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Superposition Signaling in Broadcast Interference

Networks
Hoang Duong Tuan, Ho Huu Minh Tam, Ha H. Nguyen, Trung Q. Duong and H. Vincent Poor

Abstract—It is known that superposition signaling in Gaussian
interference networks is capable of improving the achievable
rate region. However, the problem of maximizing the rate gain
offered by superposition signaling is numerically prohibitive,
even in the simplest case of two-user single-input single-output
interference networks. This paper examines superposition sig-
naling for the general networks of multiple-input multiple-output
(MIMO) broadcast Gaussian interference networks. The problem
of maximizing either the sum rate or the minimal user’s rate
under superposition signaling and dirty paper coding is solved
by a computationally-efficient path-following procedure, which
requires only a convex quadratic program for each iteration but
ensures convergence at least to a locally-optimal solution. Numer-
ical results demonstrate the substantial performance advantage
of the proposed approach.

Index Terms—Gaussian interference networks, multi-user
MIMO, superposition signaling, convex quadratic programming.

I. INTRODUCTION

A wireless multi-cell system can be modeled as an inter-

ference network with multiple cells and multiple users (e.g.

mobile terminals) in each cell. In the two-user case, it is

known that using Gaussian inputs and treating the residual

interference as noise in Gaussian interference networks (GINs)

can achieve the sum rate capacity only for certain scenarios,

including the low interference regime (see [1] and references

therein), or under certain sufficient conditions in terms of

matrix equations [2], [3]. Superposition signaling refers to

splitting signals intended for users to form various signal com-

binations at the transmitters. This facilitates partial interference

decoding to improve the network’s achievable rate region.

The achievable rate region for two-user single-input single-

output (SISO) GINs has been investigated in [4]–[14] and [15].
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The Han-Kobayashi (H-K) superposition signalling scheme [4]

achieves the best known rate region. With H-K signalling,

the signal sent by each transmitter is a superposition of two

components: (i) a private message that is decoded by the

intended receiver only, and (ii) a common message that is

decoded by both receivers. The optimal signal superposi-

tion scheme to realize the advantage of H-K signalling is

computationally prohibitive in the domain of arbitrary input

distributions and time sharing. Reference [7] was the first

to develop a simplified H-K signalling scheme, which uses

independent and identically distributed (i.i.d.) Gaussian input

distributions and does not require time sharing. As such, the

achievable rate region is defined explicitly via computationally

tractable functions of input powers. Since optimization for

these functions is still computationally difficult, [7] proposed

a simple power allocation, which achieves the capacity region

to within one bit. For some special weak interference classes,

the optimal power allocations for maximizing the sum rate

have been given in [9], [10] and [14].

Inspired by [7], references [16] and [17] derived the co-

variances of private and common Gaussian messages for

H-K signalling, which achieve the capacity region of two-

user multiple-input multiple-output (MIMO) GINs to within

a constant gap. A similar result for the K-user cyclic GIN

was obtained in [18]. It was also shown in [19]–[21] that

using non-Gaussian inputs (or in [22] with Gaussian inputs)

and treating interference as noise achieves the capacity region

of some special SISO GINs within a constant gap. The within-

constant-gap results have a merit in the high signal-to-noise

ratio (SNR) regime only, where the achievable rate region is

sufficiently large. As analyzed in [23], under practical SNR

conditions, such results are not better than what is achieved

by treating interference as noise. In fact, it is still not known

what rate gain H-K superposition signalling with Gaussian

inputs can offer even for two-user SISO GINs. Furthermore,

it is still not known what gain using non-Gaussian inputs and

treating interference as noise can offer for GINs.

It has been noted that, in the high SNR regime, interfer-

ence alignment [24] may achieve a better achievable region.

However, a better achievable rate region does not necessarily

yield a better sum rate or better minimal user rate. This issue

has not been treated in depth in previous work, and thus, our

focus on H-K signalling scheme for optimization is based on

the premise that it is computable and offers a meaningful rate

gain in MIMO interference networks.

Reference [25] was the first to apply the H-K signalling

in multiple-input single-output (MISO) broadcast GINs. The

common and private messages are sequentially decoded at
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the users to improve the users’ minimum rate. Inspired by

[25], our previous works [23], [26] also examined sequential

decoding of common and private messages in H-K signalling

to maximize either the sum rate or the minimal user’s rate for

MIMO broadcast GINs. Such design problems for the MIMO

GINs were recast as optimization of d.c. (difference of two

concave) functions over convex quadratic constraints, which

were then solved by the so called d.c. iterations (DCI) of d.c.

programming (see e.g. [27]–[31]). However, under the optimal

jointly decoding as originally considered in H-K signalling, the

nonconvex constraints are unavoidable. As such, the design

of covariances of private messages and common messages

to maximize either the sum rate or user’s minimum rate in

a broadcast GIN is a very difficult nonconvex constrained

optimization problem. Popular approaches such as Lagrangian

multiplier or convex relaxation are unable even to locate

feasible solutions.

The contribution of the present paper is twofold:

• Developing an efficient convex quadratic-based path-

following computation procedure for maximizing the sum

rate and minimal user’s rate by H-K signalling in broad-

cast MIMO GINs under practical SNRs, which generates

a sequence of feasible and improved points and ensures

convergence to at least a locally optimum point. Unlike

[25], [26] and [23], dirty paper coding (DPC) [32] is

employed to improve the achievable rate regions.

• Numerically demonstrating the benefit of H-K superpo-

sition signalling and DPC in MIMO broadcast GINs.

The rest of the paper is organized as follows. Section II

formulates the optimization problem considered in this paper

and discusses the challenges in finding solutions. Section

III proposes a new solution method. Section IV provides

simulation results. Section V concludes the paper.

Notation. Deterministic variables are boldfaced. The no-

tation 〈A〉 means the trace of matrix A, while |A| is its

determinant. The inner product 〈X,Y 〉 between matrices X
and Y is therefore defined as 〈XHY 〉. The inner product

between vectors x and y is defined as 〈x, y〉 = xHy. A ≻ B
(A � B, resp.) for Hermitian symmetric matrices A and B
means that A−B is positive definite (semi-definite, resp.). For

notational simplicity, [X]2 refers to XXH , which is positive

semi-definite ([X]2 � 0 ∀ X). The following properties are

used in the paper.

(P1) A � B ≻ 0 implies |A| ≥ |B| and B−1 �
A−1 ≻ 0.

(P2) 〈[XXX]2A〉 = 〈XXXHAXXX〉, which is a convex

quadratic function in XXX whenever A � 0. Also

define ||XXX||2 = 〈[XXX]2〉.
(P3)

∑n

i=1[Xi]
2 = [X]2 and 〈(∑n

i=1[Xi]
2)A〉 =

〈XHAX〉 for X = [X1 X2 . . . Xn].

II. PROBLEM FORMULATION AND SOLUTION

Consider a communication network consisting of N trans-

mitters as illustrated in Fig. 1. Each transmitter (Tx) is

equipped with Nt ≥ 1 antennas to serve its K users, each

of which is equipped with Nr ≥ 1 antennas. Define I :=
{1, 2, . . . , N} and J := {1, 2, . . . ,K}. User j who is served

1,1,1 1
H x

1,1, 1K
H x

1, ,1 1N
H x

1, , 1N K
H x

,1,1N N
H x

, ,N N K N
H x

, ,1N N N
H x

,1,N K N
H x

Fig. 1: Illustration of an interference network.

by the ith Tx is referred to as user (i, j). Let Hm,i,j ∈ C
Nr×Nt

be the channel matrix from Tx m to user (i, j). Accordingly,

Hi,i,j and Hm,i,j for m 6= i are the direct and interfering

channels with respect to user (i, j). The complex baseband

signal yi,j ∈ C
Nr received by user (i, j) is

yi,j =
N
∑

m=1

Hm,i,jxm + ni,j

= Hi,i,jxi +
∑

m∈I\{i}

Hm,i,jxm + ni,j

= Hi,i,j

(

K
∑

k=1

xi,k

)

+
∑

m∈I\{i}

Hm,i,j

(

K
∑

k=1

xm,k

)

+ni,j

=
K
∑

k=1

Hi,i,jxi,k +
∑

m∈I\{i}

K
∑

k=1

Hm,i,jxm,k

+ni,j , (1)

where

• xm is the signal transmitted from Tx m, which is the

superposition of signals xm,k ∈ C
Nt intended for all

users (m, k):

xm =

K
∑

k=1

xm,k.

• ni,j ∈ C
Nr and its entries are i.i.d. Gaussian noise

samples with zero-means and variances σ2.

The H-K signalling involves a pairing operator a(i, j) that

describes which other user, beside user (i, j), decodes the

common message of user (i, j). When user (i, j) has no

common message, then a(i, j) is an empty set. Formally, it

is a mapping

a : I × J → (I × J ) ∪ {∅}
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with the restriction that a(i, j) = (̃i, j̃) always has ĩ 6= i and

a−1(̃i, j̃) = {(i, j) : a(i, j) = (̃i, j̃)} has cardinality no more

than one.

With ∅ 6= a(i, j) = (̃i, j̃), ĩ 6= i, signal xi,j intended for

user (i, j) is a superposition of private message xp

i,j ∈ C
Nt

with covariance QQQp

i,j and a common message xc

i,j ∈ C
Nt with

covariance QQQp

i,j , i.e.,

xi,j = xp

i,j + xc

i,j

The user (i, j)’s common message xc

i,j is to be decoded by

user (i, j), and also by user (̃i, j̃). On the other hand, if (i, j) =
a(̂i, ĵ) for some î 6= i, then users (i, j) and (̂i, ĵ) decode the

common message xc

î,ĵ
of user (̂i, ĵ).

For simplicity, the following transmit power constraints are

considered (although other power constraints can be easily

incorporated):

W = {QQQ := (QQQp

i,j QQQc

i,j)(i,j)∈I×J : QQQp

i,j � 0,

QQQc

i,j � 0,
∑

j∈J

〈QQQp

i,j +QQQc

i,j〉 ≤ PB , i ∈ I}, (2)

Note that xc

i,j ≡ 0 in (1) and thus QQQc

i,j ≡ 0 in (2) whenever

a(i, j) = ∅.
With dirty-paper coding (DPC) and decoding [32] in a

broadcast network, user (i, j) views the term
∑

k≤i Hi,i,jxi,k

as known non-causally and thus reduces it from the interfer-

ence in (1) [33, Lemma 1]. As such, the Nr ×Nr covariance

matrix of the interference plus noise at user (i, j) is given as

Mi,j(QQQ) :=
∑

(n,k)∈I×J

Hn,i,j(QQQ
p

n,k +QQQc

n,k)H
H
n,i,j

+σ2INr
−
∑

k≥j

Hi,i,j(QQQ
p

i,k +QQQc

i,k)H
H
i,i,j

−Hî,i,jQQQ
c

î,ĵ
HH

î,i,j
. (3)

Under nonorthogonal multiple access (NOMA) [34], [35] a

message intended for a user with a worse channel condition is

not only decoded by itself but also by another user (served

by the same transmitter) with a better channel condition.

The latter then cancels that message for the former from the

interference in decoding its own message. In H-K signalling,

all three messages x
p

i,j , xc

i,j and xa−1(i,j) are jointly decoded

and the corresponding achievable rates rrrpi,j , rrrci,j and rrrc
a−1(i,j)

satisfy

fp

i,j(QQQ
p

i,j ,Mi,j(QQQ)) :=

ln
∣

∣INr
+Hi,i,jQQQ

p

i,jH
H
i,i,j(Mi,j(QQQ))−1

∣

∣ ≥ rrrpi,j , (4)

f c

i,j(QQQ
c

i,j ,Mi,j(QQQ)) :=

ln
∣

∣INr
+Hi,i,jQQQ

c

i,jH
H
i,i,j(Mi,j(QQQ))−1

∣

∣ ≥ rrrci,j , (5)

f a

i,j(QQQ
c

î,ĵ
,Mi,j(QQQ)) :=

ln
∣

∣

∣
INr

+Hî,i,jQQQ
c

î,ĵ
HH

î,i,j
(Mi,j(QQQ))−1

∣

∣

∣
≥ rrrc

î,ĵ
, (6)

fpc

i,j(QQQ
p

i,j ,QQQ
c

i,j ,Mi,j(QQQ)) :=

ln
∣

∣INr
+ (Hi,i,jQQQ

p

i,jH
H
i,i,j

+Hi,i,jQQQ
c

i,jH
H
i,i,j)(Mi,j(QQQ))−1

∣

∣ ≥ rrrpi,j + rrrci,j , (7)

fpa

i,j(QQQ
p

i,j ,QQQ
c

î,ĵ
,Mi,j(QQQ)) :=

ln
∣

∣INr
+ (Hi,i,jQQQ

p

i,jH
H
i,i,j

+Hî,i,jQQQ
c

î,ĵ
HH

î,i,j
)(Mi,j(QQQ))−1

∣

∣

∣
≥ rrrpi,j + rrrc

î,ĵ
, (8)

f ca

i,j(QQQ
c

i,j ,QQQ
c

î,ĵ
,Mi,j(QQQ)) :=

ln
∣

∣INr
+ (Hi,i,jQQQ

c

i,jH
H
i,i,j

+Hî,i,jQQQ
c

î,ĵ
HH

î,i,j
)(Mi,j(QQQ))−1

∣

∣

∣
≥ rrrci,j + rrrc

î,ĵ
, (9)

fpca

i,j (QQQp

i,j ,QQQ
c

i,j ,QQQ
c

î,ĵ
,Mi,j(QQQ)) :=

ln
∣

∣INr
+ (Hi,i,jQQQ

p

i,jH
H
i,i,j +Hi,i,jQQQ

c

i,jH
H
i,i,j

+Hî,i,jQQQ
c

î,ĵ
HH

î,i,j
)(Mi,j(QQQ))−1

∣

∣

∣
≥

rrrpi,j + rrrci,j + rrrc
î,ĵ
. (10)

It should be noted that the constraint (5) in rrrci,j 6= 0 assigns

the following constraint for user (̃i, j̃) = a(i, j):

f a

ĩ,j̃
(QQQc

i,j ,Mĩ,j̃(QQQ)) ≥ rrrci,j . (11)

On the other hand, the constraint (6) in rrrc
î,ĵ

with a−1(i, j) =

(̂i, ĵ) 6= ∅ results from the following constraint for user

(̂i, ĵ) = a−1(i, j):

f c

î,ĵ
(QQQc

î,ĵ
,Mî,ĵ(QQQ)) ≥ rrrc

î,ĵ
. (12)

For rp = [rpi,j ](i,j)∈I×J , rc = [rci,j ](i,j)∈I×J and r =
(rp, rc), the sum rare maximization problem is thus

max
QQQ,rrr

∑

(i,j)∈I×J

(rrrpi,j + rrrci,j) : (2), (4)− (10). (13)

While constraint (2) in (13) is (convex) semi-definite, other

constraints (4)-(10) are highly nonconvex. Therefore, problem

(13) is maximization of a linear objective function subject to

nonconvex constraints.

To the authors’ best knowledge there is no available method

to handle nonconvex constraints (4)-(10). To understand the

complexity of these nonconvex constraints, let us revisit the

simplest case of two-user MIMO interference channels con-

sidered in [36]:

y1,1 = H1,1,1(x
p

1,1 + x
c

1,1) +H2,1,1(x
p

2,1 + x
c

2,1)
+n1,1

y2,1 = H1,2,1(x
p

1,1 + x
c

1,1) +H2,2,1(x
p

2,1 + x
c

2,1)
+n2,1.

(14)

The authors of [36] considered a two-stage scheme, which

decodes the common messages in the first stage and then

decodes the private messages in the second stage. The sum
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achievable rate maximization problem under this scheme is

addressed by performing the following optimization steps for

each grind point (α1, α2) ∈ (0, 1) × (0, 1) of the power

allocation factors:

• Solve the private sum-rate maximization [36, (eq. (7)]:

max
QQQ

p

i,1
,i=1,2

ln
∣

∣INr
+H1,1,1QQQ

p

1,1H
H
1,1,1(σINr

+H2,1,1QQQ
p

2,1H
H
2,1,1)

−1
∣

∣

+ ln
∣

∣INr
+H2,2,1QQQ

p

2,1H
H
2,2,1(σINr

+H1,2,1QQQ
p

1,1H
H
1,2,1)

−1
∣

∣ : (15)

QQQp

i,1 � 0, 〈QQQp

i,1〉 ≤ (1− αi)PB , i = 1, 2. (16)

• Suppose Qp

i,1(α1, α2) = (Qp

1,1(α1, α2), Q
p

2,1(α1, α2)) is

a solution found from solving (15)-(16). Then solve the

common sum-rate maximization [36, eq. (13)]:

max
QQQc

i,1
,rrrc

i,1
,i=1,2

rrrc1,1 + rrrc2,1 : (17)

QQQc

i,1 � 0, 〈QQQc

i,1〉 ≤ αiPB , i = 1, 2, (18)

ln
∣

∣INr
+H1,1,1QQQ

c

1,1H
H
1,1,1

×(M1,1(Q
p(α1, α2))

−1
∣

∣ ≥ rrrc1,1, (19)

ln
∣

∣INr
+H1,2,1QQQ

c

1,1H
H
1,2,1

×(M2,1(Q
p(α1, α2))

−1
∣

∣ ≥ rrrc1,1, (20)

ln
∣

∣INr
+H2,1,1QQQ

c

2,1H
H
2,1,1

×(M1,1(Q
p(α1, α2))

−1
∣

∣ ≥ rrrc2,1, (21)

ln
∣

∣INr
+H2,2,1QQQ

c

2,1H
H
2,2,1

×(M2,1(Q
p(α1, α2)))

−1
∣

∣ ≥ rrrc2,1, (22)

ln
∣

∣INr
+ (H1,1,1QQQ

c

1,1H
H
1,1,1 +H2,1,1QQQ

c

2,1H
H
2,1,1)

×(M1,1(Q
p(α1, α2)))

−1
∣

∣ ≥
rrrc1,1 + rrrc2,1, (23)

ln
∣

∣INr
+ (H1,2,1QQQ

c

1,1H
H
1,2,1 +H2,2,1QQQ

c

2,1H
H
2,2,1)

×(M2,1(Q
p(α1, α2)))

−1
∣

∣ ≥
rrrc2,1 + rrrc2,1, (24)

where

M1,1(Q
p(α1, α2)) =

σINr
+H1,1,1Q

p

1,1(α1, α2)H
H
1,1,1

+H2,1,1Q
p

2,1(α1, α2)H
H
2,1,1,

M2,1(Q
p(α1, α2)) =

σINr
+H1,2,1Q

p

1,1(α1, α2)H
H
1,2,1

+H2,2,1Q
p

2,1(α1, α2)H
H
2,2,1.

As the private sum-rate maximization (15)-(16) is highly

nonconvex in QQQp

i,1, the authors of [36] proposed to solve it by

alternating optimization between QQQp

1,1 and QQQp

1,1, which is still

a difficult nonconvex problem and computationally prohibitive.

Although the sum common rate optimization (17)-(24) is con-

vex log-det function optimization, it is also computationally

difficult. Again, the authors in [36] proposed to solve it by

alternating optimization between QQQc

1,1 and QQQc

1,1, which is still

a convex log-det function optimization and computationally

demanding. In summary, the proposed method in [36] for

separate private sum-rate maximization (15)-(16) and common

sum-rate maximization (17)-(24) is already very computation-

ally demanding for each (α1, α2) ∈ (0, 1)× (0, 1).

III. PROPOSED SOLUTION

We return to the optimization problem in (13). To give

some insight into its computational challenge, let us rewrite

constraints (4)-(10) as

ln
∣

∣Mi,j(QQQ) +Hi,i,jQQQ
p

i,jH
H
i,i,j

∣

∣− ln |Mi,j(QQQ)| ≥ rrrpi,j , (25)

ln
∣

∣Mi,j(QQQ) +Hi,i,jQQQ
c

i,jH
H
i,i,j

∣

∣− ln |Mi,j(QQQ)| ≥ rrrci,j , (26)

ln
∣

∣

∣
Mi,j(QQQ) +Hî,i,jQQQ

c

î,ĵ
HH

î,i,j

∣

∣

∣
− ln |Mi,j(QQQ)| ≥ rrrc

î,ĵ
, (27)

ln
∣

∣Mi,j(QQQ) +Hi,i,jQQQ
p

i,jH
H
i,i,j +Hi,i,jQQQ

c

i,jH
H
i,i,j

∣

∣

− ln |Mi,j(QQQ)| ≥ rrrpi,j + rrrci,j , (28)

ln
∣

∣

∣
Mi,j(QQQ) +Hi,i,jQQQ

p

i,jH
H
i,i,j +Hî,i,jQQQ

c

î,ĵ
HH

î,i,j

∣

∣

∣

− ln |Mi,j(QQQ)| ≥ rrrpi,j + rrrc
î,ĵ
, (29)

ln
∣

∣

∣
Mi,j(QQQ) +Hi,i,jQQQ

c

i,jH
H
i,i,j +Hî,i,jQQQ

c

î,ĵ
HH

î,i,j

∣

∣

∣

− ln |Mi,j(QQQ)| ≥ rrrci,j + rrrc
î,ĵ
, (30)

ln
∣

∣Mi,j(QQQ) +Hi,i,jQQQ
p

i,jH
H
i,i,j +Hi,i,jQQQ

c

i,jH
H
i,i,j

+Hî,i,jQQQ
c

î,ĵ
HH

î,i,j

∣

∣

∣
− ln |Mi,j(QQQ)| ≥ rrrpi,j + rrrci,j + rrrc

î,ĵ
. (31)

In principle, all these nonconvex constraints can be succes-

sively and innerly approximated by convex constraints by

linearizing the nonconvex function ln |Mi,j(QQQ)| in (25)-(31)

[31]. As a consequence, the nonconvex program (13) can

be successively solved by a sequence of convex programs.

However, these convex programs involve log-det function

constraints (the first term in (25)-(31)), which are although

convex but still cannot be handled by the present convex

solvers.1

Next, we present a technique to equivalently express the

semi-definite constraint (2) by a simple convex quadratic func-

tion and to successively approximate nonconvex constraints

(4)-(10) by convex quadratic constraints. To this end, factorize

each QQQs
i,j , s ∈ {p, c} as

QQQs
i,j = [VVV s

i,j ]
2, VVV s

i,j ∈ C
Nt×Nt . (32)

The semi-definite constraint (2) in QQQ becomes the convex

quadratic constraint in VVV :

WB =
{

VVV := [VVV p

i,j VVV c

i,j ](i,j)∈I×J :

∑

j∈J

(||VVV p

i,j ||2 + ||VVV c

i,j ||2) ≤ PB , i ∈ I







, (33)

1For convex programs involving log-det functions in their objectives only,
there is still no available solver of polynomial-time.
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while Mi,j(QQQ) defined by (3), which is a linear map in QQQ,

becomes a quadratic map in VVV . For notational simplicity, we

use the same notation Mi,j(VVV ) for

Mi,j(VVV ) :=
∑

(n,k)∈I×J

Hn,i,j([VVV
p

n,k]
2 + [VVV c

n,k]
2)HH

n,i,j

+σ2INr
−
∑

k≥j

Hi,i,j([VVV
p

i,k]
2 + [VVV c

i,k]
2)HH

i,i,j

−Hî,i,j [VVV
c

î,ĵ
]2HH

î,i,j
. (34)

The constraints (4)-(10) in QQQ are equivalently expressed as the

following constraints in VVV

F p

i,j(VVV
p

i,j ,Mi,j(VVV )) :=

ln
∣

∣INr
+ [Hi,i,jVVV

p

i,j ]
2(Mi,j(VVV ))−1

∣

∣ ≥ rrrpi,j , (35)

F c

i,j(VVV
c

i,j ,Mi,j(VVV )) :=

ln
∣

∣INr
+ [Hi,i,jVVV

c

i,j ]
2(Mi,j(VVV ))−1

∣

∣ ≥ rrrci,j , (36)

F a

i,j(VVV
c

î,ĵ
,Mi,j(VVV )) :=

ln
∣

∣

∣
INr

+ [Hî,i,jVVV
c

î,ĵ
]2(Mi,j(VVV ))−1

∣

∣

∣
≥ rrrc

î,ĵ
, (37)

F pc

i,j(VVV
p

i,j ,VVV
c

i,j ,Mi,j(VVV )) :=

ln
∣

∣INr
+ ([Hi,i,jVVV

p

i,j ]
2 + [Hi,i,jVVV

c

i,j ]
2)(Mi,j(VVV ))−1

∣

∣ ≥
rrrpi,j + rrrci,j , (38)

F pa

i,j(VVV
p

i,j ,VVV
c

î,ĵ
,Mi,j(VVV )) :=

ln
∣

∣

∣
INr

+ ([Hi,i,jVVV
p

i,j ]
2 + [Hî,i,jVVV

c

î,ĵ
]2)(Mi,j(VVV ))−1

∣

∣

∣
≥

rrrpi,j + rrrc
î,ĵ
, (39)

F ca

i,j(VVV
c

i,j ,VVV
c

î,ĵ
,Mi,j(VVV )) :=

ln
∣

∣

∣
INr

+ ([Hi,i,jVVV
c

i,j ]
2 + [Hî,i,jVVV

c

î,ĵ
]2)(Mi,j(VVV ))−1

∣

∣

∣
≥

rrrci,j + rrrc
î,ĵ
, (40)

F pca

i,j (VVV p

i,j ,VVV
c

i,j ,VVV
c

î,ĵ
,Mi,j(VVV )) :=

ln
∣

∣INr
+ ([Hi,i,jVVV

p

i,j ]
2 + [Hi,i,jVVV

c

i,j ]
2

+[Hî,i,jVVV
c

î,ĵ
]2)(Mi,j(VVV ))−1

∣

∣

∣
≥

rrrpi,j + rrrci,j + rrrc
î,ĵ
. (41)

With the above developments, the problem in (13) is equiv-

alently reformulated as

max
VVV ,rrr

P(rrr) :=
∑

(i,j)∈I×J

(rrrpi,j+rrr
c

i,j) : (33), (35)−(41). (42)

It is pointed out that all functions in (35)-(41) are highly

nonlinear, nonconcave in variable VVV . As such it is useful

to find their lower bounds, that are global to guarantee the

richness of the feasibility region but also sufficiently local for

a tight approximation. Our bounding technique is based on the

following result, whose proof is given in Appendix A.

Theorem 1: The following inequality holds true for all

matrices XXXi ∈ C
Nr×Nt , X

(κ)
i ∈ C

Nr×Nt , i = 1, . . . , L and

0 ≺MMM ∈ C
Nr×Nr , 0 ≺M (κ) ∈ C

Nr×Nr :

ln |INr
+ (

L
∑

i=1

[XXXi]
2)MMM−1| ≥

ln |INr
+ (

L
∑

i=1

[XXX
(κ)
i ]2)(M (κ))−1|

−〈(
L
∑

i=1

[X
(κ)
i ]2)(M (κ))−1〉

+2

L
∑

i=1

ℜ{〈(X(κ)
i )H(M (κ))−1XXXi〉}

+〈(M (κ) +

L
∑

i=1

[X(κ)]2)−1

−(M (κ))−1,MMM +

L
∑

i=1

[XXXi]
2〉. (43)

Next, as

M (κ) +

L
∑

i=1

[X
(κ)
i ]2 �M (κ) ≻ 0,

it follows from (P1) that

(M (κ) +

L
∑

i=1

[X
(κ)
i ]2)−1 − (M (κ))−1 � 0.

Thus, it follows from (P2) that the right hand side (RHS) of

(43) is concave quadratic in XXX , [XXXi]i=1,...,L. Obviously the

RHS of (43) is still concave quadratic in X for

MMM =

L
∑

i=1

Hi[Xi]
2HH

i +A,A ≻ 0,

and accordingly, M (κ) =
∑L

i=1 Hi[X
(κ)
i ]2HH

i +A.

Now, define the following positive combination of [VVV x
i,j ]

2,

x ∈ {p, c}:

Mp

i,j(VVV ) =Mi,j(VVV ) + [Hi,i,jVVV
p

i,j ]
2,

Mc

i,j(VVV ) =Mi,j(VVV ) + [Hi,i,jVVV
c

i,j ]
2,

Ma

i,j(VVV ) =Mi,j(VVV ) + [Hî,i,jVVV
c

î,ĵ
]2.

Applying Theorem 1 at V (κ) = [V
p,(κ)
i,j V

c,(κ)
i,j ](i,j)∈I×J

gives

F p

i,j(VVV
p

i,j ,Mi,j(VVV )) ≥ Fp,(κ)
i,j (VVV ),

F c

i,j(VVV
c

i,j ,Mi,j(VVV )) ≥ Fc(κ)
i,j (VVV ),

F a

i,j(VVV
c

î,ĵ
,Ma

i,j(VVV )) ≥ Fa,(κ)
i,j (VVV )

(44)

with the following concave quadratic functions in VVV

Fp,(κ)
i,j (VVV ) := a

p,(κ)
i,j + 2ℜ{〈Bp,(κ)

i,j VVV p

i,j〉}
+〈Cp,(κ)

i,j ,Mp

i,j(VVV )〉, (45)

Fc(κ)
i,j (VVV ) := a

c,(κ)
i,j + 2ℜ{〈Bc,(κ)

i,j VVV c

i,j〉}
+〈Cc,(κ)

i,j ,Mc

i,j(VVV )〉, (46)

Fa,(κ)
i,j (VVV ) := a

a,(κ)
i,j + 2ℜ{〈Ba,(κ)

i,j VVV c

î,ĵ
〉}

+〈Ca,(κ)
i,j ,Ma

i,j(VVV )〉, (47)
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where

0 > a
p,(κ)
i,j = F p

i,j(V
p,(κ)
i,j ,Mi,j(V

(κ)))

−〈[Hi,i,jV
p,(κ)
i,j ]2(Mi,j(V

(κ)))−1〉, (48)

0 > a
c,(κ)
i,j = F c

i,j(V
c,(κ)
i,j ,Mi,j(V

(κ)))

−〈[Hi,i,jV
c,(κ)
i,j ]2(Mi,j(V

(κ)))−1〉, (49)

0 > a
a,(κ)
i,j = F a

i,j(V
c,(κ)

î,ĵ
,Ma

i,j(V
(κ)))

−〈[Hî,i,jV
c,(κ)

î,ĵ
]2(Mi,j(V

(κ)))−1〉, (50)

and

B
p,(κ)
i,j = (V

p,(κ)
i,j )HHH

i,i,j(Mi,j(V
(κ)))−1Hi,i,j , (51)

B
c,(κ)
i,j = (V

c,(κ)
i,j )HHH

i,i,j(Mi,j(V
(κ)))−1Hi,i,j , (52)

B
a(κ)
i,j = (V

c,(κ)

î,ĵ
)HHH

î,i,j
(Mi,j(V

(κ)))−1Hî,i,j , (53)

and

0 � C
p,(κ)
i,j =Mp

i,j(V
(κ)))−1 − (Mi,j(V

(κ)))−1, (54)

0 � C
c,(κ)
i,j =Mc

i,j(V
(κ)))−1 − (Mi,j(V

(κ)))−1, (55)

0 � C
a,(κ)
i,j =Ma

i,j(V
(κ)))−1 − (Mi,j(V

(κ)))−1. (56)

Analogously, under the following definitions of the positive

combinations of [VVV ]2

Mpc

i,j(VVV ) = Mi,j(VVV ) + [Hi,i,jVVV
p

i,j ]
2 + [Hi,i,jVVV

c

i,j ]
2,

Mpa

i,j(VVV ) = Mi,j(VVV ) + [Hi,i,jVVV
p

i,j ]
2 + [Hî,i,jVVV

c

î,ĵ
]2,

Mca

i,j(VVV ) = Mi,j(VVV ) + [Hî,i,jVVV
c

î,ĵ
]2 + [Hî,i,jVVV

c

î,ĵ
]2,

Mpca

i,j (VVV ) = Mi,j(VVV ) + [Hi,i,jVVV
p

i,j ]
2 + [Hi,i,jVVV

c

i,j ]
2

+[Hî,i,jVVV
c

î,ĵ
]2

and by applying Theorem 1, one has

F pc

i,j(VVV
p

i,j ,VVV
c

i,j ,Mi,j(VVV )) ≥ Fpc,(κ)
i,j (VVV ),

F pa

i,j(VVV
p

i,j ,VVV
c

î,ĵ
,Mi,j(VVV )) ≥ Fpa,(κ)

i,j (VVV ),

F ca

i,j(VVV
c

i,j ,VVV
c

î,ĵ
,Mi,j(VVV )) ≥ Fca,(κ)

i,j (VVV ),

F pca

i,j (VVV p

i,j ,VVV
c

i,j ,VVV
c

î,ĵ
,Mi,j(VVV )) ≥ Fpca,(κ)

i,j (VVV ).

(57)

The various concave quadratic functions in (57) are given as:

Fpc,(κ)
i,j (VVV ) :=a

pc,(κ)
i,j + 2ℜ{〈Bp,(κ)

i,j VVV p

i,j〉}+ 2ℜ{〈Bc,(κ)
i,j VVV c

i,j〉}
+ 〈Cpc,(κ)

i,j ,Mpc

i,j(VVV )〉, (58)

Fpa,(κ)
i,j (VVV ) :=a

pa,(κ)
i,j + 2ℜ{〈Bp,(κ)

i,j VVV p

i,j〉}+ 2ℜ{〈Ba,(κ)
i,j VVV c

î,ĵ
〉}

+ 〈Cpa,(κ)
i,j ,Mpa

i,j(VVV )〉, (59)

Fca,(κ)
i,j (VVV ) :=a

ca,(κ)
i,j + 2ℜ{〈Bc,(κ)

i,j VVV c

i,j〉}+ 2ℜ{〈Ba,(κ)
i,j VVV c

î,ĵ
〉}

+ 〈Cca,(κ)
i,j ,Mca

i,j(VVV )〉, (60)

Fpca,(κ)
i,j (VVV ) := a

pca,(κ)
i,j + 2ℜ{〈Bp,(κ)

i,j VVV p

i,j〉}
+2ℜ{〈Bc,(κ)

i,j VVV c

i,j〉}+ 2ℜ{〈Ba,(κ)
i,j VVV c

î,ĵ
〉}

+〈Cpca,(κ)
i,j ,Mpca

i,j (VVV )〉, (61)

where

0 > a
pc,(κ)
i,j = F pc

i,j(V
p,(κ)
i,j , V

c,(κ)
i,j ,Mi,j(V

(κ)))

−〈([Hi,i,jV
p,(κ)
i,j ]2 + [Hi,i,jV

c,(κ)
i,j ]2)

×(Mi,j(V
(κ)))−1〉, (62)

0 > a
pa,(κ)
i,j = F pa

i,j(V
p(κ)
i,j , V

c(κ)

î,ĵ
,Mi,j(V

(κ)))

−〈([Hi,i,jV
p,(κ)
i,j ]2 + [Hî,i,jV

c,(κ)

î,ĵ
]2)

×(Mi,j(V
(κ))−1〉, (63)

0 > a
ca,(κ)
i,j = F ca

i,j(V
c,(κ)
i,j , V

c,(κ)

î,ĵ
,Mi,j(V

(κ)))

−〈([Hi,i,jV
c,(κ)
i,j ]2 + [Hî,i,jV

c,(κ)

î,ĵ
]2)

×(Mi,j(V
(κ)))−1〉, (64)

0 > a
pca,(κ)
i,j = F pca

i,j (V
p,(κ)
i,j , V

c,(κ)
i,j , V

c,(κ)

î,ĵ
,Mi,j(V

(κ)))

−〈([Hi,i,jV
p,(κ)
i,j ]2 + [Hi,i,jV

c,(κ)
i,j ]2

+[Hî,i,jV
c,(κ)

î,ĵ
]2)(Mi,j(V

(κ)))−1〉, (65)

and

0 � C
pc,(κ)
i,j =Mpc

i,j(V
(κ)))−1 − (Mi,j(V

(κ)))−1, (66)

0 � C
pa,(κ)
i,j =Mpa

i,j(V
(κ)))−1 − (Mi,j(V

(κ)))−1, (67)

0 � C
ca,(κ)
i,j =Mca

i,j(V
(κ)))−1 − (Mi,j(V

(κ)))−1, (68)

0 � C
pca,(κ)
i,j =Mpca

i,j (V
(κ)))−1 − (Mi,j(V

(κ)))−1. (69)

We now propose the following path-following procedure

based on convex quadratic programming for solving (13).

• Initialization: Initialize any feasible solution V (0) =

(V
p,(0)
i,j V

c,(0)
i,j )(i,j)∈I×J to the convex power con-

straint (33). Set Q
p,(0)
i,j = V

p,(0)
i,j (V

p,(0)
i,j )H , Q

c,(0)
i,j =

V
c,(0)
i,j (V

c,(0)
i,j )H , Q(0) = [Q

p,(0)
i,j Q

c,(0)
i,j ](i,j)∈I×J and

solve the linear program

max
rrrp=[rrrp

i,j
],rrrc=[rrrc

i,j
]

∑

(i,j)∈I×J

(rrrpi,j + rrrci,j) :

(4)− (10) for Q = Q(0) (70)

to find the optimal solution r(0).
• κ-th iteration is to generate V (κ+1) :=

(V
p,(κ+1)
i,j V

c,(κ+1)
i,j )(i,j)∈I×J and

r(κ+1) := (r
p,(κ+1)
i,j r

c,(κ+1)
i,j )(i,j)∈I×J from
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Algorithm 1 QP-based path-following algorithm for solving

(13)

1: Initialize κ := 0.

2: Initialize any feasible solution V (0) =

(V
p,(0)
i,j V

c,(0)
i,j )(i,j)∈I×J to the convex power constraint

(33). Solve linear program (70) to find the optimal

solution r(0).
3: repeat

4: Solve quadratic program (71) for (V (κ+1), r(κ+1)).
5: Set κ := κ+ 1.

6: until convergence of the objective in (42), i.e.,

(P(r(κ+1))−P(r(κ)))/P(r(κ)) ≤ ǫ for a given computa-

tional tolerance ǫ.

(V (κ), r(κ)) by the optimal solution of the convex

quadratic program

max
VVV ,rrr

P(rrr) :=
∑

(i,j)∈I×J

(rrrpi,j + rrrci,j) : (33), (71a)

Fp,(κ)
i,j (VVV ) ≥ rrrpi,j ,F

c,(κ)
i,j (VVV ) ≥ rrrci,j , (71b)

Fa,(κ)
i,j (VVV ) ≥ rrrc

î,ĵ
,Fpc,(κ)

i,j (VVV ) ≥ rrrpi,j + rrrci,j , (71c)

Fpa,(κ)
i,j (VVV ) ≥ rrrpi,j + rrrc

î,ĵ
,Fca,(κ)

i,j (VVV ) ≥ rrrci,j + rrrc
î,ĵ
, (71d)

Fpca,(κ)
i,j (VVV ) ≥ rrrpi,j + rrrci,j + rrrc

î,ĵ
, (71e)

(i, j) ∈ I × J , (̂i, ĵ) = a−1(i, j) (71f)

For ∆ , | ∪(i,j)∈I×J a(i, j)|, the number of quadratic

constraints in (71) is bounded by m = 3N + 7∆ +
(NK−∆) while the variable number is n = NKM2

t /2+
∆M2

t /2+NK+(NK−∆). So the computational com-

plexity of (71) is upper bounded by O(n2m2.5 +m3.5).

It is pointed out that (71b)-(71e) are employed when both

a(i, j) 6= ∅ and a−1(i, j) 6= ∅. Other three possible cases are

• a(i, j) 6= ∅ but a−1(i, j) = ∅: In this case user (i, j)
needs to decode spi,j and sci,j only. Hence replace (71b)-

(71e) with

Fp,(κ)
i,j (VVV ) ≥ rrrpi,j ,F

c,(κ)
i,j (VVV ) ≥ rrrci,j ,

Fpc,(κ)
i,j (VVV ) ≥ rrrpi,j + rrrci,j .

(72)

• a(i, j) = ∅ but a−1(i, j) = (̂i, ĵ) 6= ∅: In this case user

(i, j) needs to decode spi,j and sc
î,ĵ

only. Hence replace

(71b)-(71e) with

Fp,(κ)
i,j (VVV ) ≥ rrrpi,j ,F

a,(κ)
i,j (VVV ) ≥ rrrc

î,ĵ
,

Fpa,(κ)
i,j (VVV ) ≥ rrrpi,j + rrrc

î,ĵ
.

(73)

• Both a(i, j) = ∅ and a−1(i, j) = ∅: In this case user

(i, j) needs to decode its private message spi,j only. Then,

replace (71b)-(71e) with

Fp,(κ)
i,j (VVV ) ≥ rrrpi,j . (74)

Algorithm 1 recaps the above a QP-based path-following

procedure for solving the sum rate maximization problem

(13). The convergence property of the proposed algorithm is

established in the following proposition.

Proposition 1: Algorithm 1 generates a sequence

{(V (κ), r(κ))} of feasible and improved solutions of the

original nonconvex program (42) in the sense that

P(r(κ+1)) > P(r(κ)) (75)

as far as (Q(κ+1), r(κ+1)) 6= (Q(κ), r(κ)), which converges at

least to a solution satisfying the KKT condition for optimality

of (13).

Proof: By (44) and (57), every feasible solution to (71) is

also feasible to (42). Then (75) is true because (V (κ), r(κ))
is also feasible to (71), while (V (κ+1), r(κ+1)) is its optimal

solution. Furthermore, the sequence {(V (κ), r(κ))} is bounded

by constraint (33). By Cauchy’s theorem there is a convergent

subsequence {(V (κν), r(κν))} so

lim
ν→+∞

(P(r(κν+1))− P(r(κν))) = 0.

For every κ, there is ν such that κν ≤ κ and κ + 1 ≤ κν .

Therefore

0 ≤ lim
κ→+∞

(P(r(κ+1))− P(r(κ)))
≤ lim

κ→+∞
(P(r(κν+1))− P(r(κν)))

= 0,

showing that lim
κ→+∞

(P(r(κ+1))−P(r(κ))) = 0. Each accumu-

lation point {(V̄ , r̄)} of the sequence {(V (κ), r(κ))} obviously

satisfies the KKT condition for optimality [37]. �

Remark. The maximin rate optimization problem, formu-

lated as

max
QQQ,rrr

min
(i,j)∈I×J

(rrrpi,j + rrrci,j) : (2), (4)− (10), (76)

can also be solved by the proposed path-following algo-

rithm when replacing the objective in (70) and (71) with

min(i,j)∈I×J (rrrpi,j + rrrci,j).

IV. NUMERICAL RESULTS

In this section, numerical results are presented to show the

rate performances achieved by different signalling schemes.

For ease of discussion, the conventional signalling involving

only private messages is referred to as “private only”, while

the proposed H-K signalling is referred to as “H-K”. The

computational tolerance in Algorithm 1 is set as ǫ = 10−5.

Each point plotted for the Monte Carlo simulations is based

on 100 random network realizations.

For convenience, set Hm,i,j =
√
ηm,i,jhm,i,j for m 6= i.

The entries hm,i,j are independent and identically distributed

complex Gaussian variables with zero mean and unit variance,

which represent the small-scaling fading, whereas ηm,i,j cap-

tures the path loss and large-scale fading.

Obviously, the effectiveness of the H-K signalling strongly

depends on the pairing operator a. Unfortunately optimization

of the pairing operator is an intractable combinatorial problem.

It is pointed out that a heuristic rule for choosing a based on

the performance of “private only” messaging was proposed in

[25] and further developed in [23].
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A. N = 2, K = 1 with Nt = Nr ∈ {1, 2, 4, 6, 8}, as in [36,

Fig. 3]

In this study, the direct channel strengths η1,1,1 = η2,2,1 = 0
dB and the inferring channel strengths η1,2,1 = η2,1,1 =
−4.7712 dB are selected as in [36, p. 4317]. Fig. 2 plots

the sum rate performance versus the number of antennas,

under a per-Tx power budget PB = 30 dB. For comparison,

also included is the performance of the two-stage scheme

in [36], which is extremely computationally demanding. Its

performance plotted in Fig. 2 based on only 225 sampled

points already took hours of computer simulation to obtain.
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Fig. 2: Plots of the sum rate versus the number of antennas.

B. N = 2, K = 1, Nt = 4, Nr = 2

Here, the statistical performance of MIMO interference

networks depicted as in Fig. 3a is analyzed. Following [7],

[38], the direct channel strengths are fixed at (η1,1,1, η2,2,1) =
(10, 20) (in dB), while the interfering channel strengths

η1,2,1 = η2,1,1 are increased from −5 dB to 20 dB. These

values cover a wide range of channels effects, such as path

loss and shadowing, which may be environment-dependent.

The simulation scenarios thus vary from weak MIMO GINs

to mixed MIMO GINs. The upper and lower bounds on the

sum or minimal rates can be obtained by solving the linear

inequality [17, (52a)-(52i)] and [17, (11)- (17)], respectively.

Fig. 4 show that both of these bounds are quite loose. The

performance of the conventional scheme degrades significantly

as the interference channel strength η increases. This is in a

sharp contrast to the improved performance behavior of the

H-K signalling.

C. Three-user cyclic GIN with Nt = 4, Nr = 2

Fig. 3b depicts a three-user cyclic GIN. The direct channel

strengths (η1,1,1, η2,2,1, η3,3,1) are fixed at (10, 20, 5) (in dB),

while the interfering channel strengths η2,1,1 = η3,2,1 = η1,3,1
are increased from −10 dB to 30 dB for testing different

scenarios. Fig. 5 shows a profound performance improvement

achieved by using H-K signalling, especially when the inter-

ference channel gain η is large. In contrast, the performance

of the conventional scheme is severely deteriorated.

Tx 1

Tx 2

(a) N = 2, K = 1.

Tx 2
Tx 3

Tx 1

(b) Cyclic N = 3, K = 1

Tx 1

Tx 2

(c) N = 2, K = 2

Fig. 3: Different interference networks considered in simula-

tion.

D. N = 2, K = 2, Nt = 4, Nr = 2

As shown in Fig. 3c, the direct channel strengths η1,1,1 =
η2,2,1 and η1,1,2 = η2,2,2 are, respectively, fixed at 10 dB and

15 dB, and the interfering channel strengths η2,1,1 and η2,1,2
are set to −50 dB (thus these interfering channels are basically

disabled). The interfering channel strengths η1,2,1 = η1,2,2
are increased from −10 dB to 50 dB. There are two users

per cell so the DPC (which results in the covariance of the

interference-plus-noise as in (3)) is expected to be beneficial.

To confirm this fact, we also compare the performance of

the H-K signalling with a signalling scheme that does not
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Fig. 4: Rate performance versus interfering channel strength

for N = 2, K = 1.

implement DPC. For the latter, the interference-plus-noise

covariance is conventionally calculated as

Mi,j(QQQ) :=
∑

(n,k)∈I×J

Hn,i,j(QQQ
p

n,k +QQQc

n,k)H
H
n,i,j + σ2INr

−Hi,i,j(QQQ
p

i,j +QQQc

i,j)H
H
i,i,j −Hî,i,jQQQ

c

î,ĵ
HH

î,i,j
.

(77)

Fig. 6 shows the superior performance of the H-K sig-

nalling with and without DPC. As expected, a more profound

enhancement in the performance of the H-K signalling is

observed when the intercell interference channel gain is high

(e.g., η > 15 dB).

V. CONCLUSIONS

In this paper, we have studied the H-K superposition sig-

nalling strategy for multi-user MIMO broadcast interference

networks. The ability of the H-K signalling to increase the

achievable rate region of a multi-user MIMO Gaussian in-

terference network has been previously demonstrated, but its

optimization has never been adequately addressed. The main

contribution of this paper is to show that such an optimization

problem can be solved by a path-following procedure based on

convex quadratic programming of low computational complex-

ity. In the presence of mild-to-strong interference, simulation

results demonstrated significant rate gains obtained by our

optimized H-K signalling.
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Fig. 5: Rate performance versus interfering channel strength

for a cyclic channel GIN, N = 3, K = 1.
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APPENDIX A: PROOF OF THEOREM 1

Lemma 1: The following inequality holds for all XXX , X(κ)

and Y ≻ [X]2, Y (κ) ≻ [X(κ)]2 of appropriate sizes:

ln |INr
− [X]2Y−1| ≤

ln |INr
− [X(κ)]2(Y (κ))−1|

+〈[X(κ)]2(Y (κ) − [X(κ)]2)−1〉
−2ℜ{〈(X(κ))H(Y (κ) − [X(κ)]2)−1X〉}
+〈(Y (κ) − [X(κ)]2)−1 − (Y (κ))−1,Y〉. (78)

Proof: Define the function

g(X,Y) := ln |INr
− [X]2Y−1| on {Y ≻ [X]2}

and mapping

h(X,Y) := XHY−1X on {Y ≻ 0}.
By [39, Appendix C], whenever α ≥ 0, β ≥ 0, α + β = 1,

the following matrix inequality holds true

h(α(X,Y)+β(X(κ), Y (κ))) � αh(X,Y)+βh(X(κ), Y (κ)).

It then follows that

INr
− h(α(X,Y) + β(X(κ), Y (κ))) �

INr
− αh(X,Y)− βh(X(κ), Y (κ)).

Therefore

g(α(X,Y) + β(X(κ), Y (κ))) =

ln |INr
− h(α(X,Y) + β(X(κ), Y (κ)))| ≥

ln |INr
− αh(X,Y)− βh(X(κ), Y (κ))| ≥

α ln |INr
− h(X,Y)|+ β ln |INr

− h(X(κ), Y (κ))| =

αg(X,Y) + βg(X(κ), Y (κ)), (79)

showing that g(·) is a concave function. Note that (79) is based

on the fact that function ln |Z| is concave in Z ≻ 0.

For such a concave function, it is true [40] that

g(X,Y) ≤
g(X(κ), Y (κ)) + 〈∇g(X(κ), Y (κ)), (X,Y)

−(X(κ), Y (κ))〉 =
ln |INr

− [X(κ)]2(Y (κ))−1| − 2ℜ{〈(X(κ))H(Y (κ)

−[X(κ)]2)−1(X−X(κ))〉}
+〈(Y (κ) − [X(κ)]2)−1 − (Y (κ))−1,Y − Y (κ)〉 =

ln |INr
− [X(κ)]2(Y (κ))−1| − 2ℜ{〈(X(κ))H(Y (κ)

−[X(κ)]2)−1X〉}
+2〈(X(κ))H(Y (κ) − [X(κ)]2)−1X(κ))〉
+〈(Y (κ) − [X(κ)]2)−1 − (Y (κ))−1,Y〉

−〈(Y (κ) − [X(κ)]2)−1 − (Y (κ))−1, Y (κ)〉.
The right hand side (RHS) of the last inequality is the RHS

of (78) because

2〈(X(κ))H(Y (κ) − [X(κ)]2)−1X(κ))〉
−〈(Y (κ) − [X(κ)]2)−1 − (Y (κ))−1, Y (κ)〉 =

〈[X(κ)]2(Y (κ) − [X(κ)]2)−1〉.
This completes the proof of Lemma 1. �

Now, the proof of Theorem 1 is as follows. By defining

XXX = [XXX1 XXX2 . . . XXXL]

and using (P3) to rewrite

ln |INr
+ (

L
∑

i=1

[XXXi]
2)MMM−1| =

− ln |INr
− [XXX]2(MMM + [XXX]2)−1|.

The inequality (43) then follows from (78) by substituting

XXX ←XXX, MMM + [XXX]2 ← Y,
X(κ) ← X(κ), M (κ) + [X(κ)]2 ← Y (κ).
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