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Synopsis  

Oscillatory measurements are often used to explore the non'linear response of materials, 

with recently a strong focus on using large amplitude oscillatory experiments. However, the 

superposition of an oscillatory motion onto a steady state shear flow is a method where the 

kinematic history experienced by the sample is simpler. Such a superposed oscillation can be 

applied either orthogonal or parallel to the main flow direction. Both superposed deformation 

modes can now be achieved on rotational rheometers equipped with a force'rebalanced 

transducer, the orthogonal mode requiring a minor modification to the control loop of the 

normal force. In the present work the non'linear properties of a wormlike micellar solution 

(WLM) are studied. The results are compared with the predictions of the Giesekus model, 

which is chosen both for its capability to describe the WLM response, and for being one of 

the simplest continuum models that incorporate an anisotropic microstructure. From the fluid 

response in the homogeneous flow regime, a rate dependent relaxation time and a rate 

dependent plateau modulus can be derived. The latter provide insight into the structural 

anisotropy during flow at short length scales, which in this case is isotropic. Further analysis 

of the superposition moduli can be used to separate and quantify the effects of flow on the 

reptation and breaking of the chains. In the shear'banding regime, the orthogonal moduli 

show a weaker dependence on shear rate compared to the predictions of the Giesekus model, 

yet they remain sensitive to changes in the shear banded state.   

 

Keywords: orthogonal superposition, parallel superposition, wormlike micellar solution, 

Giesekus model, non'linear rheology 

 



2 

 

1. Introduction 

 

The recent surge in interest in the use of large amplitude oscillatory shear (LAOS) 

measurements demonstrates that the quest for adequate measurement techniques to probe the 

non'linear response of complex fluids is still ongoing (Hyun et al. 2011).  Measurements in 

the frequency domain are appealing as the effects of small (SAOS) and large (LAOS) 

deformations on the different relaxation modes can be probed. However, LAOS data are only 

scalar in nature and the deformation history in a LAOS experiment is complex. Superposition 

of a small strain oscillatory motion onto a steady or transient shear flow can provide a clearer 

insight into the effects of flow on the mechanisms underlying the non'linear response of 

rheological complex fluids. As schematically demonstrated in Fig. 1, the oscillatory motion 

can be imposed parallel ( , ��������� ������	�
�
	�) or perpendicular ( , 	��	�	����

������	�
�
	��) to the direction of the steady or transient shear flow ( ). Such superposition 

techniques have been used to study structural changes during flow in various systems, 

including polymeric fluids (Osaki et al. 1965; Booij 1966a; Tanner and Simmons 1967a; 

Simmons 1968; Mewis et al. 2001; Somma et al. 2007), colloidal suspensions (Mewis and 

Schoukens 1978; Zeegers et al. 1995; van der Vorst et al. 1998; Dhont and Wagner 2001; 

Mewis and Biebaut 2001; Mobuchon et al. 2009) and liquid crystalline polymers 

(Moldenaers and Mewis 1993; Walker et al. 2000).   

 

Due to the tensorial nature of the rheological response, orthogonal and parallel moduli are 

not equivalent as demonstrated by both measurements and model calculations (Tanner and 

Simmons 1967b; Tanner 1968; Vermant et al. 1998). In parallel superposition measurements, 

the main and the superimposed shear fields are coupled, which complicates the interpretation 

of the results. To illustrate this complexity it suffices to point out that parallel superposition 

can result in phase angles exceeding 90°, and consequently in negative in'phase moduli at 

low frequencies where shear flow overwhelms the relaxation mode of the material (Booij 

1966a, b). In contrast to this, orthogonal superposition has a much weaker coupling of the 

two flow fields and hence the corresponding moduli can be more directly related to the 

microstructure under flow.  

 

γ
�
� γ ⊥�

γ�
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Orthogonal superposition has intrinsic advantages over parallel superposition because of the 

decoupling from the steady shear flow. Yet, it has received only limited attention due to the 

technical difficulties in establishing such orthogonal superposition flows, whereas parallel 

superposition is now readily available on commercial rheometers. The orthogonal 

superposition technique has been introduced first by Simmons (1966) and similar devices 

have been described by Mewis and Schoukens (1978) and by Zeegers et al. (1995). However, 

these instruments have a rather complex and delicate mechanical design and only cover a 

rather narrow viscosity range. Vermant et al. (1997) have described an orthogonal 

superposition technique based on a simple modification of the force rebalance transducer in a 

commercial rheometer. Mobuchon et al. (2009) used the same modification to perform 

oscillatory motions in different straining directions, by means of which the anisotropy of the 

linear viscoelastic moduli of a presheared material could be probed (2D'SAOS). 

 

Superposition moduli should be described by suitable rheological constitutive models. 

Lacking a generally valid non'linear rheological constitutive equation, authors have used 

various models. Booij (1966a, 1966b) compared the occurrence of negative parallel moduli at 

low frequencies for some polymeric solutions with predictions from the Oldroyd model, and 

showed a qualitative agreement. Tanner and co'workers (Tanner 1968, Tanner and Simmons 

1967a) pointed out more clearly that orthogonal and parallel moduli are not equivalent, using 

the Lodge model. Yamamoto (1971) proposed a strain rate dependent relaxation spectrum, 

which can be used to demonstrate that parallel moduli reflect the coupling between shear and 

superimposed flow, while orthogonal superposition moduli do not. These results are also 

consistent with the analyses of Bernstein (1972) with the KBK'Z model and of Macdonald 

(1973) with the Bird'Carreau model. De Cleyn and Mewis (1981) proposed a constitutive 

equation based on the concept of structural kinetics and used it to study the behavior during 

and after flow by means of orthogonal oscillatory flow. Wong and Isayev (1989) predicted 

the orthogonal moduli with the Leonov model, later corrected by Kwon and Leonov (1993). 

Vermant et al. (1998) used superposition moduli to evaluate rheological models including the 

Yamamoto, KBK'Z and Wagner model. Dhont and Nӓgele (1998) developed a model based 

on microscopic considerations to describe a viscoelastic response of superposition flows for 

suspension of spherical particles near the gas'liquid critical point. Using the same 

considerations, Dhont and Wagner (2001) predicted orthogonal and parallel moduli of 

colloidal system of attractive particles near their gas'liquid critical point and demonstrated a 
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fundamental difference between the viscoelastic response to an orthogonal and parallel 

superposition flow.  

 

In order to understand more clearly what is being measured in superposition rheometry, the 

present work focuses on the Giesekus model (Giesekus 1982a). It is known to describe the 

standard non'linear flow properties of wormlike micellar (WLM) solutions (Holz et al. 1999; 

Helgeson et al. 2009), and also represents one of the simplest continuum models which 

nevertheless incorporates an anisotropic microstructure, using the concept of deformation'

dependent tensorial mobility. WLM solutions contain flexible, wormlike surfactant micelles, 

and the rheological properties of the solutions can be readily tuned by e.g. concentration or 

temperature (Rehage and Hoffman, 1991). WLM solutions are sometimes called ‘living’ 

systems because they combine the well'known reptation dynamics of polymeric systems, 

with breakup and recombination of the chains (Cates 1987, 1990; Cates and Candau, 1990). 

Whereas WLM solutions are prone to flow instabilities known as shear banding (see e.g. 

Lerouge and Berret 2010, and references therein), the present study is limited to the regime 

where flow is homogeneous. In this regime, the segmental ordering induced by flow and the 

macroscopic rheological response have been qualitatively linked to the Giesekus model, for 

steady state flow conditions, using rheo'SANS and flow birefringence measurements 

(Liberatore et al. 2009) or LAOS (Rogers et al. 2013), but some discrepancies remain. In the 

present work superposition rheometry will be used to elucidate the link between the 

microstructural origin of the stresses and the success of the Giesekus model in describing 

them.   

 

2.  Materials and Methods. 

 

(1)�Wormlike micelle solution 

 

The wormlike micelle solution investigated here is an aqueous solution containing 100 mM 

cetylpyridinium chloride (CPyCl), 60 mM sodium salicylate (NaSal) and 100 mM NaCl. This 

system is known to easily form elongated wormlike micelles, exhibiting a single relaxation 

time at equilibrium as it is in the fast breaking regime (Rehage and Hoffmann 1991).  
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(2) Rheological measurements 

 

Steady'state flow as well as parallel superposition and orthogonal superposition experiments 

were carried out using a ARES'G2 (TA instruments, Newcastle, Delaware) with a double 

wall Couette cell geometry. The first normal stress differences were measured with cone and 

plate geometry with a 2° cone angle and a diameter of 50 mm. All measurements were 

performed at 20.7°C. 

 

In orthogonal superposition measurements, an oscillatory motion is applied perpendicular to 

the main flow direction. This is achieved by modifying the ARES'G2 rheometer. In its 

normal operating mode the instrument uses a force'rebalanced transducer for the 

measurement of both torque and normal force. This rebalancing compensates the 

displacement of the transducer caused by the force in the sample. The axial rebalancing loop 

consists of three parts; a capacitive position measurement device, a motor to apply the 

rebalancing force and a control loop. The control loop for the normal force is modified here 

to drive an axial oscillatory motion, similar to a previous version of an orthogonal setup on an 

RMS 800 rheometer (Vermant et al. 1997). An oscillatory signal is generated by a frequency 

response generator and analyzer (FRA 1250, Solartron Instruments, Schlumberger) or 

alternatively using a high'accuracy multifunction data acquisition board, interfaced with 

LabVIEW (NI PCI'6281 and LabVIEW 8.5, National Instruments). This signal is introduced 

in the normal force control loop at the point where the signal generated by the position 

measurement sensor is fed back into the normal force control loop. The feedback loop forces 

the motor to follow the oscillatory signal. In this manner, a strain'controlled, axial oscillation 

of the transducer is generated. The magnitude of the axial force response is measured as an 

analog signal, using either the FRA or the combination of DAQ board with LabVIEW. To 

enable orthogonal superposition with the ARES'G2, TA Instruments has modified the normal 

force control board. The maximum frequency for the orthogonal oscillations is approximately 

10 rad/s, due to inertia effects. The lower frequency limit depends on the sample under 

consideration, due to the signal to noise ratio.  

 

To create a uniform oscillatory deformation orthogonal to the main flow direction, a double 

wall Couette geometry has been used. A sinusoidal shear flow orthogonal to the main flows is 

obtained by moving a hollow bob axially, whereas the tangential steady shear flow is 



6 

 

achieved by rotating the double'walled Couette cup. The axial motion may cause an annular 

pumping flow by displacing the fluid under the edge of the hollow bob. The pumping flow 

pushes liquid back up into the annular space between the bob and the inner and outer wall of 

the cup, thus distorting the flow field (Zeegers et al. 1995). To minimize the pumping effect 

during orthogonal superposition measurements, an opening is made in the inner wall of the 

cup that connects with a liquid reservoir in the center of the cup (Vermant et al. 1997). It has 

been verified that the small amplitude moduli measured with the orthogonal device at rest 

agree with the normal dynamic moduli obtained with rotational oscillatory shearing motions 

(Vermant et al. 1997).  

 

3.  Predictions of the Giesekus model 

In the following we use the Giesekus model as a simple continuum model to generate 

predictions for the parallel and orthogonal moduli. These are validated against a WLM 

solution, whose non'linear rheological properties can be approximated by a single'mode 

Giesekus equation (Fischer and Rehage 1997; Holz et al. 1999; Helgeson et al. 2009; Gurnon 

and Wagner 2012).   

 

(1) Basic equation 

The Giesekus model was developed to model the non'linear rheological properties of 

polymers in solution but has been found to have wider applications, in particular for 

wormlike micelles. Giesekus extended the upper convected Maxwell model using a quadratic 

stress term and a mobility tensor to describe the non'linearity. The governing equation for the 

deviatoric, specific stress of the elastic component is given by (Giesekus 1982a)  

         (1) 

 

where B is the mobility tensor, σσσσ the specific stress tensor and C the configuration tensor. � 

and λ are the shear modulus and relaxation time, respectively. Here ∇ designates the upper 

convected time derivative: . Giesekus introduced this 

equation to describe the anisotropic mechanical properties of rod'like aggregates under flow. 

For simplicity, Giesekus coupled the mobility tensor to the configuration tensor by 

0�λ
∇

⋅ + =B σ C

( ) �� � �
�

∇ ∂
= + ∇ ⋅ − ∇ ⋅ − ⋅∇

∂
C C C C C
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introducing a dimensionless mobility parameter, α, with values between zero and unity so 

that  

        (2) 

The specific stress tensor, σσσσ, and the configuration tensor, C,�are related by 

         (3) 

Inserting Eqs. (2) and (3) into Eq. (1) gives  

       (4)  

Combining Eqs. (3) and (4) gives a more familiar form (Giesekus 1982b):  

 

       (5)  

The analytical solution for the case of steady state shear flow was described by Giesekus 

(Giesekus 1982a) and is given for reference in the appendix.  

  

(2) Analytical solution for orthogonal superposition flow  

From the Giesekus model and using the kinematics of orthogonal superposition to a shear 

flow, an analytical expression for the orthogonal moduli can be calculated, as shown in the 

appendix. The resulting  and  are given by:  

 

       (6) 

     (7) 

 

where χ is the reduced frequency, , and ηs is the effective medium viscosity. The 

coefficients indicated as capital letters are functions of the parameter α, λ and G as well as�  

the shear rate and given in the Appendix. Fig. 2 displays and  calculated from Eqs. 

(6) and (7), respectively, for different shear rates with values for the other parameters chosen 

as α = 0.5, � = 1 Pa, λ = 1 s and ηs = 0.001 Pa s. For De = 0 the orthogonal moduli indeed 

( )α= + −B I C I

( )�= −σ C I

( ) ( )2
0α λ

∇

− + − + =C I C I C

2 �
�

α
λ λ

∇

+ + ⋅ =σ σ σ σ D

�⊥′ �⊥′′

6 4 2

6 4 2

� � �
� �� �

� � �

χ χ χ
χ χ χ⊥ ⊥

+ +
′ ′= =

+ + +

5 3

6 4 2� �

� � �
� �� �

� � �

χ χ χ
η ω η ω

χ χ χ⊥ ⊥

+ +
′′ ′′= + = +

+ + +

χ λω=

�⊥′ �⊥′′
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coincide with the Maxwellian moduli. This is illustrated in Fig. 2 where the non'linear 

and  are compared with the linear moduli for the extended Maxwell model given by  

 

         (8)  

        (9) 

 

For De > 1, the superposition moduli start to deviate from Maxwellian behavior, as can be 

seen in Fig. 2. At a main shear rate of 10 s
'1

, and  can be compared with a Maxwell 

fluid of G = 0.308 Pa (the observed modulus in Fig. 2), λ = 0.308 s (obtained from the low 

frequency limit of the loss modulus /ω�) and ηs = 0.001 Pa s. The deviation becomes 

more pronounced as De is increased, for example the frequency dependence of  is even 

more steep than predicted by a single linear relaxation mode.  

 

(3) Analytical solution for parallel superposition flow  

In the case of parallel superposition, steady shear and oscillatory flow are coupled in this 

superposition flow, which complicates the analysis. An approximate analytical expression for 

the parallel moduli can be derived, as shown in the appendix, resulting in: 

 

      (10) 

     (11) 

 

The shear rate dependent coefficients represented by capital letters are also given in the 

Appendix. Fig. 3 displays the parallel superposition moduli calculated from Eqs. (10) and 

(11) as a function of χ, using α�= 0.5, � = 1 Pa, λ = 1 s and ηs = 0.001 Pa s and for shear 

rates between 0 and 5 s
'1

. The approximate analytical expression for the moduli is compared 

to a full numerical solution using evolution equations for the configuration tensor (Eqs. (39), 

(40) and (42)) for a single shear rate = 5 s
'1

. Fig. 3 shows good agreement between 

�⊥′

�⊥′′

2

21

�
�

χ
χ

′ =
+

21
�

�
�

χ
η ω

χ
′′ = +

+

�⊥′ �⊥′′

�⊥′′

�⊥′

6 4 2

6 4 2

� � �
� �� �

 ! "

χ χ χ
χ χ χ

+ +′ ′= =
+ + +� �

5 3

6 4 2� �

# $ �
� �� �

 ! "

χ χ χ
η ω η ω

χ χ χ
+ +′′ ′′= + = +

+ + +� �

γ�
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numerical and analytical values for the parallel moduli at low and high frequencies, and only 

minor deviations in the intermediate frequency range. The out'of'phase moduli for both 

parallel and orthogonal superposition are proportional to the frequency in the low frequency 

limit. In both cases the plateau values of the in'phase moduli decrease with increasing De. 

However, unlike the orthogonal moduli, the calculated  at low frequencies show the 

appearance of a region of negative values as the shear rate increases.  

 

4. Results 

(1) Conventional characterization of micellar solution 

The linear viscoelastic and steady state properties of the WLM fluid are investigated first. 

The dynamic moduli of WLMs are usually dominated by two competing processes: reptation 

and reversible breaking'recombination of the micellar chains (Cates and Candau 1990). 

Therefore, the relaxation time of a WLM is determined by the ratio of the characteristic 

breakup time, λbreak, and the reptation time, λrep. If λbreak << λrep, the stress relaxation exhibits 

an exponential decay with a single relaxation time and hence can be described by a single'

mode Maxwell model as in Eqs. (8) and (9) (Rehage and Hoffmann 1991), at least at low 

frequencies. Fig. 4 shows that the dynamic moduli of the WLM system can indeed be 

described by a Maxwell element modified by adding a viscous element to describe the upturn 

in G″ at high frequencies. By fitting the data with Eqs. (8) and (9), we obtain � = 37 Pa, λ = 

1.5 s and ηs = 0.036 Pa s.  

 

Fig. 5 shows the steady state viscosity curve measured with a double gap Couette geometry. 

It displays a shear thinning regime starting at  and then a shear banding regime starting at 

, where the shear stress displays a plateau (Spenley et al. 1993). This behavior is consistent 

with earlier observations on the same material at similar concentrations (Rehage and 

Hoffmann 1991; Spenley et al. 1993; Miller and Rothstein 2007; Miller et al. 2009; Kim et al. 

2010), as well as on other WLMs (Yesilata et al. 2006; Helgeson et al. 2009). The shear 

thinning behavior of WLMs can be linked with the increased segmental orientation of the 

wormlike micelles, as clearly demonstrated by birefringence and flow'SANS experiments 

(Rehage and Hoffmann 1991; Liberatore et al. 2009). The shear thinning behavior of a WLM 

can be well described by the Giesekus model (Fischer and Rehage 1997; Holz et al. 1999; 

Yesilata et al. 2006; Liberatore et al. 2009). The solid lines in Fig. 5 are calculated using the 

�′
�

1γ�

2γ�
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Giesekus model, Eq. (26), with � = 37 Pa, λ = 1.5 s and ηs = 0.036 Pa s from Fig. 4 and α = 

0.5. In this case, the measured value of  = 54 Pa s agrees well with the calculated value 

( = 55.5 Pa s), derived from the Maxwell fit of the moduli. The Giesekus model 

predicts the shear'thinning regime quite well for . An extension of the Giesekus model 

with an empirical gradient diffusion term to capture also the shear banding regime has been 

presented by Helgeson et al. (2009). The present study is mainly focused on the shear'

thinning behavior. The quantitative analysis of the shear banded state lies beyond the scope 

of the current work. 

 

(2) Orthogonal superposition 

 

The orthogonal in'phase and out'of'phase moduli,  and , are measured as a function of 

frequency for several shear rates up to = 10 s
'1

. It has been verified that the applied 

orthogonal strain amplitude, 0.02, was within the linear response regime. Fig. 6 displays the 

orthogonal moduli up to a = 1.5 s
'1

 with the last shear rate already within the shear banding 

regime. At the onset of the shear'thinning regime the orthogonal moduli start to decrease 

from the zero'shear values. The  and  of the WLM solution are compared with the 

predictions of the Giesekus model, Eqs. (6) and (7), using the parameters which were 

obtained from the data for the normal dynamic moduli in Fig. 4 and the steady state shear 

flow in Fig. 5 (α = 0.5, λ = 1.5 s, � = 37 Pa and ηs = 0.036 Pa s). The agreement between 

experiment and Giesekus model for shear rates below the onset of shear banding is shown to 

be within experimental accuracy (Fig. 6), implying that the Giesekus model can indeed 

describe the rate'dependent superposition moduli of the WLM in quite some detail. The two 

dominant features in the data are the expected decrease of both moduli at low frequencies and 

the decrease of the plateau modulus with increasing shear rate, a feature quite different from 

typical results on polymer solutions (Vermant et al. 1998). Meanwhile, the high frequency 

values of  for both the Giesekus model and in the experiments do not change 

significantly with shear rate. 

  Fig. 7 displays the orthogonal moduli in the shear banding regime, for shear rates ranging 

from = 1.5 s
'1

 to = 10 s
'1

. For higher shear rates the results became erratic. The shear 

rates correspond to a significant fraction of the stress plateau in Fig. 5, however, the high 

0η

0 �η λ=

2γ γ<� �

�⊥′ �⊥′′

γ�

γ�

�⊥′ �⊥′′

�⊥′′

γ� γ�
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shear band could not be accessed experimentally. In the shear banding regime, the orthogonal 

moduli of both  and  still show the same trend as shown in the shear thinning regime 

in Fig. 6. The Giesekus model predicts, however, a more pronounced decrease. Interestingly, 

despite the observation that the overall stress is constant, the superposition moduli change 

with increasing shear rate. Unfortunately, the high shear rate band is outside of our 

experimental window, both in terms of its shear rate and relaxation time, making a 

quantitative analysis of the shear banding not possible. A direct comparison with parallel 

moduli is less evident in the shear banded state, as the different geometry may result in a 

different non'homogeneous flow profile. 

 

(3) Parallel superposition 

The parallel superposition moduli,  and  were measured on the same system and 

over the same range of shear rates as for the orthogonal moduli. They are shown in Fig. 8 and 

are compared with the predictions of the Giesekus model, Eqs. (10) and (11), using the same 

parameters as used for orthogonal superposition. The model prediction is in good agreement 

with the experimental results up to  = 0.9 s
'1

, considerable deviations are observed at low 

frequencies at  = 1.5 s
'1

 which is, however, already in the shear banding regime.  

The calculated negative values for  at low frequencies can be attributed to the coupling 

of the parallel moduli to the shear flow, as already demonstrated in earlier work (Booij 

1966a, b). The simplest physical picture that rationalizes the low frequency behavior of the 

parallel moduli is based on Yamamoto’s variable spectrum approach (Yamamoto 1971; 

Vermant et al. 1998), where the parallel modulus is found not only to be determined by the 

relaxation spectra itself but also by the derivative of these spectra with respect to the shear 

rate, as a result of the coupling of the two types of flow.  

 

5. Discussion  

(1) Comparison of orthogonal and parallel moduli 

In Fig. 9, the measured orthogonal and parallel superposition moduli and predictions from the 

Giesekus model are compared at a single shear rate, = 0.9 s
'1

. At low frequencies, 
 

exhibit a terminal behavior of ~ω2
 whereas for  Giesekus predicts a limiting low 

frequency region with negative values in Eq. (10). At high frequencies, the values of the 

�⊥′ �⊥′′

�′
�

�′′
�

γ�

γ�

�′
�

γ� �⊥′

�⊥′ �′
�



12 

 

orthogonal and parallel moduli are identical. This holds in particular for the shear rate 

dependent plateau values of  and  (Fig. 10a). This suggests that in the present case 

there is, at each shear rate, a critical frequency above which parallel moduli are not affected 

by the coupling with the steady shear flow. Such identical values for orthogonal and parallel 

moduli in the high frequency regime are not a universal feature. For other types of fluids, the 

relative magnitudes of  and 
 
enable one to evaluate the structural anisotropy of 

materials whenever the coupling between steady and parallel superposed shear flow can be 

neglected. This was the case for tests after cessation of flow on suspensions of layered silicate 

(Mobuchon et al. 2009). For liquid crystal polymers Mewis and coworkers (Walker et al. 

2000) reported different magnitudes of parallel and orthogonal for the in'phase moduli over 

the whole frequency range which persisted even after the flow was arrested. Combining 

relevant rheological and rheo'optical results led to the conclusion that this difference between 

 and indeed arose from an anisotropic microstructure (Moldenaers and Mewis 

1993). The experimental results on the WLM suggest isotropy at the (short) length scales 

corresponding to the high frequencies used here. Liberatore et al. (2009) investigated the 

shear'induced structure of (non'shear banding) WLMs at different length scales by means of 

combined flow'birefringence and flow'SANS experiments. These authors showed that only 

after substantial flow alignment of the overall WLM microstructure significant segmental 

alignment was observed. This is in agreement with the current observations. The regime of 

segmental orientation is obscured for the current system due to the occurrence of shear 

banding. The Giesekus model also predicts identical high frequency values, in agreement 

with the experiments. The high frequency limit of the orthogonal modulus  is, 

according to Eq. (6), directly linked to the coefficient �(see Appendix): 

 

,        (12)  

 

Similarly for the parallel modulus  in Eq. (10) the high frequency limit is 

 

,        (13)  

 

with coefficient � (see Appendix) identical to � . 

�⊥′ �′
�

,�⊥ ∞′ ,� ∞′�

,�⊥ ∞′ ,� ∞′�
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, lim� � � �
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′ ′≡ = ⋅
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�

, lim� � � �
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′ ′≡ = ⋅
� �
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(2) Plateau modulus 

In Fig. 10a, the identical values of  and  at high frequencies (Figs. 6a and 8a), 

further referred to as , exhibit a systematic decrease with increasing shear rate. The 

decrease can be linked to shear induced changes in the mesh size of the micellar network. 

According to the theory of rubber elasticity, the plateau modulus is related to the mesh size, ξ, 

by ( Rubenstein and Colby 2003; Larson 2012). At rest this yields a value of ξ 

= 48 nm which is of the same order of magnitude as those reported for other WLMs at a 

similar concentrations (Berret et al. 1993, Schubert et al. 2003). Under flow the values of ξ in 

Fig. 10b increase from ξ = 48 nm at  = 0 s
'1

 to ξ = 56.5 nm at  = 1.5 s
'1

 . 

From the parameters of the Giesekus model, as derived from the standard rheological 

measurements, the normal stress differences can be calculated. This requires either non'linear 

fitting of the rheological data (Fischer and Rehage 1997; Calin et al. 2010; Snijkers et al. 

2011), or a direct calculation from LAOS data (Gurnon and Wagner 2012). Similarly to the 

LAOS experiments the values for the normal stress components can also be obtained directly, 

without complex fitting procedures, from the in'phase superposition moduli, e.g. for  2: 

 

       (14)  

 

In the Giesekus model the observable superposition moduli are directly linked to the normal 

stress differences. The predicted normal stress differences ( %� and  &) according to the 

different procedures are shown in Fig. 11 and for  % they are compared to the experimentally 

measured values. Below the onset of shear banding the results are consistent.  

 

 

(3) Relaxation time 

The Giesekus model provides an effective shear rate dependent relaxation time 

 that can directly be obtained from model parameters via Eq. (27). Results are 

shown in Fig. 12 and show a decrease of  from the initial λ with increasing rate. This 

effective relaxation time is experimentally accessible via the steady shear stress and first 

�⊥′ �′
�

�∞′

3

�� ' � ξ∞′ =

γ� γ�

( ) ( ) 20� �  γ γ∞ ∞′ ′= = −� �

( )1 2 λ γσ= �

λ
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normal stress difference. However, the signal to noise ratio for N1 is not good for the WLM’s 

and an accurate determination of in this manner is not possible. An alternative 

experimental measure can be obtained from the orthogonal superposition moduli. The 

crossover relaxation time of the orthogonal moduli , calculated from the Giesekus 

model, shows a good agreement with the effective relaxation time in Fig. 12. It can hence be 

used as an approximation of the effective relaxation time, . Results of the experimentally 

obtained  are also given in Fig. 12 and are slightly below the theoretical ones, which 

can be traced to the slight discrepancy of the measured and calculated orthogonal loss moduli 

at higher frequencies (Fig. 6). As the shear rate is increased into the shear banding regime, 

the deviations from the basic form of the Giesekus model become obvious. For the parallel 

moduli the coupling effect with the steady shear flow makes the calculation of a relaxation 

time from the parallel superposition data mathematically ill'posed. 

 The crossover relaxation time is less well defined as the average or terminal relaxation time. 

In the current case it is, however, closer to the effective value as it originates from the higher 

frequency regime and is therefore less affected by the increasing deviation from a single 

mode Maxwell behavior at lower frequencies, as shown in Fig. 2. An average orthogonal 

relaxation time  that is directly defined from the low frequency limits of the moduli 

 

0
lim

� �

� �ω

λ
λ ω

⊥ ⊥

→
⊥

′
= =

′′
        (15) 

 

gives considerably lower values than the effective relation time in Fig. 12, an emanation of 

the intrinsic non'linearity as probed by superposition flows. Rogers et al. (2013) observed 

similar trends for the relaxation time as a function of Deborah number in LAOS experiments. 

However, as the moduli in the non'linear regime were fitted using a single'mode Maxwell 

model, this may underpredict the effective relaxation time. 

According to the Giesekus model (Giesekus 1982a), the reduction of the rate'dependent 

relaxation time by the imposed shear flow is linked to a change in the configuration tensor. 

The latter can be characterized by the orientation angle, ϕ, between the first principle 

direction of the configuration tensor and the flow direction. Giesekus derived a simple 

λ

, 2δ πλ⊥ =

λ

, 2δ πλ⊥ =

, 0ωλ⊥ →
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relation between ϕ and the rate'dependent effective relaxation time, which is given by 

(Giesekus 1982a): 

 

        (16) 

 

The orientation angles, calculated from the measured terminal relaxation times 
 
 

(Fig. 13), show the expected gradual decrease with shear rate. The increase of the orientation 

and the decrease in relaxation time find their origin in the microstructural response of the 

WLM to flow. As previously mentioned, Cates (1987) suggested that the dynamics of WLM 

is dominated by the combination of the breakup'recombination motion and the reptation 

motion of micellar chains. In the fast breaking regime (λbreak << λrep), the WLM has a single 

relaxation time, in the absence of flow expressed by  

 

         (17) 

 

The extension of the Cates model to flowing conditions is based on the assumption that non'

linearities only affect the reptation motion, not the breakup of chains (Cates 1990, Cates and 

Candau 1990). This assumption was supported by comparing measured and calculated shear 

stresses for of WLM (Spenley et al. 1993). Based on the Cates model, the drop in relaxation 

time should be consistent with the changes in λbr and λrep as derived from the superposition 

moduli. The values of λbr can be obtained from the frequency ωmin where �( reaches its 

minimum:  λbr = 1/ωmin (Turner and Cates 1991; Kern et al. 1994). Fig. 8 shows that ωmin = 

2.5 rad/s, thus λbr = 0.04 s at =0 s
'1

. The values of λbr turn out to be independent of the 

shear rate, thus confirming the assumption of Cates and coworkers. Although ωmin could not 

measured in orthogonal superposition due to the mechanical limitations in frequency range, it 

is expected that similar values for ωmin would be found as in parallel superposition because of 

their identical behavior at high frequencies, as previously discussed. The evolution of λrep 

with shear rate is now calculated from λbr and  (Fig. 12) using Eq. (17). The resulting 

values of λrep (Fig. 14) decrease from 37.5 s at =0 s
'1

 to 16.7 s at = 1.5 s
'1

, suggesting 

that the WLM chains are disentangling due to the shear flow. We note that λbreak << λrep in 

2 2cot 1ϕ λγ λ γ= + +� �

, 2δ πλ⊥ =

( )1 2

)� ���λ λ λ=

γ�

, 2δ πλ⊥ =

γ� γ�
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the range of shear rate under investigation, which is consistent with the orthogonal moduli 

exhibiting a single'mode behavior within the shear thinning regime.  

 

 

6. Conclusion  

In this study, the non'linear rheological properties of a WLM solution were explored by 

means of orthogonal and parallel superposition measurements. The Giesekus model has been 

selected as a simple constitutive model that allows a quantitative description of the shear 

thinning behavior of the WLM solutions up to the shear banding regime. For this model, 

analytical solutions for both orthogonal and parallel superposition moduli were obtained, 

which agree well with the experimental observations. The model calculations predict a linear 

relation between the orthogonal moduli and the normal stress differences, which can be 

obtained without the need for non'linear data fitting. This is confirmed by the experimental 

data. The superposition moduli can also be used to derive structural parameters. By varying 

the frequency, multiple length scales can be probed. An evaluation of the high frequency in'

phase moduli can be used to estimate the structural anisotropy on the segmental length scales, 

which was shown to be isotropic at the onset of the shear banding regime. The low frequency 

data show that the onset of the shear thinning response is associated with a larger scale 

anisotropy and orientation, in qualitative agreement with earlier SANS and birefringence 

results. Moreover, the assumption in the microstructural Cates model that the micellar 

breakup times are not affected by flow is proven to be correct. 
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Appendix.  

Giesekus model predictions 

 

1. Results of the Giesekus model for steady shear flow conditions 

The case of steady state shear flow was described by Giesekus (Giesekus 1982a). For shear 

flow with a velocity gradient tensor  

        (18)  

and a symmetric configuration tensor with �13 =��23 = 0, Eq. (4) results in four independent 

equations: 

 

     
(19) 

     
(20) 

     
(21)

     
(22) 

 

Eq. (21) is not coupled with the other equations and gives �33 = 1 as the only positive 

solution. For the sake of simplicity, the components of the configuration tensor can be written 

as: 

 

, ,      (23)  

 

with the first and the second normal stress differences  1 and  2 and the specific shear stress 

σ . Solving Eqs. (19) ' (22) Giesekus obtained (Giesekus 1982a) : 
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and for the total shear stress 

 

      (26)  

 

where De = , ηs is an effective medium viscosity and Λ is an effective relaxation time 

 reduced by the relaxation time λ 

 

        (27)  

 

for which the rate'dependency is expressed by  

 

     (28) 

 

 

 

2. Orthogonal moduli  

In the case of orthogonal superposition of sinusoidal oscillations on steady shear flow, the 

velocity gradient tensor (as shown in Fig. 1) takes on the form  

 

        (29)  

 

where . Here,  and ω are the strain amplitude and the angular 

frequency of the superimposed motion. The components C13⊥ and C23⊥ of the configuration 

tensor for orthogonal superposition can be expressed as 
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      (30)  

 

Combined with the velocity gradient tensor, Eq.(29), and a symmetric configuration tensor, 

Eq. (4) leads to six independent differential equations: 

 

  (31)

   (32) 

  (33) 

  (34) 

 (35) 

 (36) 

 

As long as the superposition flow is only a small perturbation, C13⊥ and C23⊥ are much 

smaller than the other components C11⊥, C22⊥, C33⊥ and C12⊥ and hence the corresponding 

stresses are not coupled to the components of the superimposed flow. Ignoring C13⊥ and C23⊥ 

reduces Eqs. (31) ' (34) to Eqs. (19) ' (22) and C11⊥, C22⊥, C33⊥ and C12⊥ can be described by 

Eqs. (23) ' (28). C13⊥ and C23⊥ can be obtained by inserting Eq. (30) into the Eqs. (35) and 

(36) and evaluating their coefficients. From this, we finally obtain the orthogonal moduli  

and  as:  
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where χ is the reduced frequency, , and ηs is the effective medium viscosity. The 

coefficients indicated as capital letters are functions of the shear rate 
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with 

 

where� � and� � are reduced first and second normal stress difference, respectively, that 

can be obtained from �1 =  1/��and �2 =  2/�, and where  1,  2 and σ are given in Eqs. (24) 

' (26). 
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3. Parallel moduli 

In the case of parallel superposition, the kinematics are expressed by 

 

        (37)  

 

where . Here, and ω are strain amplitude and angular frequency, 

respectively. Steady shear and oscillatory flow are coupled in this superposition flow, which 

complicates the interpretation of parallel moduli in terms of the microstructure. The 

individual components of the configuration tensor for parallel superposition can be expressed 

as:  

 

        (38)  

 

where and  are identical to the results for steady shear flow without 

superposition, Eqs. (23) ' (28). Eq. (4) now results in the following four independent 

differential equations:  
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Here, Eq. (41) is not coupled with the other equations and gives �33 = 1 as the only 

admissible solution. The expressions about C11, C22 and C12 are obtained by inserting Eq. 

(38) into Eqs. (39), (40) and (42) and evaluating their coefficients. When higher orders of the 

sine and cosine functions are neglected, an approximated analytical expression for the 

parallel moduli,  and can be obtained from C12 in Eq. (38): 
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Fig. 1  Superposition flows: Orthogonal superposition is achieved by superposing the 

oscillatory flow in the vorticity direction ( ) onto the shear flow ( ). Parallel superposition 

by oscillatory flow in the flow direction ( ) onto the shear flow ( ). 
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Fig. 2  Orthogonal moduli as a function of the reduced frequency χ. (a) and  (b) 

calculated from the Giesekus model (solid lines), Eqs. (6) and (7), with � = 1 Pa, λ = 1 s, α = 

0.5 and ηs = 0.001 Pa s. The shear rates for the different curves correspond to De = 0, 0.45, 1, 

1.5. 2.5, 5 and 10 (from left to right as indicated by arrows). Predictions for the extended 

Maxwell model are shown, calculated using � = 1, 0.786 and 0.308 Pa, λ = 1, 0.786 and 

0.308 s and ηs = 0.001 Pa.s, to illustrate the inherent difference between a linear viscoelastic 

and a superposition modulus as De increases. 
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Fig. 3 Parallel moduli, (a) and (b) calculated from the Giesekus model as a function 

of reduced frequency, χ. Solid lines are calculated from Eqs. (10) and (11) with same model 

parameters as in Fig. 2;  = 0, 0.45, 0.9, 1.5. 2.5 and 5 s
'1

 (left to right). Dashed lines in (a): 

the absolute value of the negative moduli at  = 1.5. 2.5 and 5 s
'1

. The moduli at = 5 s
'1

 

are indicated thick lines. Symbols are the result of numerical calculation of  Eqs. (39), (40) 

and (42) at  = 5 s
'1

. Open symbols: the absolute values of the negative moduli, close 

symbols: positive values.  
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Fig. 4  Linear viscoelastic moduli of the WLM. Experimental values (symbols) and 

calculated values (solid lines) obtained by a fit of the extended Maxwell model, Eqs. (8) and 

(9), = 37 Pa and λ = 1.5 s, and ηs=0.036 Pa s.  
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Fig. 5 Steady shear viscosity of the wormlike micelle solution. Symbols are measurements 

and solid lines are fit with the Giesekus model Eq. (26) with = 37 Pa, λ = 1.5 s, ηs=0.036 

Pa s and α=0.5.  delimits the shear thinning regime, whereas  indicates the shear rate 

at which the shear banding regime starts.  
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Fig. 6 Orthogonal superposition moduli, (a)  and (b) : experimental values (symbols), 

and calculated values (lines) from the Giesekus model, Eqs. (6) and (7) with model 

parameters same as used in Fig. 5. 
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Fig. 7 Orthogonal superposition moduli, (a)  and (b)  at the shear banding regime: 

experimental (symbols), and calculated values (lines, increasing shear rate from left to right) 

from the Giesekus model, Eqs. (6) and (7) with model parameters same as used in Fig. 5. 
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Fig. 8 Parallel superposition moduli  and : experimental values (symbols) and 

calculated values from the Giesekus model (lines) of Eqs. (10) and (11) with the same model 

parameters as used in Fig. 5. The dashed line in (a) represents absolute values of the negative 

.  
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Fig. 9 Parallel and orthogonal moduli at = 0.9 s
'1

: experimental values (symbols) and 

calculated values from the Giesekus model (lines). Dotted lines in (a) represent absolute 

values of negative .  
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Fig. 10 (a)  High frequency value of the superposition moduli as a function of the 

macroscopic shear rate for parallel and orthogonal superposition and as predicted by the 

Giesekus model (b) Mesh size calculated from the high frequency moduli. 
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Fig. 11 The first ( 1) and second ( 2) normal stress differences. ○ and ● are  2 calculated 

from  and , respectively using Eq. (14); ▼ is  1 calculated from  2 using Eq. (25); 

× is experimental values of  1; the solid lines are  2 and  1 calculated from the Giesekus 

model, Eqs. (24) and (25), respectively. The shear banding regime is distinguished from the 

shear thinning regime by the vertical dashed line. 
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Fig. 12 Comparison of different relaxation times. Solid lines are  and  , 

respectively, as obtained from predictions of the orthogonal moduli using the Giesekus model. 

Dashed lines is , obtained from steady shear predictions of the Giesekus model, Eq. (27). 

● is an experimental values of
 

, obtained from orthogonal superposition 

measurements. The vertical dashed line indicates the onset of the shear banding regime. 
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Fig. 13 Orientation angle calculated from Eq. (16) with  of WLM (symbol) and 

Giesekus model (solid line) as displayed in Fig 12. The vertical dashed line indicates the 

onset of the shear banding regime. 
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Fig. 14 Reptation time calculated from Eq. (17), using the breakup time , obtained 

from the high frequency minimum of the parallel loss moduli in Fig. 8 and the crossover 

relaxation time , obtained from WLM (symbols) and the Giesekus model (solid lines). 

The vertical dashed line indicates the onset of the shear banding regime. 
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