5)



where

=1

Proof: Conditioning on the time Ty(d) at which the first event occurs in the process N(t,d),

and counting the expected number of events that occur thereafter,

d 0 ifs>t
EIN(t,d) | Th(d) = X& = o] = . (27)

L+ H(t - s,u(ds,d)) ifs<t
In words, no events occur in (0,¢] if the first event of the superposition process occurs after
time ¢{. On the other hand, if Ty(d) = led' = & < t, then one event occurs at time s, and
on the average, H(t — s,u(i,s,d)) additional events will occur during the time interval (s,t].
At time s, the uth process probabilistically starts over, and the others now have ages s + d,,

7=12,...,i=1,i41,...,p. An application of the law of total probability yields
. .
H(t.d) = P(Ti(d)< t)+Z/ H(t—sou(iosd)dP(Ty(d) = ¥ <) (28)
i=170

Now

P
P(Ty(d) < t) = 1-P(X > ti=1,..,p) = L= [J = £40) = bty d),  (29)

=1

and for s < t,

P(Ti(d)= X <s) = PIXE <X XE<s s j=1,p & j#1)

s P
= / [] (1- Fff(x))de'(a;). (2.10)
O =i
[t follows that
P
AP(Ti(d) = XP < o)= J[ (1= F(s) dFb(s). (2.11)
J=Ly#i

This completes the proof of the theorem. U

Let T,(d) be the random time of the nth event in the superposition process N(t.d). Let



6:(To(d)) be the age of the ith delayed renewal process Nl-d'(t) at time T,,(d). Defining H(t.d) =
0if t <0and 8(Th(d)) = (61(T0(d)),...,6,(Th(d))), we have

I(H(t.d)) = &N -Ti(d),8(Ti(d)))). (2.12)

I(H(t,d)) is therefore the expected number of events that occur in the random interval (0.t —

Ti(d)] of the superposition process N(t,8(T1(d))).

The integral equation derived in Theorem (2.1) is called an S-renewal equation for the super-
postion of p independent renewal processes. It is an extension of the renewal integral equation
associated with an ordinary renewal equation to the superposition of p independent renewal

processes. More generally, we consider integral equation of the form

P ¢ p
Aft,d) = a(t,dH—Z/A(t—s,u(i,s,d)) II (1—F]df(s))de'(,s)
=170 J=14
= alt,d)+ S(A(t - Ty(d), 8(To(d)))) (2.13)

where @ is a known function of p + 1 variables and a(t,d) = 0 if t < 0. The solution of this

integral equation is given in the Theorem (2.2) below.

We first define some notation. Let § = {1,2,...,p} and §; = {1.2,.... J-lj+ 1.}
We consider partitions of the set §; into two disjoint sets 7,; and 7. 7, is a subset of S, with
i elements. Let o;; be the set of all partitions of S;. Also, we can partition the set S into two
disjoint set m; and 7. 7; is a subset of § with ¢ elements. Let o; be the set of all partitions of

{1,2,...,p} into the two sets 7; and =.
Theorem 2.2 Suppose a is a function of p+ 1 variables and it satisfies the following properties:

L a{t,d)=0 fort <0,
2. For every finite T > 0, there exists a finite constant k7 such that

sup fa(t,d)|< & forall dy,....d, > 0.
0<t<T

The function a is therefore a bounded function over finite intervals of the first variable,

and 1t 1s uniformly bounded in the other variables.

-1



Then, there exists one and only one function A with the following properties.

1. For every finite T > 0, there exists a finite constant Cr such that

sup | A(t,d)|< Cr forall dy,....d, > 0.
0<t<T

2. A satisfies the S-renewal equation (2.13).

This function 1s

ALd) = alt.d)+ Y E(a(t - Tu(d).8(Tu(d))) (2.14)

n=1
By conditioning on all the different ways of obtaining n events in the superposition process

N(t,d), we have

p=1
Alt,d) = alt,d)+ ) Ula(t,d)) (2.15)
1=0

where

=
—
=2
=
[o¥
=
=
i

P t T T
ZZ/O /0 /0 f(6)[ I1 dka(sk)}dHfl(r), (2.16)
N

j=10i kETr,J
i times
f18) = alt=7,8) [ (L= E"r) J] (1 - Fulr = si)). (2.17)
lef} kEm,
T+dy ifkery
6§ = ((51,...,(51)) and o, = T — S if/;en'” . (2.18)

0 ifk=3j

The proof of the theorem will be given in Section 4. Here, we offer some explanatory comments.
In the solution of the S-renewal equation above, i+ 1,1 =10,1,...,p- 1, is equal to the number
of processes having had at least one event occur by time T,(d) = 7. 7;; is the set of component
processes having had at least one event occur by time T,(d) = 7. 7} is the set of component
processes whose first event occurs after time T5,(d). j is the component process giving the nth
event in the superposition process N(¢,d). o;; is the set of all possible ways in which the above

conditions hold. y is the current age of the kth process, k = 1,2,....p, at time T,,(d) = 7.



For k€ myj, 1 € iy, and s < 7, ([ene (1= B (D) Tlien, (1 = FilT = se)JdH* (s} ()
is the probability that the following events happen simultaneously: An event occurs in the
superposition process at (s;—dsg, sg), this event comes from the kth component process. Also. no
event occurs in the Ath process in the time interval (s, 7). An event occurs in the superposition
process at (7 — dr, 7], this event comes from the jth component process. The first event of the

lth process occurs at time > 7.

When p = 2, the solution of the S-renewal equation is given by

Aty ds) = altdiode) + [ alt= 707+ d)1 = ()b
+ /Ot a(t - 7,7 +d1,0)(L ~ F' (7)) dH2 ()
+ /;/0 alt = 7,0,7 = s)(1 = Fy(r = s)) dH(s) dH " (1)
+ /01/0 a(t — 7,7 = 8,0)(1 = Fi(r —s))dH{ (s)dHS (7). (2.19)
In the special case that the function «(t,d) has a product form, the solution of the S-renewal

equation also has a product form. In addition, as t — oc there is a Key Renewal Theorem for

the process N(t,d).

Corollary 2.3 Fori=1,2,...,p, let F; be the disiribution function of a positive random vari-
able with mean p;. Suppose that g;, 1 = 1,2,...,p, 1s directly Riemann integrable and
P
gi(t + d1)
a(lt,d) = || ————. 2.20
4= =) 2

i1=1

Let A be the solution of the S-renewal equation (2.13). Then

. P A+ d;
Alt,d) = H(lng(‘d)) + g Hﬁt(t)). (2.21)
1=1 (A

Furthermore, if F;, 1= 1,2,...,p, is not arithmetic, then

lim A(t,d) =

t—00 ’
0 otherwise



Proof: The proof is straightforward but tedious. Substitute Expression (2.20) into Equa-

tion (2.15) in Theorem (2.2) above and simplify. It is easily checked that

Ui(a(t,d))
gt + dp)
= Zz[ H }/ H l:/ gk(t—Sk)dek(Sk)]g]‘(t—Sj)dH;-iJ(\.S]‘v)
J=1 04 l€7r 0 kemy, 0
t+d
= Z{ —m-—_lﬂ( ;j ;)” IT o+ Hgk(t)]. (2.23)
Titt lewf+1 - 1(”) k€miy1
Hence
, P gzt+d 2l gt +dp)
Alt,d) = ZZ[ H IT gi+ B ]
el : 1 - Fi{d,
j= 1=0 0,41 lE’rH_1 k‘E‘r,+1
P
gi(l +d;) d >
= ——+ g H(t 2.1
E(l—ﬂ(di)”* (1) (2.24)
Finally, from the ordinary Key Renewal Theorem, if F,, i = 1,2,...,p, is not arithmetic, then
! /m (@)de if i <
5t + d, — gilz)de f p, < x ’
lim {M-kgi*[{ld'(t)] ={ Jo . (2.25)
t—oo| 1 = Fi(d;) -
0 if i; = x
This completes the proof of Equation (2.22) and Corollary (2.3). [

Examples : (1) When p = 2 and a(t,dy,d2) = 1, we have after some algebra, A(t,d;,dy) =
1+ H{il(‘ t)+ Hd2(t) 2) When a(t,d) = 1, it is easily checked that the solution of the S-renewal
equation corresponding to « is given by A(t,d) = 1+Y"_, Hld'( t).(3) When a(t.d) = [TP_ (1 -

ﬂd‘(t)), we can apply Corollary (2.3) with ¢;(t) = 1 — F;(¢) to find the solution of the S-renewal
equation. It is easily checked that A(t,d) = 1. (1) When a(t.d) = A(t,d) = | =T]"_, (1~ 1“:{'(1)).

we can use the linearity property of integrals and the results of examples (2) and (3) above to

obtain A(t,d) = H(t,d) = Y°_, H*(1).

Corollary (2.3) tells us that as t — oc, A(t,d) is independent of the initial age d;, i =
1,2,...,p, of the component processes. In other words, in the limit as t — ¢, the effect of the
initial age d; of the process Nl-d'(t) disappears. In the next section, the above corollary is used

to calculate the limiting remaining life of the superposition process N(t.d).

10



3 Key Superposition Renewal Theorem and Applications

In this section, it will be shown that under some regularity conditions on a(t,d), we can generalize

the ordinary Key Renewal Theorem to the Key Superposition Renewal Theorem. We will see

in the theorem below that tlirn A(t,d) is independent of the initial ages d;, 1 < ¢ < p, of the
—_ 0

component processes. Before the theorem is given, we need the following two definitions.

Definition 3.1 Let g be a function defined on RY. For every positive 6 and m,n; = 1,2,.. .,

i=1,2,...,m, let

= min{g(z1,22,- -, 2m) (M= 1)d <2y <midii=1,2,....m},

—mﬂ.] T2yl

Moy gy = Max{g(a1,29,.. ., Tm) (0 =)0 <z <mgdie =120 m},
m 20 m o0
g—(é) = 5m Z Z mnl (%] Nm and U(é) = 5m Z Z m"’Ll T2 ,ein m
=1 n,=1 =1 n,=1

Then g is said to be direcily Riemann integrable if both series g(8) and T(8) converge absolutely

for every positive &, and the difference 3(é) — a(8) goes to 0 as 6 — Q.

Definition 3.2 Let a be a function defined on RTI. For every positive h and k = 1,2,.. .. let

mina(z,yy,...,Y) i (k—1)h <z <kh
Ky lp) = ’ , (3.1)
0 otherwise

_ max a(z,y,...,Y¥p) f(k—1)h <z <kh
Cke(y1s- 2 Up) = g : (3.2)
0 otherwise

Fori=1,2,...,p, let F; be the disiribution function of a positive random variable with finite
mean p;. Define a 1 x p random vector D such that
: . 1 /&L
D= (Dy,....0i-1,0,Di4y....,Dy)  with probability — — Z —.
“l ]‘=1 :u‘]
Dy, Dy, ..., D, are independent random variables and D; follows the limiting current life distri-
bution of F;, 1 =1,...,p. This means that for z > 0,

e
P(D; >z>=—/ (1- Fi(y))dy. 3.3)
Hy Jz

11



Also, let
=h Z E(cx(D))  and  T(h) = h)_ E(T(D)).

Then a is said to be directly Riemann integrable with respect to (F. D) = ((Fy, D1),....(F,.D,))
if both series a(h) and @(h) converge absolutely for every positive h, and the difference 3(h)—a(h)

goes to 0 as h — 0.

Theorem 3.3 (Key Superposition Renewal Theorem for p independent processes)
For 1= 1,2,...,p, let F; be the distribution function of a positive random variable with finite

mean ;. Suppose that

1. a(t,d) =0 for t negative,
2. For every finite T > 0, there exists a finite constant Kk such that

sup | a(t,d)|< kr for all dy,...,d, > 0.
0<t<T

3. A 1is the solution of the S-renewal equation (2.13).

4. The function

]
bi(tody,. oy dyy djgy, o dy) = altydy, . dioy,0,dgyy L dy) [T (1= F(d)

defined on RY. is directly Riemann integrable for all j = 1,2,...,p.

5. The function a is directly Riemann integrable with respect to (F,D) = ((Fy, D1),...,(£,,D,)).

p -1
. . . 1
If F;, 1 =1,...,p, is not arithmetic and p = [Z—] , then

gl

/ 1oee e Dic1 00D 4. oo D))dz ifp <
tlimﬂ At,d) - lﬂz
fu=x
1 o0
—/ Ela(x,D))dx if p<
0

= {un

0 if u=oc

(3.4)

12



Proof: The proof will be given in Section 4.

From Corollary (2.3) and the Key Superposition Renewal Theorem, we can conclude that as
t — oo, A(t,d) is independent of the initial ages d;, 7 = 1,2,...,p, of the component processes.
All we need to do is to average the initial age by the corresponding limiting current life distri-

bution of the individual independent component processes.
Applications

Example 1 : Consider the (3.7_, GI;)/M/1/1 queue, this is a queueing system with an ar-
rival process which is the superposition of p independent renewal processes. There is no waiting
room in this system. A customer that arrives and finds the server busy leaves the system and
never returns. Assume that at time £ = 0, the server is busy and the ages of the renewal pro-

cesses are dy,dy,. .. d,.

Part (a) : Let A(t.d) be the probability that the server is busy at time t. By the memo-
rylessness property of the exponential distribution and the independence of the service times, at
time ¢ = 0, the residual service time X of the customer being served at that time has the same
exponential distribution as any service time. Conditioning on the time T3 of the first arrival to

the system, we have

1 ifTy >tand X >t
Alt,d) = <0 if Ty >tand X <t (3.5)
At -s,u(l,s,d)) Ty =s<tand [} =1

where [; is an indicator function such that [; = 7 if the jth arrival comes from the ith process.
A(t,d) satisfies the S-renewal equation with

P

a(t.d) =PIy > X > t)= e J[11 - Fh(t) (3.6

{
=1

where 1/a is the mean service time. By the Key Superposition Renewal Theorem, we have

13



A €1 €9 €3 €10
0.1 | 0.060 | 0.039 | 0.028 | 0.008
0.2 | 0.111 | 0.070 | 0.049 | 0.014
0.3 | 0.157 | 0.094 | 0.064 | 0.018
0.4 | 0.194 | 0.110 | 0.075 | 0.021
0.5 | 0.224 | 0.125 | 0.082 | 0.023
0.6 || 0.247 | 0.133 | 0.087 | 0.024
0.7 0.262 | 0.137 | 0.089 } 0.025
0.8 0.270 | 0.138 | 0.090 | 0.025
0.9 § 0.271 | 0.138 § 0.090 | 0.026

Table 3.1: Proportion of error when @ = 1 in Example 1(a)

lim A(t.d)
P 1 0 1_

o LRI W R [ AR
=1 HilJo 7=1g%# g=ly#

Expression {3.7) gives us the limiting probability that the server is busy at time ¢ when ¢ is

large. This is independent of the initial conditions of the system. In the special case when

A x L2
l—exp{—(-—)(—vlﬂ f=2>1
Fi(z)=Gylz) = I-XA/\p p (3.8)

0 otherwise

forall 7 € {1,2,...,p}, the total arrival rate to the system is A < 1. Equation (3.7) simplifies 1o

P oo e p—1
L, = p<é> / e (1~ Gp('x))(/o 1-Gplz+y) dy> dz
- e AN AMLZAR L,
= ,\/ <1— > dl+(1_/\)a+/\€ !

— 1 A i .] P /\(1_)\)11 -4 :
= Z(—l)(;) [H(l—;})}(l—(l—/\)p € p>+m€ P (3.9)

1=0 Jj=1
As expected, Expression (3.9) converges to L, = A/(A+a)as p — oo, Let e, = (L, - L,)/ L.

ep is the proportion of error for the Poisson approximation as defined in Albin (1982). From

14



Table (3.1) above, the percentage error could be as large as 13.8% when p = 2. This suggests
that the Poisson approximation is not appropriate for p small. The Key Superposition Renewal

Theorem is necessary to obtain the exact solution in the analysis of (3_-5_, GI;)/M/1/1 systems.

Part (b) : Let B(t,d) be the probability that the first customer arriving after time ¢ finds the

server busy. Again, conditioning on the time T of the first arrival to the system, we have

1 ifTy >t and X > T}
B(t,d) = 40 Ty >tand X <T4 (3.10)
B(t —s,u(1,s,d)) if Ty =s<t and [} =1

B(t,d) satisfies the S-renewal equation with

a(t,d) = P(X > Ty > t) [H }—/ {H(1-Fﬁl(:g)‘)}ae~“dm. (3.11)
=1 t

1=1

By the Key Superposition Renewal Theorem, we have

lim B(t.d)

t—oo

P o0
= Yo |[ - e
i:lui 0

/ :%+JJ))>< ﬁ .([yj) dx

1
1y# J=14%#:
P »
/ / ae”" (1 - Fi(z)) ( H / (z+y,))>( I[I (lg_,)d:dw}(,}.l?)
=1, H J=Li#

In the special case when Fj(z) = G,(z) for all i € {1,2,...,p}, equation (3.12) simplifies to

Ae\Ph o T(L—ap) M1 = AP a1 = AP
m”*A/ - (1_—[)_> d”[ T-Natr  (L-MetA?

e P (3.13)

As expected, m, converges to m, = [A/(A + a))? as p — co. Let €, = (m, — my,)/m,. From
Table (3.2) below, the percentage error could be as large as 17.5% when p = 2.

Example 2 : Consider the superposition of two independent renewal processes. Define the
process X (t) such that X(t) = ¢, 7 = 1,2, if at time ¢, the last event came from the ith process.
Let A(t,dy,dy) be the probability that X(t) = 1 given that at time ¢ = 0, the ages of the renewal
processes are d; and dy respectively. Conditional on the time Ty of the first arrival, A(t,d),dy)

satisfies the S-renewal equation with

2
a(t,dy,dy) = P(Th > t)] d1 < ds) [H 1— Fd ] (d; < dy) (3.14)
1=1



A €1 €2 €3 €10

0.1} -0.154 | -0.213 | -0.195 | -0.068

0.2 | -0.046 | -0.136 | -0.131 | -0.044
0.3 || 0.057 | -0.066 | -0.075 | -0.025
0.4 0.154 | -0.004 | -0.028 | -0.011
0.5 0242 | 0.049 | 0.011 | 0.000
0.6 || 0.318 | 0.093 | 0.042 | 0.009
0.7 0382 0.128 | 0.067 | 0.015
0.8 0430} 0.155 | 0.086 | 0.020
0.9 0461 ] 0.175| 0.100 | 0.024

Table 3.2: Proportion of error when a = 1 in Example 1(b)

where

1 ifdy < ds .
[((ll < (12) = (3.15)

0 otherwise

By the Key Superposition Renewal Theorem, we have

| (1= Fi(2)) [* (1 Fy.
lim A(t,d1,dy) = / ( 1“))/ Q=B yge = PRy > By (3.00)
t—o0 0 H1 T 12

where R;. ¢ = 1,2, is the limiting current life distribution of the ith process.

Example 3 : Limiting Distributions of the Remaining Life and the Current Life
Let v¢(d) be the remaining life at time ¢ of the process N(t,d). For any fixed z > 0, set 4.(¢,d) =
P(74(d) > z). Conditioning on the time T} of occurrence of the first event in the process N(t.d).
we can derive the S-renewal equation for A.({,d). In this case, a.(t.d) = f:l(l - Fl’l'(t + ).
Let g7(t) = 1 = Fi(t + z). a,(t,d), therefore, has the product form specified in Corollary (2.3).
[t follows from that corollary
P g

lim P(3(d) > 2) = Hl(;—/ (1 - Fi(2)) du), (3.17)

which is the product of the individual limiting remaining life distributions of the component

processes. This is as expected, because the p renewal processes are independent. The same

16



argument in Karlin and Taylor (1975) page 193 can be used to show that the limiting distribu-
tion of the current life for the superposition of independent renewal processes is also given by

Equation (3.17).

Example 4 : Limiting Distribution of the Total Life
Let B4(d) be the total life at time ¢ of the process N(t,d). For a fixed z > 0, set A.(t,d) =
P(B(d) > z). Again, we can condition on the time Tj(d) of occurrence of the first event in the

process N(¢,d) to derive an integral equation. A,(t,d) satisfies the S-renewal equation with
P
a:(t,d) = J[(1 - F(max(t, 2))), (3.18)
=1
4 1 -1
By Theorem (3.3), if py,..., 1, < 00 so that y :[Zﬁ} < 0o, then

=1
tlim P(Bi(d) > z) (3.19)
p —
= / 1 - Fi(max(z,2))) ] / (1 - £y{max(z. )+y1))dyj](l;c
1"’ =10 Ha
P 1 p ropoc — Fuy. |
= Z—[/ [ (1 - Ffz)) H / Q——F—]—(yj—))dy]de:}:—/ rdG(z)
i Hi =Lyt o oo
where
1
° L 1-F
G(z) :1-2%(1—5(1-)) II U (——iJ—))dy} (3.20)
1 = L T /J,]
=1 1=1,7%#
I
Accordingly, we have established the limiting distribution of the total life is
1 z
lim P(3;(d) = —/ zdG(z) = B(z). (3.21)
t—0o0 M Jo

A similar argument from Karlin and Taylor (1975) page 195 can be used to show that the mean
limiting total life is at least as big as the mean interval time in the superposition process N(¢,d).

This fact is consistent with the analogous result for ordinary renewal processes.

4 Proof of Theorems

Proof of Theorem 2.2: We first verify that A specified by equation (2.15) fulfills the requisite

boundedness properties. Using standard renewal theory, H, is nondecreasing and finite. [t

17



follows that

?

t
HE(t) = F& s [+ Hy(t)] = Fh(t)+ | FR(t-s)dH(s) <1+ H(t) < foralll. (4.1)
) 1 1 O 12

Hence, for every T, we have

sup | A(t,d 1 zH‘i‘k&]zfﬂJ ]
OSltlgT| (t H < HT. +§;§// /[ken,]( k(k}( J(T)
i times
= HT1+ZZZ/ [Hﬂd“ ]dH )}
- 1=0 5=1 0y ke,
= KT1+ZZ/ d[ H Hd"(‘r”
1=0 0,41 kEm 4
»
= wr [J(L+ HMT)) = Cr < . (4.2)
=1

establishing that the Expression (2.15) satisfies property (1) of the theorem. Next we want to

show that Expression (2.15) solves the S-renewal equation. Conditional on

1. the time Ty(d) of the first event that occurs in the process N(t,d), and

2. 6;(Ty(d)), ¢ = 1,...,p, the age of the ith component process Nid'(t) at time Ty(d),

we have

and

6(Tn(d)) = (0(To-1 (8(T1(d))); . Ep(Tu-1(8(Th(d)))) = 8(Toa (6(T1(d)))). (44)

In words, knowing T1(d) and 6;(71(d)), ¢ = 1,...,p, then the times of n events in the process
N(t,d) are equal to T3(d) plus the times of n — 1 events in the process N ((.6(T,(d))). Also. the
age of the sth component process at the time of n events, T,(d), is the same as the age of the

§(Th(d))

delayed process {N;* (t);t > 0} at the times of n — 1 events. It follows that for all n > 1,

E(A(t = To(d),86(T,(d))))

= C[E(A(E - Tu(d). 8(T,(d))) | Th(d),6(Ty(d)))]
= E[S(A(t-—Tl(d)_Tn—l(é(Tl(d)))a‘S(Tn—l(é( |T1 (Tl(d)))] (45}

18



We can now solve the S-renewal equation by successive approximations, and we use equality

(4.5) to simplify each step in the approximation to obtain
A(t,d)
= a(t,d) + E(A(t - Ty(d),6(Ty(d))))
= a(t,d) + E(a(t - T1(d), 6(T1(d))))
+ E[E(A( - Ta(d) - Ty(6(T1(d))), 6(T1(8(T1(d)))) | Tu(d), é(T1(d)))]

= aft,d)+ (a(t - T1(d),6(Ti(d)))) + E(A(t — To(d),6(T2(d))))

n—1
= a(t,d)+ ) Elalt = Ty(d), 8(T;(d))) + E(A(L - Ta(d). 8(T(d)))). (4.6)

J=1

Next we want to show that

lim | £(A(t - To(d), 6(Ta(d)))) |= 0 (4.7)

n=>00

for every fixed t. Let I,(N(t,d)) be the indicator function such that I,(N(t,d)) is equal to j
if the nth event of the superposition process comes from the jth component process. Observe

that by conditioning on

L i4+1,0<i<min{n-1,p—1} = p, the number of processes having had at least one event

occur by time Ty, (d).
2. L(N(t,d)=3j,7=12,...,p.
3. Foreachi=0,...,p,and j = 1,2,...,p,

(a) m; C{1,....i - 17+ 1,....p} and | 7y, |= ¢,
me+1 fker;U{j
(b) N (To(d))={ v

0 otherwise

(c) Z mg=n—-t—-l,and mg >20;k=1,....p,
ke, u{j}

T+d, ifkE€ ij
(d) To(d) =7, and 6x(Tn(d)) = b = 71—, ifke T
0 ifk=7
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we have

- |ZZZ// [ sate [ (HdF:**(Fk)mk(sw)dﬂd]*(an,m\

t=03=1 0y kEn,]
ztllneS
< AX Y [[S( I B o]
1=07=1 0y Gl’; ke,

< Ctiz[z( II F;‘k*(mmk(t))], (4.8)

1=0 Ti41 9’”+1 I\‘,Eﬁ,.',l

where
05 = {(mi....mp):m; + z mp=n—-1-1, mp >0, k=1,...,p}
ker,,
07 = {(m1,....myp): Z mp=n—-1-1, mp>0, k=1,...p},
kemipq
and

fa6) = A-78) [T-F") [] (- Fulr —s0)).

len€ kem,,

¥

Fort=0,1,...,p,

s Z( IT Fﬁ“*(Fk)mk(tO: [T 7)< . (4.9)

n=141 9!;-] k€7l'l+1 ’CE?I’,+1

This means that Zﬁggl(nker.ﬂ F,f" * (Fi)m, (1)) is the nth term of a finite series and hence
converges to 0 as n — oo. Expression (4.8) is now bounded by the sum of a finite number of
terms, each of which converges to 0 as n — oc. This completes the proof of Expression (4.7).

Letting n — o in Equation (4.6), we have Result (2.14) and

> Ela(t = Ty(d), 6(Tx(d))) (4.10)

_ 'f_lfz/t/f [ 6] & T T1 8« (Bt a8 + (£t
= )7 e —

n=t+1 9” ken,,
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Finally, observe that

2. Z{ [T B « (Fmy(50)|AF) < (Fy)my(7) = [ II dH,f“(su]dHf’m.<4.m

n=1+1 6:3 kem,, ker,,

This completes the proof of the theorem. (]

Proof of Theorem 3.1 : Key Superposition Renewal Theorem The proof is a direct
extension of the proof of the ordinary Key Renewal Theorem given in Feller (1971) or Cin-

lar (1975). It is carried out in two steps.

Step 1: Let
efd) f0<L<a<lU<x
a(z,d) = , (4.12)
0 otherwise
where ¢(d) is a function independent of 2. Since the function « is independent of the first

variable, it follows that k7 = x which is independent of 7. Let [4(t) be the indicator function

defined by I4(t) = 1if t € A and 0 otherwise. Observe that

L. tlim a(t,d) = tlim c(d){p<i<ctn(t) = 0.

2. We know that Fld’ is a nondecreasing function such that F,d‘(‘oo) = lim, Fld’(r) =1

i.e., given any € > 0, there exists 7,(€) such that for 7 > 7o(¢) and VI € {1.2,...,p}, we
have
~ ep .
1 - FH —_— =y <l 4.13
A AT (4.13)

where ¢ = ,Jax | o5 |. Also, by Proportion (3.5.1) part (iii) in Ross (1983), given any
<ig<p

€ > 0, there exists t,(¢) such that for all ¢ > t,(¢) and V& € {1,2....,p},

]H;f“(t—L)—Hf“(t—L')k(—m#——L—) (4.14)
k
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3. Fort=0,1,...,p—2and ¢ > max(7,(¢) + U,t,(¢)),

ZZ// / [ ng“(sk)]deJ(r)

=104 kem,
1tlHl€S
t—-L
< nuEZ/ [H/ 1 — Fy( T—Sk))dH (s )}([H’( )
1=1 0y kem;
. wzzf [Hpgk(r)} <hu22/ an
J=1 0y kEmy, J=1 04y
= ﬁuz Loy | AP (1= 1) - HP (6 = U)]
< MLIUIZ et DIT=1L) =¢le+ 1) (4.13)

J
Since € can be made arbitrarily small provided that t is large enough, it follows that when
1=0,1,...,p—2,

lim ZZ/ / / [ | I dﬂgk(sk)](mjf(r) S0 (416)

t—co
“1 0'; kEﬂ',]

zmmes
4. Next observe that by Proposition (3.5.1) part (iii) in Ross (1983), we have
1

;/0 Ela(z, D)) da

) (e(Dy,...,D;_1,0,Dj41,....D,))

" 1 - Filys
= th_flolOZ/t [/ / yJ 1k j<LﬁM(1yk>}(1H?(r) (4.17)

p—1 tunes

where y5 = (y1,. -, ¥j-1,0, 441, -, Up)-

5. Let s = (sy,...,8p) and v(j,7,8) = (T = s1,...,7 = 8;-1,0,7 — 8;41,...,7 — s,). Tor

t=p-1,
lim [ dH‘.i"(sk)}dH%(r) (4.18)
i 5 [ [ [ o] T1 awiifan
ztlHleb
= | Z/M[/ / ,, (1 Fylr = si)) dH (s ﬂm‘“
= lim v(Jj,7,8)) Yk#] (1= Fi(r = s))dH F(sg) ) |[dH P (7)
p— 1t1mes
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It is easily deduced from condition (4) of this Theorem and by the extension of the proof

for Ordinary Key Renewal Theorem to higher dimensions that

T@;’lo/ [ et 9 11 ((1~Fk<r—sk>)dﬂik<sm)

k 1,k#5
p— 1t1mes
oo (1= Fy
= / / )] ( k yk))dyk> (4.19)
b o k Lk
p—1times

Sincet—L2>1>t—-U, hencer — o0 as t — oo and

tlirBOZZ/ / / [ I ngk(sk)]dei(r) - l/mg(a(z,o))du

j=1 04 ken,, KJo
1ElmeS

Step 2: Let a(x,y;,....y,) be a function that satisfies the conditions stated in the theorem.

For fixed h >0 and b = 1,2,..., let

s 0]
_@(z’ylv"'va Z (ylv'--vyp [[/c 1hkh)( ) (420)
and
oo
Az, Y1, Yp) = Z@(yl,m»yp)f[(k-uh,kh)(l') (4.21]
k=1

where ¢ (y1,....¥p) and €x(y1,. .., yp) are defined in Equations (3.1) and (3.2). Then

ayrs - ¥p) Salyre o yp) LU Yp)

By step 1 and condition (4) of the theorem, it is easily shown that if A(t.d) and A(f,d) are the

solutions of the S-renewal equations corresponding to a and @. then

lim A(¢,d) = h "( ci(D / Ela dx (4.22)
t—20 M =1 -
and
bm Aftd) = © S E(@(D)) = l/ £(@le, D)) de. (4.23)
fmoo p k=1 #Jo
— h &
But A(t,d) < A(t,d) < A(t,d) and hence all limit values of A(t,d) lie between — Z Ele(DY)
Ho—
) o k=1
and — ) &(t(D)). By condition (3) of the theorem, it follows that
H =
lim A(t.d) = i/ Ela(z,D))du. (1.24)
t=o0 # Jo
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5 Asymptotic Results of N(t,d) and H(t,d)

In this section, we extend some of the asymptotic results for ordinary delayed renewal process
to the superposition of p renewal processes. Let N(t;p) = N(¢,0,...,0) be the counting process
associated with the superposition of p independent renewal processes N,(t), ¢ = 1,2.....,p.
each of these processes restarted at time ¢ = 0. The next theorem tells us that N(t;p) is

asymptotically normally distributed as t — oo.

Theorem 5.1 Central Limit Theorem for Superposition of p Renewal Processes
Fori=1,...,p, let u; and 02, assumed finite, represent the mean and variance of an interurrival

time of the ith renewal process N;(t). Then

Proof: The proof is straightforward. By the Central Limit Theorem for ordinary renewal

processes [Karlin and Taylor (1975)], we have for i = 1,2,...,p,

t ot
Ni(t)~ N (— i) as ¢ — oc. (5.2)
lul :u‘z

Since all the component processes are independent,

P

P
N(t;p) = Zlvi(t) ~N < Z

b
Z%) (5.3)

Let 7, be the time of occurrence of the nth event in the superposition process N{i{:p). The

theorem above can now be used to show that 7, is also asymptotically normal as n — .

Theorem 5.2 Let 7, be the time of occurrence of the nth event in the superposition process

N(t;p). The asympiotic Result (5.1) can be inverted to show that as n — o,

.|
Tn~N<n/ —.n / ) (5.4)
;/J'i 1,“'1 1,uz
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Proof: First, observe the equivalence of the sets of events

P
{7, >t} if and only if {N(t;p) = Z ) < n}
=1
Write
n 4 0.12 P 1 3
t=—5—+0n ”ZT/(Z“.) (5.5)
2_1_ = Pl NS K
=1 fa
so that
> s L) hys /(L)
n—t —:—yn< —) n —’/( —> (5.6)
=1 Hi =1 Hi i=1 I =1 Hi
Then
P P
Ntp)—t> — n—ty —
— Hi — M
P(T, >t) = P(N(t;p)<n)=P 1‘21 C 1() ) (5.7)
P, P2
t —< t —+
J e L3

Now fix y, = y and let n — oo. Then

1/2
hm yn{l + Yn / } = —y. (5.9
J IZI ’u1 =1 Ha )

Furthermore, by Expression (5.5), t — 00 as n — oco. Hence by Theorem (5.1) above.

l i 2
lim P( > ;> = lim P(7,>1t) = —/ e~ . 5.10)
n—oG i 02 zp: 1 3 U n—aol ( ‘/‘271— J—na (
=1 H =1 th
O

The following theorem is an extension of Proposition (3.5.1) in Ross (1983). The proof of the

theorem is straightforward.

Theorem 5.3 Let u be the mean interarrival time for the superposition process N(t,d).
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N(t,d) 1

1. With probability 1, lim —— = —.
=t 0O t H
H(t,d 1
2. lim ——L—’—-—) =-.
t—o0 t i
3. If F;.1=1,2,...,p, are not arithmetic, then
. h
thm (H(t+ h,d) - H(t,d)) = —.
— 00 7
4. Foru=1,2,....p, lel I be nonarithmetic distributions with finite variance o*. Then we
have
t 0'2 — uQ
lim(H(t,d)-=)= ! L.
tirgo( ( ’ ) /J«) ; 2”3
This 1s an asymptotic expansion of H(t,d).
Proof: Use Proposition (3.5.1) in Ross (1983). O

Remarks: Theorem (5.3) also holds when the component processes are dependent.
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