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The superposition of two squeezed vacuum states is analyzed by studying the photon-number

probability distribution and the quadrature-phase-eigenstate marginal distributions. Interference

fringes in the distributions are observed for some superposition states. The nonlinear oscillator gen-

erates a particular superposition of two squeezed vacuum states and the properties of this superposi-

tion state are discussed and contrasted with the other superposition states.

The generation of nonclassical states of light is an ob-

jective in quantum optics. In addition to providing a test
for the quantum theory of light, nonclassical states can
have practical applications. For example, the nonclassi-

cal squeezed state of light, in which the quantum fiuctua-

tions of one quadrature are reduced below the vacuum

level, has potential applications in optical communica-
tions and gravitational wave detection. ' Here we study
nonclassical states which arise as the coherent superposi-
tion of two states. In particular, we investigate the super-

position of two squeezed-vacuum states, which possesses
interesting but simple interference properties.

The presence of interference fringes in phase space and

marginal distributions has been studied for superposition
states generated by the nonlinear oscillator. In partic-
ular, the superposition of two squeezed-vacuum states
has been investigated. However, the nonlinear oscillator
generates one particular superposition of two squeezed
vacuum states. Here we discuss the general superposition
of two squeezed-vacuum states by contrasting the
photon-number and marginal distributions. We observe
that interference in the distributions varies substantially
for different superposition states.

In experiments the squeezed vacuum has been generat-

ed by using four-wave mixing interactions ' and optical
parametric oscillators. " The squeezed vacuum is defined

to be

~z ) —= exp[ —,'(z8+ —z*& )]~0)

for ~0) the vacuum state of the field. The in-phase and

out-of-phase Hermitian quadrature operators are defined

to be 8, and &2, respectively, where & =&, +i32, which

satisfy the canonical commutation relation [8&,&2]= ,'i-
Approximate measurements of the quadrature phase are
performed by homodyne detectors' and the statistics of
quadrature-phase measurements conform to the quad-
rature-phase eigenstate marginal distributions. The
photon-number operator is 6' =8 &, and the photon-
counting statistics, obtained by a photon detector with a
very high quantum efficiency, is approximated by the
photon-number distribution. '

Let I ~a, ) I represent the eigenstates of the quadrature

operators &, with real eigenvalues [a, I. The marginal

distributions for the squeezed vacuum with respect to the
quadrature operators a, are given by ~, ( a, ~z ) ~, for
~'=1,2. The eigenstate representations for the squeezed
vacuum, for ~'= 1,2 are 1

, (a, ~z) =(2srV, )
'

expI —
—,
'

V, '[1+(—1)'i sinh(2r) sinO]a, —
,'i5, ], —

and V2(r) =
V&(

—r). The phase-shift terms are

6, = tan
tanhr sinO

1+ tanhr cosO
(4a)

and

52= tan '[sinh(2r) sin8] —6, . (4b)

The marginal distributions are the Gaussian functions

where the z-dependent parameters V, and 6, are given

below. For z =re',

2O —2. 2O
4V =e "cos —+e 'sin—

(2n ~z) =
r

2n
sechr

1/2

(
—

—,
' e' tanhr )"

for the even number states and zero for the odd states.
The nonzero elements of the photon-number distribution
are therefore

~, (a, ~z)
~

with means at zero and variances V, . For z

real the product of the variances satisfies the Heisenberg
minimum uncertainty equality. The phase dependence of
the quantum fluctuations is a consequence of the photon
correlations. Photons are created and annihilated in

pairs. The number-state matrix elements for the
squeezed vacuum are'
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where i'= 1 and 2, and 5, are given by Eqs. (4) for
O=tr/2. The marginal distributions for the state ~ir ) are

]/2

~, ( a, ~

ir ) (
= —sech(2r)2= 2

exp[ —2 sech(2r )a, ] (12)

H = IItco& a + II'tA, (a & ) (13)

for ~'=1,2. Interference effects are evident in expression
(11). The phase P is responsible for a phase shift in the
modulation of (11). Plots of the marginal distributions
for Ii, i—; —1) are shown in Fig. 3.

A superposition of two squeezed vacuum states is gen-

erated by the nonlinear oscillator. The Hamiltonian is
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In the interaction picture an initial squeezed vacuum

state evolves according to the expression

~z(t)) = exp[ ik, t(a—t a) ]~z) . (14)

The superposition states e ™/4
~
z, —z; i ) —and

e '"
~z,

—z;i ) are obtained for t =tt/2Aand t, =3tr/2A, ,
respectively.

The superposition states which are generated by the
nonlinear oscillator produce photon statistics which are
identical to the squeezed-vacuum-photon statistics.
Photon-counting techniques cannot be used to distin-

guish between the states. Furthermore the && and 82
marginal distribution statistics are identical for the
squeezed vacuum

~

r ) and the superposition states

~
r, r;+i ).—In order to distinguish between the states by

employing quadrature phase measurements, the local os-

cillator phase is varied. Interference fringes arise for the

superposition state but not for the squeezed vacuum.
However, the superposition states ~r, r;+1) dis—play
photon-number-distribution interference and can be dis-

tinguished from the squeezed vacuum by photon-
counting experiments. Also the a] and &z quadrature-

phase statistics for the superposition states ~r,
—r;+1)

exhibit interference and fringes are present for the state

~r,
—r; —1). Interference effects in the photon-counting

and the quadrature-phase statistics are critically depen-
dent on P. The relation between phase-space interference
and photon-number interference has been analyzed for
the highly squeezed coherent state with nonzero ampli-
tude' ' but the techniques are not easily applied to the

study of squeezed-vacuum superposition states.
Whereas the superposition states ~z,

—z;+i ) can be

C3
—3

FIG. 3. Scaled marginal distribution for the superposition
state ~i,

—i; —1) in the 9, eigenbasis (solid line) and the &2

eigenbasis (dashed line), where —3 a, 3.

generated from the vacuum by a nonlinear oscillator in-

teraction, we are not aware of a technique to generate ar-
bitrary superposition states ~z,

—z;e'~). Nevertheless,
the presence of interference in the number and marginal
distribution is interesting and the special nature of the
states jz, —z;+i ) has been noted. In practice, the in-

terference fringes will be degraded. The statistical distri-
bution of photon-counting measurements for the super-
position state are given by the photon-number probability
distribution for an ideal photon detector. The photon-
number distribution fringes can be observed with an ideal
photon detection scheme. However, the fringes decay
very rapidly as the detector efficiency is reduced. ' In
practice, the number distribution fringes may be difficult
to observe. The quadrature-phase observables are ap-
proximately measured by a homodyne detection
scheme. ' In the limit of intense coherent local oscilla-
tors the quadrature phase is accurately measured. A
homodyne detector provides a method for measuring the
marginal distribution interference fringes. However, a
photon detector with nonunit quantum efficiency will

partially suppress the marginal distribution fringes.
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