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SUPERPOSITIONS AND HIGHER ORDER GAUSSIAN BEAMS∗

NICOLAY M. TANUSHEV†

Abstract. High frequency solutions to partial differential equations (PDEs) are notoriously
difficult to simulate numerically due to the large number of grid points required to resolve the wave
oscillations. In applications, one often must rely on approximate solution methods to describe the
wave field in this regime. Gaussian beams are asymptotically valid high frequency solutions concen-
trated on a single curve through the domain. We show that one can form integral superpositions of
such Gaussian beams to generate more general high frequency solutions to PDEs.

As a particular example, we look at high frequency solutions to the constant coefficient wave
equation and construct Gaussian beam solutions with Taylor expansions of several orders. Since
this PDE can be solved via a Fourier transform, we use the Fourier transform solution to gauge the
error of the constructed Gaussian beam superposition solutions. Furthermore, we look at an example
for which the solution exhibits a cusp caustic and investigate the order of magnitude of the wave
amplitude as a function of frequency at the tip of the cusp. We show that the observed behavior is
in agreement with the predictions of Maslov theory.

Key words. high frequency waves, superpositions, Gaussian beams, caustics, ray methods,
wave equation, caustics
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1. Introduction

Computation of high frequency waves is a necessity in many scientific applications.
Fields requiring such computations include the semi-classical limit of the Schrödinger
equation, communication networks, radio antenna engineering, laser optics, underwa-
ter acoustics, seismic wave propagation, and reflection seismology. These phenomena
are modeled by partial differential equations (PDEs). The direct numerical integra-
tion of these PDEs is not computationally feasible, since one needs a tremendous
number of grid points to resolve the rapid oscillations of the waves. As a result, one is
forced to rely on approximate solutions which are valid in the high frequency regime.

Gaussian beams are approximate high frequency solutions to PDEs which are
concentrated on a single ray through space-time. They derive their name from the fact
that these solutions look like Gaussian distributions on planes perpendicular to the ray.
The existence of such solutions has been known to the pure mathematics community
since sometime in the 1960s, and these solutions have been used to obtain results on
propagation of singularities in PDEs ([4] and [8]). More general solutions that are
not necessarily concentrated on a single ray can be obtained from a superposition
of Gaussian beams. Such superpositions have been investigated in [5], [6], and [7].
In geophysical applications, Gaussian beam superpositions have been used to model
the seismic wave field [1] and for seismic migration [3]. More recently, they have
been used to model the stationary-in-time atmospheric waves that result from steady
airflow over topography [9].

Gaussian beams are closely related to geometric optics, also known as the WKB
method or ray-tracing. In both approaches, the solution of the PDE is assumed to be
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of the form

eikφ

[

a0 +
1

k
a1 + ...+

1

kN
aN

]

, (1.1)

where k is the high frequency parameter, aj ’s are the amplitude functions, and φ is the
phase function. One then substitutes this form into the PDE to find the equations that
the amplitudes and phase functions have to satisfy. Gaussian beams and geometric
optics differ in the assumptions on the phase: the geometric optics method assumes
that the phase is a real valued function, while the Gaussian beam construction does
not.

Geometric optics has been widely used to model high frequency wave propaga-
tion in the applied mathematics community. A common problem with this method
is that solving the equation for the phase using the method of characteristics leads
to singularities which invalidate the approximation. Generally speaking, this break-
down occurs when nearby rays intersect, resulting in a caustic where geometric optics
incorrectly predicts that the amplitude of the solution is infinite.

The geometric optics solution can be extended past caustics, once they are identi-
fied, by Maslov’s method. However, caustics can occur anywhere in the domain, and
their correction in numerical schemes is non-trivial. Intuitively speaking, Gaussian
beams do not develop caustics, since they are concentrated on a single ray, and one
ray cannot develop a caustic. Thus, a Gaussian beam is a global solution of the PDE.
Mathematically, this stems from the fact that the standard symplectic form and its
complexification are preserved along the flow defined by the Hessian matrix of the
phase. Hence, superpositions of Gaussian beams enjoy an advantage over geometric
optics in that Gaussian beam solutions are global and their superposition provides a
valid approximation at caustics wherever they occur.

Each Gaussian beam is constructed from a Taylor expansion of the phase and
amplitude functions. The Taylor coefficients satisfy a system of ordinary differential
equations (ODEs). In numerical simulations, once the numerical computations are
complete, the wave field is given by a function. To obtain the highly oscillatory
solution, this function is then evaluated at each grid point of the domain. Increasing
the number of points in the domain simply means that this function needs to be
evaluated at more points; no additional integration of the ODEs is required. In
geometric optics approaches the wave field is calculated at points along rays in the
domain. To increase the number of points in the domain, one has to either add
more rays (which is usually numerically too expensive) or one has to interpolate the
solution. This interpolation adds an additional layer of error to the geometric optics
solution.

There are some tricks to limiting the interpolation error, such as inserting addi-
tional rays only where the rays paths are diverging. However, all of these improve-
ments are accomplished through complicated numerical procedures. Geometric optics
suffers from errors in satisfying the PDE, errors in the numerical ODE integration and
errors in interpolating the solution. The interpolation errors are hard to quantify since
they depend on properties of the function, such as its curvature, and on the location
of the points used for interpolating.

The accuracy of the Gaussian beam solution is controlled by the well-posedness
theory for the PDE. Usually, these estimates state that some norm of the error is
bounded by a constant (which may depend on the time t) times some appropriate
norm of the error in the initial data and the error in satisfying the PDE. Thus, the
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sources of error in the Gaussian beam solution are the error in approximating the
initial data, errors in satisfying the PDE and errors in the numerical solution of the
system of ODEs that define each beam. This gives the Gaussian beam solution a
strong advantage over geometric optics, since it quantifies the error in the computed
solution. Furthermore, since increasing the resolution of the solution can be accom-
plished without re-integration of the ODEs, one can easily examine a specific portion
of the domain. In other words, the Gaussian beam solution provides an easy way to
“zoom” into particular regions of the domain, which is a useful tool in applications.

In this paper we will consider Gaussian beam solutions to the constant coefficient
wave equation,

¤u≡utt−△u=0 in R+×R
2,

with u and ut given at t=0.

This problem in particular was chosen because it is easily solved using a Fourier
transform. We will use this solution to benchmark the Gaussian beam solutions.

2. Convergence of Gaussian beam superpositions

Throughout this section we will use the notation

T y
j [f ](x)

to denote the jth-order Taylor polynomial of f about y at the point x and

Ry
j [f ](x)

to denote its remainder. That is,

f(x)=T y
j [f ](x)+Ry

j [f ](x).

Theorem 2.1. Let φ0∈C∞(Rn) be a real-valued function, a0∈C∞
0 (Rn), and ρ∈

C∞
0 (Rn) be such that ρ≥0, ρ≡1 in a ball of radius δ >0 about the origin.

Define

u(x)=a0(x)eikφ0(x),

v(x;y)=

(

k

2π

)
n
2

ρ(x−y)T y
j [a0](x)eikT y

j+2
[φ0](x)−k|x−y|2/2.

Then

∣

∣

∣

∣

∣

∣

∣

∣

∫

Rn

v(x;y)dy−u(x)

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤Ck− j+1

2 ,

for some constant C.
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Proof. Estimating the norm, we have

∣

∣

∣

∣

∣

∣

∣

∣

∫

Rn

v(x;y)dy−u(x)

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

Rn

(

k

2π

)
n
2

ρ(x−y)T y
j [a0](x)eikT y

j+2
[φ0](x)−k|x−y|2/2dy−a0(x)eikφ0(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

Rn

(

k

2π

)
n
2

ρ(x−y)T y
j [a0](x)e−ikRy

j+2
[φ0](x)−k|x−y|2/2dy−a0(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2
∫

Rn

[

ρ(x−y)T y
j [a0](x)−a0(x)

]

e−ikRy
j+2

[φ0](x)−k|x−y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2
∫

Rn

a0(x)
[

e−ikRy
j+2

[φ0](x)−1
]

e−k|x−y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

:= I +J.

We proceed by looking at the two pieces I and J independently. Since

ρ(x−y)T y
j [a0](x)−a0(x)=(ρ(x−y)−1)a0(x)+ρ(x−y)(T y

j [a0](x)−a0(x))

=(ρ(x−y)−1)a0(x)−ρ(x−y)Ry
j [a0](x),

we have:

I ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2
∫

Rn

|(ρ(x−y)−1)a0(x)|e−k|x−y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2
∫

Rn

|ρ(x−y)Ry
j [a0](x)|e−k|x−y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2

|a0(x)|
∫

Rn

|y|j+1

δj+1
e−k|y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2
∫

Rn

χ(x)C|y|j+1e−k|y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤Ck− j+1

2 ,

where χ(x)∈C∞
0 (Rn) such that χ(x)≥0 and χ(x)≡1 for x∈{supp(a0)+supp(ρ)}.

We now estimate J :

J ≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2

|a0(x)|
∫

Rn

[

∣

∣1−cos(kRy
j+2[φ0](x))

∣

∣

2

+
∣

∣sin(kRy
j+2[φ0](x))

∣

∣

2
]1/2

e−k|x−y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2

|a0(x)|
∫

Rn

2k|Ry
j+2[φ0](x)|e−k|x−y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2



NICOLAY M. TANUSHEV 453

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

k

2π

)
n
2

|a0(x)|
∫

Rn

2k|y|j+3e−k|y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤Ck− j+1

2 .

Thus,
∣

∣

∣

∣

∣

∣

∣

∣

∫

Rn

v(x;y)dy−u(x)

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤Ck− j+1

2 .

A result of this form also holds under much weaker assumptions on φ0 and a0:

Theorem 2.2. Let φ0∈C2(Rn) be a real-valued function and let a0∈L2(Rn). For

all ǫ>0, there exist functions a and φ such that for sufficiently large k,
∣

∣

∣

∣

∣

∣

∣

∣

∫

Rn

v(x;y)dy−u(x)

∣

∣

∣

∣

∣

∣

∣

∣

L2

≤ ǫ,

with

u(x)=a0(x)eikφ0(x),

v(x;y)=

(

k

2π

)
n
2

a(y)eikφ(x;y)−k|x−y|2/2.

Before we proceed with the proof of this theorem, it is useful to record the fol-
lowing two lemmas.

Lemma 2.3. For f ∈C∞
0 , let

f∗
k (x)=

(

k

2π

)
n
2
∫

Rn

f(y)e−ikR(x,y)−k|x−y|2/2dy,

with k >0 and R a real-valued function. Then

||f∗
k ||L2 ≤||f ||L2 .

Proof. Note that
(

k

2π

)
n
2
∫

Rn

e−k|x−y|2/2dy =1.

Using the definition of f∗
k and Hölder’s inequality, we have:

|f∗
k (x)|≤

∫

∣

∣

∣

∣

∣

(

k

2π

)
n
2

e−ikR(x,y)−k|x−y|2/2f(y)

∣

∣

∣

∣

∣

dy

≤
∫

∣

∣

∣

∣

∣

(

k

2π

)
n
2

e−k|x−y|2/2f(y)

∣

∣

∣

∣

∣

dy

≤
[

∫

|f(y)|2
(

k

2π

)
n
2

e−k|x−y|2/2dy

]
1
2
[

∫ (

k

2π

)
n
2

e−k|x−y|2/2dy

]
1
2

≤
[

∫

|f(y)|2
(

k

2π

)
n
2

e−k|x−y|2/2dy

]
1
2

,
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which implies that

|f∗
k (x)|2≤

∫

|f(y)|2
(

k

2π

)
n
2

e−k|x−y|2/2dy.

After integrating over x, we have

||f∗
k ||L2 ≤||f ||L2 .

Lemma 2.4. Let F ∈C2(Rn;R). We have the following expansion for F :

F (x)=F (y)+∇F (y) ·(x−y)+
1

2
(x−y) ·HF (y)(x−y)+R(x,y),

where HF (y) denotes the Hessian matrix of F at y and

R(x,y)=(x−y) ·
[∫ 1

0

(1− t)[HF (tx+(1− t)y)−HF (y)]dt

]

(x−y).

Proof. The proof of this lemma follows from the Fundamental Theorem of Cal-
culus and integration by parts. We omit the proof for brevity.

Proof. (Theorem 2.2) By Lem. 2.4 we have the following expansion for φ0(x):

φ0(x)=φ0(y)+∇φ0(y) ·(x−y)+
1

2
(x−y) ·Hφ0(y)(x−y)+R(x,y),

with Hφ0(y) and R(x,y) as defined in the Lemma.
Now choose a∈C∞

0 (Rn), such that ||a0−a||L2 <ǫ/2, and define

φ(x;y)=φ0(y)+∇φ0(y) ·(x−y)+
1

2
(x−y) ·Hφ0(y)(x−y)

and

v(x;y)=

(

k

2π

)
n
2

a(y)eikφ(x;y)−k|x−y|2/2.

We now estimate
∣

∣

∣

∣

∣

∣

∣

∣

u(x)−
∫

Rn

v(x;y)dy

∣

∣

∣

∣

∣

∣

∣

∣

L2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0(x)eikφ0(x)−
(

k

2π

)
n
2
∫

Rn

a(y)eikφ(x;y)−k|x−y|2/2dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

eikφ0(x)

[

a0(x)−
(

k

2π

)
n
2
∫

Rn

a(y)e−ikR(x,y)−k|x−y|2/2dy

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2

≡||a0(x)−a∗
k(x)||L2

≤||a0(x)−a(x)||L2 + ||a(x)−a∗
k(x)||L2

≤ ǫ/2+ ||a(x)−a∗
k(x)||L2 .
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Thus, we need to verify that ||a−a∗
k||L2 ≤ ǫ/2 as k→∞. First, we verify this over a

compact domain Ω:

||a−a∗
k||

2
L2,Ω =

∫

Ω

∣

∣

∣

∣

∣

a(x)−
(

k

2π

)
n
2
∫

Rn

a(y)e−ikR(x,y)−k|x−y|2/2dy

∣

∣

∣

∣

∣

2

dx

=

∫

Ω

∣

∣

∣

∣

∣

(

k

2π

)
n
2
∫

Rn

[

a(x)−a(y)e−ikR(x,y)
]

e−k|x−y|2/2dy

∣

∣

∣

∣

∣

2

dx.

Continuing the estimate, by Hölder’s inequality, we have

||a−a∗
k||

2
L2,Ω≤

(

k

2π

)
n
2
∫

Ω

∫

Rn

∣

∣

∣a(x)−a(y)e−ikR(x,y)
∣

∣

∣

2

e−k|x−y|2/2dydx

≤ 2

(

k

2π

)
n
2
∫

Ω

∫

Rn

[

|a(x)−a(y)|2 +
∣

∣

∣a(y)
(

1−e−ikR(x,y)
)∣

∣

∣

2
]

e−k|x−y|2/2dydx,

and letting (x−y)=z/k1/2 and eliminating y, we get

||a−a∗
k||

2
L2,Ω ≤ 2

(

1

2π

)
n
2
∫

Ω

∫

Rn

∣

∣

∣a(x)−a(x−z/k1/2)
∣

∣

∣

2

e−|z|2/2dzdx

+ 2

(

1

2π

)
n
2
∫

Ω

∫

Rn

∣

∣

∣a(x−z/k1/2)
(

1−e−ikR(x,x−z/k1/2)
)∣

∣

∣

2

e−|z|2/2dzdx

:= I +J

Let D=supp(a). Since a is compactly supported and smooth,

• the measure of D is finite, µ(D)<∞,

• |a(x)|<M , for some M >0, and

• a is globally Lipschitz, |a(x)−a(x−z/k1/2)|≤L|z|/k1/2.
Estimating I and J independently, we have

I = 2

(

1

2π

)
n
2
∫

Ω

∫

Rn

∣

∣

∣a(x)−a(x−z/k1/2)
∣

∣

∣

2

e−|z|2/2dzdx

≤ 2

(

1

2π

)
n
2
∫

Ω

∫

Rn

L2|z|2
k

e−|z|2/2dzdx

≤ 2L2µ(Ω)

(

1

2π

)
n
2
∫

Rn

|z|2
k

e−|z|2/2dz

≤ ǫ2/32 for large enough k

We take a minute to estimate the remainder, −ikR(x,x− z
k1/2 ), for large k. Let r be

large enough, so that

8M2µ(Ω)

(

1

2π

)
n
2
∫

|z|>r

e−|z|2/2dz≤ ǫ2/64.

Then

− ik
z

k1/2
·
[∫ 1

0

(1− t)
[

Hφ0(tx+(1− t)(x− z

k1/2
))−Hφ0(x−

z

k1/2
)
]

dt

]

z

k1/2

=−iz ·
[∫ 1

0

(1− t)
[

Hφ0(x+(t−1)
z

k1/2
)−Hφ0(x−

z

k1/2
)
]

dt

]

z.
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Since Hφ0 is continuous, it is uniformly continuous over compact sets in (x,z). Thus,
for |z|≤ r and every δ >0, for sufficiently large k, we have that

|− ikR(x,x−z/k1/2)|<δ.

Thus for small enough δ, we have the following estimate for J :

J ≤ 2

(

1

2π

)
n
2
∫

Ω

∫

|z|≤r

∣

∣

∣a(x−z/k1/2)(1−e−ikR(x,x−z/k1/2))
∣

∣

∣

2

e−|z|2/2dzdx

+ 8M2

(

1

2π

)
n
2
∫

Ω

∫

|z|>r

e−|z|2/2dzdx

≤ 2

(

1

2π

)
n
2

M2µ(Ω)µ({z : |z|≤ r})(|1−cos(δ)|2 + |sin(δ)|2)+ǫ2/64

≤ ǫ2/32.

Putting all of these estimates together, we see that

||a−a∗
k||2L2,Ω≤ ǫ2/32+ǫ2/32

≤ ǫ2/16

and

||a−a∗
k||L2 = ||a−a∗

k||L2,D + ||a−a∗
k||L2,Dc

≤ ǫ/4+ ||a∗
k||L2,Dc

≤ ǫ/4+ ||a∗
k||L2 −||a∗

k||L2,D

≤ ǫ/4+ ||a||L2 −||a∗
k||L2,D

≤ ǫ/4+ ||a||L2,D−||a∗
k||L2,D

≤ ǫ/4+ ||a−a∗
k||L2,D

≤ ǫ/4+ǫ/4

≤ ǫ/2,

where we have used Lem. 2.3. Thus, for large enough k,
∣

∣

∣

∣

∣

∣

∣

∣

u(x)−
∫

Rn

v(x;y)dy

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ ǫ/2+ ||a(x)−a∗
k(x)||L2

≤ ǫ,

which proves the result.

3. Constant coefficient wave equation

In this section, we investigate Gaussian beam solutions to the constant-coefficient
wave equation,

¤u≡utt−△u=0 in R+×R
2,

u=f(x) for t=0, (3.1)

ut =g(x) for t=0.

This problem was chosen in particular because it is easily solved using a Fourier
transform. The solution of the initial value problem can be immediately written in
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terms of the Fourier transform in the space variables x of the initial data (η is the
dual variable):

uF =
1

2
F−1

{

F{f}
(

ei|η|t +e−i|η|t
)

+
F{g}
i|η|

(

ei|η|t−e−i|η|t
)

}

.

We will use the Fourier Transform solution to benchmark the Gaussian beam solutions.
The wave equation (3.1) is well-posed, and we have the following estimate for the

solution.

Theorem 3.1. Let u satisfy

utt−△u=F (t,x) in [0,T ]×R
n,

u=f(x) for t=0,

ut =g(x) for t=0,

with F , f and g compactly supported. Then

[

||∇u||2L2(Rn) + ||∂tu||2L2(Rn)

]
1
2 ≤

[

||f ||2H1(Rn) + ||g||2L2(Rn)

]
1
2

+T sup
t∈[0,T ]

||F (t,·)||L2(Rn)

for t∈ [0,T ].

Proof. This result can be obtained by differentiating the energy ||∇u||2L2(Rn) +

||ut||2L2(Rn) in t.

3.1. Gaussian beam solutions.

Phase and Amplitude Equations. Upon substituting the ansatz

u=eikφ

[

a+
1

k
b

]

(3.2)

into

utt−△u=0 (3.3)

and collecting powers of the large parameter, k, we obtain the following equations for
the phase and amplitudes:

k2 :(−φ2
t +φ2

x1
+φ2

x2
)a = 0,

k1 :2i(φtat−φx1
ax1

−φx2
ax2

)+ i(φtt−φx1x1
−φx2x2

)a+(−φ2
t +φ2

x1
+φ2

x2
)b = 0,

k0 :2i(φtbt−φx1
bx1

−φx2
bx2

)+ i(φtt−φx1x1
−φx2x2

)b+(att−ax1x1
−ax2x2

) = 0.

These equations simplify to:

2(φtφt−φx1
φx1

−φx2
φx2

)=0,

2(φtat−φx1
ax1

−φx2
ax2

)=−a¤φ, (3.4)

2(φtbt−φx1
bx1

−φx2
bx2

)= i¤a−b¤φ.

The first equation is called the eikonal equation, and the others are referred to as the
transport equations. In the spirit of the Gaussian beam construction (see Appendix
A.1 of [9], or Section 2.1 of [8]), we will not look for global solutions of these equations.



458 SUPERPOSITIONS AND HIGHER ORDER GAUSSIAN BEAMS

Instead, we will solve them on a single characteristic originating from a point y =
(y1,y2) on the initial data surface t=0. Thus, we will view these equations as ODEs
along the characteristic. In order to solve these ODEs for the phase, the amplitudes
and their derivatives, we need initial conditions. We can find the initial conditions
from the initial data for the PDE and the eikonal and transport equations, since they
hold for all x on t=0. With

u|t=0 =f =

[

A(x)+
1

k
B(x)

]

eikΦ(x),

ut|t=0 =g =[kC(x)+D(x)]eikΦ(x)

at t=0,

φ=Φ, φx =∇xΦ, φt =Φ±
t ≡±

√

|∇xΦ|,
a+ +a− =A, iΦ+

t a+ + iΦ−
t a− =C, a±

t = 2∇xΦ·∇xa±−a±
¤Φ

2Φ±

t

,
(3.5)

and so on. The “±” gives us two waves, one propagating in one direction and the
other propagating in the opposite direction. For the remainder of the paper, we will
assume that the initial data for the PDE is chosen to give one-way propagating waves
and we will drop the “±” notation, so

φ=Φ, φx =∇xΦ, φt =Φt ≡
√

|∇xΦ|,
a=A, at = 2∇xΦ·∇xA−A¤Φ

2Φt
,

(3.6)

and

ut|t=0 =g =

[

kΦt

(

A+
1

k
B

)

+At +
1

k
Bt

]

eikΦ(x).

Once the ODEs have been solved, we have the phase and amplitudes along with
their derivatives on the characteristic. We extend them away from the characteristic
through a Taylor expansion and a localizing cut-off function.

The accuracy of the Gaussian beam superposition solution depends on the accu-
racy of the individual beams. Two factors that control this accuracy are

• the number of terms in the Taylor expansions for the phase and amplitudes,

• the number of terms in the ansatz (1.1).
These two factors are not independent. As can be seen in the construction of Gaussian
beams, the Taylor coefficients of each one of the amplitudes in the ansatz (1.1) depends
on the coefficients of the previous amplitudes and the phase. In other words, we can’t
define arbitrarily many Taylor coefficients for the aj amplitude without a certain
number of the coefficients of the al amplitudes for l=0,... ,(j−1) and of the phase φ.
On the other hand, while we can define the Taylor coefficients of the phase without any
of the amplitude coefficients, taking many coefficients is unnecessary, since eventually
their overall effect on the accuracy of the Gaussian beam solution is smaller than that
of amplitudes that have been omitted by truncating the asymptotic expansion of the
ansatz (1.1) at N . We keep these two competing factors in mind when defining the
higher order Gaussian beams in the next several sections.

First Order Gaussian Beam Solution To obtain a Gaussian Beam solution, as a
bare minimum, we must take terms up to 2nd order for φ and up to 0th order for the
first amplitude function a in their respective Taylor expansions. We refer to this as a
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“first” order Gaussian beam. The equations for the characteristic (T ,X ) originating
from y at t=0 are

Ṫ = 2τ, T (0) = 0,

Ẋ = −2ξ, X (0) = y =(y1,y2),
τ̇ = 0, τ(0) = Φt(y),

ξ̇ = 0, ξ(0) = ∇yΦ(y),

(3.7)

where ˙ signifies differentiation with respect to the ray parameter s. Also, recall that
τ =φt and ξ =∇xφ.

Proceeding, we get an equation for φ,

φ̇ = 0, φ(0) = Φ(y), (3.8)

and its second derivatives,

φ̇αβ =−2φtαφtβ +2φx1αφx1β +2φx2αφx2β ,

where α and β stand for any one of t, x1 or x2. The initial conditions are

(φαβ)=





∗ ∗ ∗
∗ Φx1x1

+ i Φx1x2

∗ Φx1x2
Φx2x2

+ i



 ,

where the ∗’s are chosen so that

φαβ =φβα,

0= φ̇α =2φtφtα−2φx1
φx1α−2φx2

φx2α.

The +i term is added to give the initial data a Gaussian beam profile.
Note that the equations for the second derivatives of φ are nonlinear. One can

rewrite them as a nonlinear Ricatti matrix equation. Even though this matrix equa-
tion is also nonlinear, for the initial condition that we have chosen, there exists a
global solution. One shows this by rewriting the Ricatti equations in terms of two
linear matrix equations (see Appendix A.1 of [9], or Section 2.1 of [8]). Although one
can use these two linear equations to compute the second derivatives of φ, it is more
advantageous in simulations to integrate the nonlinear version of the equations, since
there are fewer equations and there is no need to invert a matrix.

Finally, we have the transport equation,

ȧ = −a¤φ, a(0) = A(y).

Second Order Gaussian Beam Solution. A “second” order Gaussian beam has
terms up to 3rd order for the phase and up to 1st order for the first amplitude a.
As before, we obtain equations for these quantities by differentiating the eikonal and
transport equations (again, α, β and γ can be any one of t, x1 or x2):

φ̇αβγ = −2φtγφtαβ +2φx1γφx1αβ +2φx2γφx2αβ

+∂γ (−2φtαφtβ +2φx1αφx1β +2φx2αφx2β) .

The initial conditions for these equations come from the relations given by the deriva-
tives of the eikonal equation on the initial surface t=0. One must remember to
include the +i imaginary part in the appropriate second derivatives. This imaginary
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part carries through in the initial conditions for the third and higher derivatives of
the phase.

The equations for the derivatives of the first amplitude are

ȧα =−2atφtα +2ax1
φx1α +2ax2

φx2α +∂α(−a¤φ).

The initial conditions are obtained from the relations given by the derivatives of the
first amplitude equation on t=0.

Third Order Gaussian Beam Solution. A “third” order Gaussian beam has
terms up to 4th order for the phase, up to 2nd order for the first amplitude a, and up
to 0th order for the second amplitude b. The equations are as follows (α, β, γ and δ
can be any one of t, x1 or x2):

φ̇αβγδ =−2φtδφtαβγ +2φx1δφx1αβγ +2φx2δφx2αβγ

+∂δ (−2φtγφtαβ +2φx1γφx1αβ +2φx2γφx2αβ)

+∂δγ (−2φtαφtβ +2φx1αφx1β +2φx2αφx2β) ,

ȧαβ =−2atαφtβ +2ax1αφx1β +2ax2αφx2β

+∂β (−2atφtα +2ax1
φx1α +2ax2

φx2α)

+∂αβ(−a¤φ),

ḃ= i¤a−b¤φ.

The initial conditions are obtained as in the case of second order Gaussian beams.
Superpositions. After the equations for the various phase and amplitude Taylor

coefficients have been solved, we know the characteristic path, (T (s;y),X (s;y)), that
originates from (0,y1,y2). Evaluating all of the Taylor coefficients and paths for s so
that T (s;y)= t, we can define the following Gaussian beams:

v1(t,x;y)=ρ(x−X )
[

TX
0 [a](x)

]

eikTX
2 [φ](x),

v2(t,x;y)=ρ(x−X )
[

TX
1 [a](x)

]

eikTX
3 [φ](x),

v3(t,x;y)=ρ(x−X )

[

TX
2 [a](x)+

1

k
TX

0 [b](x)

]

eikTX
4 [φ](x),

where TY
j [f ](z) is the jth order Taylor polynomial of f about Y evaluated at z, and ρ

is a cut-off function such that on its support the Taylor expansion of φ has a positive
imaginary part. We form the superpositions

uj(t,x)=
k

2π

∫

supp{f}

vj(t,x;y)dy (3.9)

for j =1,2,3. As the vj ’s are asymptotic solutions of the wave equation, so will be
their superpositions uj . All that remains to be checked is that these superpositions
accurately approximate the initial data. Evaluating at t=0, we find that

v1(0,x;y)=ρ(x−y)eikT y
2 [Φ](x)−k|x−y|2/2 (T y

0 [A](x)) ,

v2(0,x;y)=ρ(x−y)eikT y
3 [Φ](x)−k|x−y|2/2 (T y

1 [A](x)) ,

v3(0,x;y)=ρ(x−y)eikT y
4 [Φ](x)−k|x−y|2/2

(

T y
2 [A](x)+

1

k
T y

0 [B](x)

)

.
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Note that differentiating these expressions in x will either introduce a factor of k or
lower the order of the Taylor expansion for the amplitude by 1. Differentiating ρ yields
an expression which vanishes in a neighborhood of y, so this term is smaller than any
inverse power of k in the superposition as k→∞. Thus, by applying Theorem 2.1,
we have

||u1|t=0−f ||H1 ≤Ck−1/2+1,

||u2|t=0−f ||H1 ≤Ck−1+1,

||u3|t=0−f ||H1 ≤Ck−3/2+1.

We also need to look at the initial data for the time derivative of the solution. We
compute that

∂tv1(t,x;y)=
ds

dt

[

ikρ(x−X )TX
0 [a](x)

(

TX
2 [φ̇](x)−ẊjT

X
1 [φxj

](x)
)

−Ẋjρxj
(x−X )TX

0 [a](x)+ρ(x−X )TX
0 [ȧ](x)

]

eikTX
2 [φ](x).

Recognizing that

ds

dt

(

TX
j [ḟ ](x)−ẊlT

X
j−1[fxl

](x)
)

=TX
j−1[ft](x)+Ej ,

where Ej is a remainder term that is O(|x−X|j) and evaluating at t=0, we have

∂tv1(0,x;y)=
[

ikρ(x−y)T y
0 [A](x)T y

1 [Φt](x)+O(k|x−y|2 +1)
]

eikT y
2 [Φ](x)−k|x−y|2/2.

Similarly, we compute that

∂tv2(t,x;y)=
ds

dt

[

ikρ(x−X )TX
1 [a](x)

(

TX
3 [φ̇](x)−ẊjT

X
2 [φxj

](x)
)

+ρ(x−X )
(

TX
1 [ȧ](x)−ẊjT

X
0 [axj

](x)
)

−Ẋjρxj
(x−X )TX

1 [a](x)
]

eikTX
3 [φ](x)

and

∂tv3(t,x;y)=
ds

dt

[

ikρ(x−X )

(

TX
2 [a](x)+

1

k
TX

0 [b](x)

)

(

TX
4 [φ̇](x)−ẊjT

X
3 [φxj

](x)
)

+ρ(x−X )
(

TX
2 [ȧ](x)−ẊjT

X
1 [axj

](x)
)

+
1

k
ρ(x−X )TX

0 [ḃ](x)

−Ẋjρxj
(x−X )

(

TX
2 [a](x)+

1

k
TX

0 [b](x)

)]

eikTX
4 [φ](x).

Again, substituting and evaluating at t=0, we have

∂tv2(0,x;y)=
[

ikρ(x−y)T y
1 [A](x)T y

2 [Φt](x)+O(k|x−y|3)
+ρ(x−y)T y

0 [At](x)+O(|x−y|)
+O(|x−y|∞)]eikT y

3 [Φ](x)−k|x−y|2/2
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and

∂tv3(0,x;y)=

[

ikρ(x−y)

(

T y
2 [A](x)+

1

k
T y

0 [B](x)

)

(

T y
3 [Φt](x)+O(|x−y|4)

)

+ρ(x−y)T y
1 [At](x)+O(|x−y|2 +k−1)

+O(|x−y|∞)

]

eikT y
4 [Φ](x)−k|x−y|2/2.

Thus, by applying Theorem 2.1 and using the ideas of its proof, we have that

||∂tu1|t=0−g||L2 ≤Ck1/2,

||∂tu2|t=0−g||L2 ≤Ck0,

||∂tu3|t=0−g||L2 ≤Ck−1/2.

Finally, we look at Fj =¤uj in the L2(R2) norm. We have

||Fj(t,·)||2L2 =

∫

R2

∣

∣

∣

∣

∣

∫

supp{f}

¤ujdy

∣

∣

∣

∣

∣

2

dx

=

∫

R2

∣

∣

∣

∣

∣

∫

supp{f}

k

N−2
∑

l=−2

cj
l k

−leikφdy

∣

∣

∣

∣

∣

2

dx,

where N is the number of terms in asymptotic expansion (1.1), i.e., N =1 for 1st and
2nd order beams and N =2 for 3rd order beams. By the construction of Gaussian
beams, each cj

l vanishes to order j−2l−3 on the characteristic and is independent of

k, as these cj
l ’s were used to define the eikonal and transport equations (3.4).

Now, estimating this integral,

∫

R2

∣

∣

∣

∣

∣

∫

supp{f}

k
N−2
∑

l=−2

cj
l k

−leikφdy

∣

∣

∣

∣

∣

2

dx

≤µ(supp{f})
∫

supp{f}

∫

R2

∣

∣

∣

∣

∣

k

N−2
∑

l=−2

cj
l k

−l

∣

∣

∣

∣

∣

2

e−2kIm[φ]dxdy.

We estimate the contribution of each beam, as in Lem. 2.8 in [8], by introducing ray-
centered and k−1/2 rescaled coordinates, z. Note that on t∈ [0,T ], there is a positive
function α(y) such that kIm[φ]≥α(y)|z|2 and thus we have that

||Fj(t,·)||2L2

≤C

N−2
∑

l,s=−2

∫

supp{f}

∫

R2

k2−l−s
∣

∣

∣c
j
l (t,k

−1/2z,y)cj
s(t,k

−1/2z,y)
∣

∣

∣e−α(y)|z|2k−1dzdy.

As cj
l c

j
s vanishes to 2(j− l−s−3) on the characteristic,

kj−l−s−2
∣

∣

∣
cj
l (t,k

−1/2z,y)cj
s(t,k

−1/2z,y)
∣

∣

∣

is bounded as k→∞. Hence



NICOLAY M. TANUSHEV 463

||Fj(t,·)||2L2 ≤
∫

supp{f}

CT (y)k−j+3dy,

where CT (y) is a continuous function, since the Gaussian beams depend continuously
on y. Thus,

||Fj(t,·)||L2 ≤CT k
−j+3

2 ,

which immediately gives us

||F1(t,·)||L2 ≤CT k1,

||F2(t,·)||L2 ≤CT k1/2,

||F3(t,·)||L2 ≤CT k0.

We note that this estimate is not sharp. For example, in the case of no caustics, one
can improve this estimate by k−1. It seems that one can also improve this estimate
when caustics are present.

Putting all of these estimates together, we have the estimates

[

||∇(u1−u)||2L2 + ||∂t(ut−u1)||2L2

]
1
2 ≤CT (k1/2 +Tk1),

[

||∇(u2−u)||2L2 + ||∂t(ut−u2)||2L2

]
1
2 ≤CT (k0 +Tk1/2),

[

||∇(u3−u)||2L2 + ||∂t(ut−u3)||2L2

]
1
2 ≤CT (k−1/2 +Tk0).

It appears that the first three orders of Gaussian beam superpositions do not converge
as k→∞. However, there are two things that one must keep in mind. First, the
estimate on Fj is not sharp, and second, the energy in the initial data is on the order
of k. If one were to rescale this energy to be of order 1 and improve the estimate on
F by any small amount, all three superposition solutions will converge as k goes to
infinity.

3.2. Simple example of an initial value problem: traveling waves. We
choose the initial data for the PDE (3.1) to be

f =u|t=0 =eikΦ(x)

[

A(x)+
1

k
B(x)

]

,

where

Φ(x)=x5 +y5 +x3 +y3 +x+y,

A(x)=sin(x),

B(x)=0,

and

g =ut|t=0 =eikΦ

[

ikΦt

(

A+
1

k
B

)

+At +
1

k
Bt

]

,

where Φt, At and Bt are determined by the equations in Section 3.1 to give waves that
propagate in only one direction (i.e., with positive square root in Equation (3.5)). We
also fix the high frequency parameter k =200.
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Fig. 3.1. Initial data for the wave equation: Traveling Waves

Comparisons. The numerical calculations of the Fourier transform solution and
the Gaussian beam superpositions were carried out using a combination of Matlab
and C. The Fourier transform solution will be used as the “true” solution to find the
error in the wave field that is present in the Gaussian beam superpositions. For 2nd

and 3rd order beams, the required cut-off function ρ is obtained by mollifying the
characteristic function of the set where the quadratic imaginary part of the phase is
twice the rest of the imaginary part.

Figure 3.2 shows the absolute value of the difference between the Fourier transform
solution and the Gaussian beam superpositions along x2 =0 at t=0, while Figure
3.3 shows the same difference at t=0.2. The numerically computed norms of the
differences are given in Table 3.1. As suggested by Theorem 2.1, the approximation
of the initial data improves significantly with the addition of more terms in the Taylor
expansions.

Difference at t=0 Difference at t=0.2
L2-norm H1-norm L2-norm H1-norm

1st order 0.011102 3.4491 0.017991 6.5349
2nd order 0.0012565 0.39494 0.0029652 1.0969
3rd order 7.9522×10−6 0.0024564 0.00027218 0.098785

Table 3.1. Norm differences between the Fourier transform solution and the Gaussian beam
superpositions for the traveling waves example.
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Fig. 3.2. Differences between the Fourier transform solution and the Gaussian beam superposi-
tion solutions at t=0 for x2 =0 for the traveling waves example. Note that the scale for each graph
is different.

3.3. Initial value problem for an expanding ring of waves. We choose
the initial data for the PDE (3.1) to be

f =u|t=0 =eikΦ(x)

[

A(x)+
1

k
B(x)

]

,

where

Φ(x)=
1

2

(

1−
√

x2
1 +x2

2

)

,

A(x)=







exp
(

(10(|x|−1)2−1)−1 +1
)

for 10(|x|−1)2 <1,

0 otherwise,

B(x)=0,
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Fig. 3.3. Differences between the Fourier transform solution and the Gaussian beam superpo-
sition solutions at t=0.2 for x2 =0 for the traveling waves example.

and

g =ut|t=0 =eikΦ

[

ikΦt

(

A+
1

k
B

)

+At +
1

k
Bt

]

,

where Φt, At and Bt are determined by the equations in Section 3.1 to give an
expanding ring of waves. This amounts to taking the positive square root in Equation
(3.5). We also fix the high frequency parameter k =500.

Figure 3.5 shows a set of characteristics with |y|=1 for T =0 to 6 for the ex-
panding ring of waves example. Note that the characteristics are spreading apart
quickly.

Comparisons. The numerical calculations of the Fourier transform solution and
the Gaussian beam superpositions were carried out using a combination of Matlab
and C. The Fourier transform solution will be used as the “true” solution to find the
error in the wave field that is present in the Gaussian beam superpositions. For 2nd

and 3rd order beams, the required cut-off function ρ is obtained by mollifying the
characteristic function of the set where the quadratic imaginary part of the phase is
twice the rest of the imaginary part.
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Fig. 3.4. Initial data for the wave equation: ring of expanding waves.
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Fig. 3.5. A set of characteristics for the wave equation for an expanding ring of waves.

Figure 3.6 shows the absolute value of the difference between the Fourier transform
solution and the Gaussian beam superpositions along x2 =0 at t=0, while Figure 3.7
shows the same difference at t=2. Note that the places where the error is highest
correspond to the places where the amplitude has the largest gradient. This is in part
the reason that the improvement in approximation of the initial data isn’t as drastic
as in the previous example. The numerically computed norms of the differences are
given in Table 3.2.

Ray Divergence. As shown in Figure 3.5, for this particular initial data, the
rays diverge quickly as time increases. However, since the accuracy of the Gaussian
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Fig. 3.6. Differences between the Fourier transform solution and the Gaussian beam superpo-
sition solutions at t=0 for x2 =0 for the expanding ring of waves example. Note that the scale for
each graph is different.

Difference at t=0 Difference at t=2
L2-norm H1-norm L2-norm H1-norm

1st order 0.081451 19.7417 0.085706 20.3478
2nd order 0.062182 15.0985 0.064387 15.8550
3rd order 0.043014 10.4802 0.046284 11.7977

Table 3.2. Norm differences between the Fourier transform solution and the Gaussian beam
superpositions for the expanding ring of waves example.

beam superposition depends on how well the initial data is resolved and how accurate
the individual Gaussian beams are as solutions of the wave equation, the individual
Gaussian beams interfere in just the right way to maintain an accurate solution.
In other words, the Gaussian beams stretch in the direction in which the rays are
diverging to fill in regions of low ray density (see Figure 3.8). We can see the result
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Fig. 3.7. Differences between the Fourier transform solution and the Gaussian beam superpo-
sition solutions at t=2 for x2 =0 for the expanding ring of waves example.

of this in Figure 3.9. While the beam centers are fairly far apart, they still provide
an accurate solution.

Real part of a single Gaussian beam at t=6.5
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Fig. 3.8. Real part of a single 3rd order Gaussian beam at t=6.5 for the expanding ring of
waves example.
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3.4. Caustics. We consider an initial value problem for the constant coeffi-
cient wave Equation (3.1) that exemplifies the strength of Gaussian beam superposi-
tions. Let the initial data be given by

f(x)=e−100|x|2+ik(−x1+x2
2),

so that the initial phase and amplitude are

Φ(x)=−x1 +x2
2

and

A(x)=e−100|x|2 .

The initial data for the time derivative of u, g is taken to give waves that propagate
to the right. Since we are still working with the constant coefficient wave equation,
the characteristics are straight lines. However, the phase is chosen in such a way so
that the characteristics cross. Examining the initial data, we see that the equations
for the characteristics (3.7) give:

T =2s
√

1+4y2
2 ,

X1 =2s+y1,

X2 =−4y2s+y2.

The solution to the wave equation will exhibit a caustic where (s,y1,y2) cannot be
solved for in terms of (T ,X1,X2), in other words, in places where the determinant of
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the Jacobian matrix of the transformation,

∣

∣

∣

∣

∣

∣

∣







2
√

1+4y2
2 0 8sy2√

1+4y2
2

2 1 0
−4y2 0 1−4s







∣

∣

∣

∣

∣

∣

∣

=2
√

1+4y2
2(1−4s)− 8sy2

√

1+4y2
2

(−4y2)

vanishes. Setting this expression equal to 0, we get

0=2
√

1+4y2
2(1−4s)+

32sy2
2

√

1+4y2
2

,

0=(1+4y2
2)(1−4s)+16sy2

2 ,

0=1−4s+4y2
2 .

In space-time coordinates, (T ,X1,X2), this surface is given parametrically for p∈
[1/4,∞), q∈ (−∞,∞) by

T =4p3/2,

X1 =2p+q, (3.10)

X2 =±(4p−1)3/2.

Since this is not a smooth surface, the solution to the wave equation develops a cusp
caustic (see Figure 3.10).

The equations for the various Taylor coefficients that are needed to form Gaussian
beams of first, second and third order are the same as in the previous section. Their
superpositions are formed as before as well.

3.4.1. Numerical calculations in the presence of caustics. Since the
characteristics converge towards the x2 axis, the (x1,x2) support of the solution is
compressed in the x2 direction at the caustic and then it spreads apart once the rays
have passed through the caustic (see Figure 3.11). The time series shown in Figure
3.11 is for a solution of the wave equation generated using a superposition of third
order Gaussian beams. Note that since this solution is a superposition of Gaussian
beams, it provides an accurate solution before, at and after the cusp caustic (at time
t= .5). In fact, as can be seen from equations (3.10), after time t= .5 the solution is
continuously passing through a caustic.

For the numerical calculations, a superposition of third order Gaussian beams is
used to form the solution with k =104. The superposition integral (3.9) is discretized
using a 43 by 43 grid on [−.2,.2]× [−.2,.2], and the magnitude of the solution |u| is
evaluated on [−.2,1.2]× [−.2,.2] using 1401×401 grid points.

3.4.2. Order of magnitude of wave amplitude at cusp caustic. Maslov
theory predicts that the order of magnitude of the solution to the wave equation at
a cusp caustic is O(k1/4) as k→∞. For a discussion of the asymptotic behavior of
the solution, we refer the reader to [10], Chapter 6, and for a systematic classification
of several types of caustics to Chapter 7, Section 9, of [2]. To verify this behavior
numerically, we evaluate the Gaussian beam superposition at the tip of the caustic
for several values of the large frequency parameter k. The superposition integral (3.9)
is discretized on a parabolic grid centered about (0,0). That is, the grid points are
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Fig. 3.10. A set of rays that form a cusp caustic. The bold line shows the caustic set that is
enveloped by this particular set of rays, which are shown by the gray lines.

located on the family of curves y1 =y2
2 +c. For the discretization in the y2 direction,

the interval [−.2,.2] is discretized using an equispaced grid. The y1 direction is dis-
cretized using the same distance between grid points as in the y2 direction with 9
nodes. The exact numerical values used for the discretization are given in Table 3.3.
The parabolic grid is used to minimize the calculation time, and Gaussian beams that
don’t contribute to the solution magnitude are left out of the summation for the same
reason.

A comparison between the theoretical asymptotic behavior of the magnitude of
the solution and experimental results is shown is Figure 3.12. Note that the larger
difference at the lower frequencies does not necessarily mean that the Gaussian beam
superposition is providing an erroneous result. The Maslov prediction is an asymptotic
one, so it may not be valid at the lower frequencies.

4. Conclusion

We have shown that integral superpositions of Gaussian beams can be used to ap-
proximate the initial data for PDE. Thus, through the well-posedness of the PDE, the
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Fig. 3.11. Time series of a solution of the wave equation with localized waves passing through
a cusp caustic. Solution was computed using a superposition of third order Gaussian Beams.
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k y2 Nodes |u| k y2 Nodes |u|
1,000 13 3.2211 375,000 253 24.3562
1,250 15 3.5473 500,000 291 26.3072
2,500 21 4.7616 625,000 325 27.9141
3,750 27 5.6188 750,000 357 29.2916
5,000 31 6.2964 875,000 385 30.5038
6,250 33 6.8577 1,000,000 413 31.5905
7,500 37 7.3406 1,250,000 461 33.4858
8,750 39 7.7667 2,500,000 651 40.0677
10,000 43 8.1484 3,750,000 797 44.4634
12,500 47 8.8135 5,000,000 921 47.8569
25,000 65 11.1066 6,250,000 1,029 50.6588
37,500 81 12.6194 7,500,000 1,127 53.0648
50,000 93 13.7773 8,750,000 1,217 55.1849
62,500 103 14.7272 10,000,000 1,301 57.0876
75,000 113 15.5388 12,500,000 1,455 60.4102
87,500 123 16.2510 25,000,000 2,057 71.9804
100,000 131 16.8882 37,500,000 2,519 79.7282
125,000 147 17.9965 50,000,000 2,907 85.7177
250,000 207 21.8198

Table 3.3. Details of the discretization used to obtain the magnitude of the wave equation
solution at a cusp caustic.

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2 Magnitude at Cusp Caustic

k

 

 

|u|

1.02k1/4

Fig. 3.12. Comparison of the solution magnitude at a cusp caustic with Maslov theory pre-
diction. Maslov theory predicts that |u|=O(k1/4). This behavior is present in the Gaussian beam
superposition solution.
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integral superposition gives an approximate solution. In particular, we have proved
a well-posedness estimate for the wave equation and used a Gaussian beam superpo-
sition to approximate the solution to the 2-D wave equation for an expanding ring
of waves. The Gaussian beams in this particular case stretch to fill in the gaps that
result due to the divergence in the rays. In traditional geometric optics methods, one
would need to insert more rays to resolve the wave field in such places. Since this is
not necessary in the presented method, this example shows the power of the Gaussian
beam method.

Another advantage of the Gaussian beam method is that the obtained solution is
global. This means that even in the presence of caustics the Gaussian beam solution
is valid, before, after and at the caustic region. As an example, we have computed the
order of magnitude of the solution at a cusp caustic as a function of the high frequency
parameter and compared it to the asymptotic behavior predicted by Maslov theory.
While in geometric optics methods the solution can be extended past caustics by using
a phase correction, a computation of the solution at a caustic is not possible. The
identification of caustics and their corrections are non-trivial in standard geometric
optics. Using Gaussian beams, one can easily compute the global wave field.
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[1] V. Červený, M. Popov and I. Pšenč́ık, Computation of wave fields in inhomogeneous media —
Gaussian beam approach, Geophys. J. R. Astr. Soc., 70, 109–128, 1982.

[2] V. Guillemin and S. Sternberg, Geometric Asymptotics, Mathematical Survey and Monographs,
American Mathematical Society, 14, 1977.

[3] N.R. Hill, Prestack Gaussian-beam depth migration, Geophysics, 66, 1240–1250, 2001.
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