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Superquadrics for Segmenting and
Modeling Range Data
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Abstract —We present a novel approach to reliable and efficient
recovery of part-descriptions in terms of superquadric models from
range data. We show that superquadrics can directly be recovered
from unsegmented data, thus avoiding any presegmentation steps
(e.g., in terms of surfaces). The approach is based on the recover-and-
select paradigm [10]. We present several experiments on real and
synthetic range images, where we demonstrate the stability of the
results with respect to viewpoint and noise.

Index Terms —Range image segmentation, recover-and-select
paradigm, recovery of volumetric models, superquadrics.

————————   ✦   ————————

1 INTRODUCTION AND MOTIVATION

THE significance of detecting geometric structures in images has
long been realized in the vision community. One of the primary
intentions has been to build primitives that would bridge the gap
between low-level features and high-level symbolic structures
useful for further processing. Perceptually, the world can be bro-
ken down into parts, and the goal of computer vision is to recover
from images this part structure (segmentation) and the metric
properties of individual parts (shape recovery).

Two types of volumetric models have emerged for such part-
level modeling: generalized cylinders [2], [13], [15] and super-
quadrics [1], [16], [20]. Superquadric models have received signifi-
cant attention in the vision and robotics community because of
their compact representation and robust methods of recovery of
individual models.

The motivation for this work is that volumetric part models
have been successfully used mostly for shape recovery of individ-
ual parts but not for segmentation of images into parts. This is due
to the difficulty of simultaneous classification of image elements
(grouping) and of model parameter estimation which has been a
major obstacle to successful applications that require reliable ex-
traction of volumetric models from the data. For example, rigorous
schemes for recovery of volumetric models have been developed,
but most of them make the assumption that the segmentation
problem has been solved by some other means [20], [19], [21],
which obscures the real complexity of the task.

There have been several attempts to segment and recover
volumetric models from the data [17], [18], [6], [7]. These ap-
proaches usually involve various procedures, mostly applied in a
hierarchical fashion, ranging from the estimation of local surface
properties, curvature, etc., to more complex, such as symmetry
seeking, in order to partition the data into parts that can suppos-
edly be represented with a single volumetric model. Such ap-
proaches, in fact, isolate segmentation stage from the representa-
tion stage and significant efforts are necessary to combine, usually
surface type descriptions into volumetric models. The ability to
even identify a set of surfaces as belonging to a common volume is

not a trivial task without knowing at least connectedness of sur-
faces, and preferably surface closure. Moreover, a surface-level
description may not be consistent with the volumetric description.
Fig. 1 shows an example of an L-shaped object whose volumetric
description cannot be obtained by a simple combination of recov-
ered surfaces. Specifically, planar patches of the surface-level de-
scription in Fig. 1c cannot be partitioned in a simple way to corre-
spond to volumetric parts in Fig. 1d, since a single surface patch
No. 3 in Fig. 1c belongs to two different volumetric models (see
Fig. 1d).

                              (a)                                            (b)

                              (c)                                           (d)

Fig. 1. (a) Intensity image, (b) range image, (c) planar patches of the
surface-level description, (d) volumetric models.

In this paper, we demonstrate that a specific set of volumetric
models, i.e., superquadrics can be directly recovered from range
data, which is in contrast to common beliefs that the recovery of
volumetric models is possible only after the data has been pre-
segmented using extensive preprocessing. To achieve this goal, we
have cast the problem of volumetric recovery [20] in the recover-
and-select paradigm for the recovery of geometric parametric mod-
els from image data [10]. We have been motivated for this new
application of the recover-and-select paradigm by the encouraging
results that the paradigm achieved on a variety of domains: seg-
mentation and recovery of surface models in range data [12] and
curve models [11] in intensity images.

The paper is organized as follows: In Section 2, we shortly
describe the geometric volumetric primitives, namely superquad-
rics. A brief outline of the recover-and-select paradigm is given in
Section 3. In Section 4, we describe specific details that pertain to
the recovery of superquadric models. Some of our experimental
results are shown in Section 5. In conclusion, we summarize our
paradigm and outline the work in progress.

2 SUPERQUADRIC MODELS

The criteria for the selection of geometric primitives have been
studied extensively by vision researchers (see [3] and the refer-
ences therein). These criteria not only constrain the choice of the
primitives, but impose certain conditions on the model-recovery
procedure as well. However, all model-based approaches are
restricted, since they cannot model everything possibly present in
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the input data. But what is important, is that the method signals,
through the error-of-fit measure, when the models are inadequate to
describe the data, so that a different type of model can be invoked.

Superquadrics, which are an extension of basic quadric surfaces
and solids, satisfy most of the criteria. They have been considered
as volumetric primitives for shape representation in computer
graphics [1] and computer vision1 [16], [20], [21], [14], [6]. The rea-
son being that they are convenient part-level models that can fur-
ther be deformed and glued together to model articulated objects.

A superquadric surface is defined by the following implicit
equation
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where a1, a2, a3 define the superquadric size, and e1 and e2 define a
smoothly changing family of shapes from rounded to square.

To recover a superquadric in a general position, the implicit
function for general position is used as a base for computing the
distance of a point from the superquadric

F(x, y, z; /) = F(x, y, z; a1, a2, a3, e1, e2, I, T, \, px, py, pz),          (2)

where I, T, \ define the orientation in space, and px, py, pz define
the position in space. We refer to the set of all-model parameters
as�/ = {a1, a2, �, a11}. Since, due to self occlusion, not all sides of an
object are visible at the same time, an additional constraint is intro-
duced which imposes the smallest superquadric that fits the given N
range points in the least squares sense, leading to the equation
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where r0 is the vector from the center of the superquadric to the
closest point on the surface of the superquadric.

The estimation of model parameters / which involves nonlin-
ear optimization is described in detail in [20].

3 RECOVER-AND-SELECT PARADIGM

Here we present briefly the concept of the recover-and-select
paradigm. For details the reader is referred to [10], [12]. The work
that is similar in the aspect of using multiple models and the MDL
principle appeared in [5].

On a very general level, one can describe the recover-and-select
paradigm as an attempt to solve the following two problems related
to the recovery of parametric models from unsegmented data:

1) How do we find image elements that belong to a single
parametric model and, simultaneously, determine the values
of the parameters of the model?

2) How do we achieve a high degree of resistance to outliers?

With respect to the traditional region growing methods, it also
attacks the following two problems:

1) How do we find an initial set of data points (a seed) that
belongs to a single parametric model taking into account a
high degree of noise present in real images?

2) How do we prevent erroneous initial (or intermediate) re-
sults to influence (hamper) the development of recovery of
other models?

1. Although the term superquadrics is usually used, the models are,
in most cases, restricted to superellipsoids only.

The recover-and-select paradigm consists of two intertwined
stages: model-recovery and model-selection. At the model-
recovery stage, a search for parametric models is initiated in
regularly placed seeds in an image, and the individual models are
allowed to grow which involves an iterative procedure simultane-
ously combining data classification and parameter estimation. The
main advantage of this classify-and-fit approach is that the per-
formance of the fitting is constantly monitored, i.e., the procedure
dynamically analyzes data consistency allowing the rejection of
outliers. The idea to independently build all models (as initialized by
the statistically consistent seeds) is a crucial one: Due to uncertain
initial estimates, any interaction between the partially recovered
models would propagate the erroneous estimates through the entire
procedure resulting in an overall faulty output.2 The recovered
models, which are treated only as hypotheses that could compose
the final description, are then passed to the model-selection proce-
dure. The selection procedure, defined on the MDL principle
(minimum description length principle), leads to a quadratic Boo-
lean problem, whose solution is sought with the WTA (winner-
takes-all) technique [4]. It selects those models which produce the
simplest description, i.e., the one that describes the data with the
minimum number of models while keeping the deviations be-
tween data points and models low.

In order to achieve a computationally efficient procedure, the
model-recovery and model-selection procedures are combined in
an iterative way. The recovery of currently active models is inter-
rupted by the model-selection procedure which selects a set of
currently optimal models which are then passed back to the
model-recovery procedure. This process is repeated until the re-
maining models are completely recovered.

The choice of specific models, in our case, superquadrics, im-
poses certain constraints on the recovery of these structures from
images, which will be described next.

4 SUPERQUADRICS IN RECOVER-AND-SELECT
PARADIGM

The overall processing scheme is given in Fig. 2. Procedures for seed
selection, superquadric fitting, decision making regarding the growth
of superquadric models, search for new compatible points (growing),
and model selection are given in the following subsections.

4.1 Seed Selection
Initial seeds are placed on the image in the grid-like pattern of
windows. An initial seed encompasses a set of range data points Ri
in a small window whose size is determined on the basis of scale
and can be adaptively changed depending on the task. A super-
quadric model Mi is fitted to the data set. Next, a decision is made
whether all the data points Ri belong to that single model Mi. This
decision is based on the average error-of-fit measure
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which is compared to a threshold value max_average_model_error
(see Section 4.3 on decision making). The decision is not critical due to
the redundant nature of the paradigm. It just eliminates those seeds
that were placed on data sets that cross part boundaries or contain
outliers, and, thus, helps reduce the number of seeds at the start of
processing.

4.2 Superquadric Fitting
The fitting function (3) can be regarded as an energy function on
the space of model parameters. Minimization method can, in gen-
eral, only guarantee convergence to a local minimum. The starting

2. In addition, the conception of the independent recovery of models
offers a possibility for a fully parallelized system.
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position in the parameter space (/E) determines to which mini-
mum will the minimization procedure converge. Initial values for
both shape parameters, e1 and e2 are set to 1.0, which means that
the initial model /E is always an ellipsoid. Position in world coor-
dinates is estimated by computing the center of gravity of all range
points, and the orientation is estimated by computing the central
moments with respect to the center of gravity. The z axis of initial
model /E is oriented along the longest side (axis of least inertia) of
the object.

To prevent sudden changes in superquadric orientation due to
selection of direction of the z axis for the initial estimate, we use
parameters of model Mi recovered from data set Ri as an initial

estimate for the model that is to be fitted to the data set Ri < Ni.
On the other hand, such a procedure might force the parameters
of the growing model to stay around the local minimum of the
initial model recovered from the seed points. To prevent this, we
also recover a model from Ri < Ni using the initial estimate of
superquadrics parameters as described above. We then use the
model with the smaller error-of-fit as a final result for the model
recovery.

4.3 Decision Making
A decision whether a model should grow further or not depends
on the established similarity between the model and the data. If
sufficient similarity is established, ultimately depending on the
task at hand, we accept the currently estimated parameters to-
gether with the current dataset and proceed with the search for a
set of compatible points Ni. The question is what could be used as
an average error-of-fit measure. Due to its dependence on the su-
perquadric size and shape parameters (a1, a2, a3, e1, e2) the alge-
braic distance (inside-outside function—(1)) is not suitable. Instead
we use radial Euclidean distance metric [22]

d(x, /) = |x||1 � F
�
e1
2  (x, /) |,                          (6)

where F is given in (1). The sum of distances over all data points
belonging to the model determines the total error-of-fit [i of the
entire model. This measure is passed to the selection procedure
together with the set Ri of data points encompassed by the model.

4.4 Search for New Compatible Points
In accordance with the paradigm, an efficient search for more
compatible points is performed in the vicinity of the present bor-
der points of the region corresponding to a particular model. The
border points are determined on eight-connectedness, and then
their distance to the corresponding model is evaluated. Only those
points x that are close enough to the original model (d(x, /) <
max_point_distance) are included in the updated set of points. On
this new set of points a new superquadric model-recovery proce-
dure is started.

4.5 Model Selection
As described in the general outline of the method, the model re-
covery procedure is interrupted by model selection to eliminate
superfluous models. An important decision is when to perform the
selection. We choose to interrupt the recovery procedure after
every n growing operations, and we name the sequence of grow-
ing operations between two consecutive interruptions a growth
iteration. n is set to half the seed size in pixels at the beginning, and
then incremented to 2n after every selection. For example, if seeds
are squares of 4 ��4 pixels, the first growth iteration consists of two
growing operations, which produces regions of size at most 8 � 8
pixels, after the first selection, the second growth iteration con-
sists of four growing operations, leading to regions of size at most
16 � 16 pixels, etc. Since the initial seed regions are placed in a
grid-like manner, such a procedure ensures sufficient overlap of
the models, so that the number of models is reduced during the
selection while it is still not too computationally expensive to let
the models grow to such a size.

The objective function F(m), which is to be maximized in order
to produce the “best” description in terms of models, has the fol-
lowing form:
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where mT = [m1, m2, �, mN]. mi is a presence variable having the
value one for the presence and zero for the absence of the model

input: a range image
determine a set of seeds (initial sets Ri)
for all seeds do

 fit an SQ model Mi to Ri (estimate parameters)
 if ([ i  < max_average_model_error)

 put the SQ model into the set of currently active, not
 fully grown models

 else
 the seed is rejected

 endif
end for
steps ��length of the square-shaped seed region in

pixels / 2
while there are any active, not fully grown SQ models do

 for i = 1 to steps
 for all active not fully grown SQ models do

 extrapolate/find a set of compatible points Ni

 Ni = {x: d(x, Mi) < max_point_distance and x ±  Ri

and x is 8-connected to Ri}
 if no new compatible points Ni = ¨

 the SQ model is fully grown
 else

 Rtemp � Ri < Ni

 fit an SQ model Minitial to data set Rtemp using
 initial estimate of parameters based on center
 of gravity and central moments
 fit an SQ model Mprevious to data set Rtemp using
 parameters of Mi as an initial estimate
 set Mtemp to one of the models Minitial, Mprevious

 that has the minimal error-of-fit
 if [ temp  < max_average_model_error)

 Ri � Rtemp

 Mi � Mtemp

 else
 the SQ model Mi is fully grown

 end if
 end if

 end for
 end for
 perform selection among all active SQ models for the
 current optimal description

 (only the selected SQ models remain active)
 steps � 2 * steps

end do
output: part-level (SQ) description of a range image

Fig. 2. Superquadric recovery in the Recover-and-Select paradigm.
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Mi in the final description. The diagonal terms of the matrix Q
express the cost-benefit value of a particular model Mi,

cii = K1|Ri| � K2[i �� K3|Pi|.                              (8)

K1, K2, K3 are weights which can be determined on a purely infor-
mation-theoretical basis (in terms of bits), or they can be adjusted
in order to take into account the signal-to-noise ratio [12]. The |Ri|
is the number of points in region Ri, [i the total error-of-fit measure,
and |Pi| the number of model parameters, which is equal to 11, and
constant, since we use just one type of models. The off-diagonal
terms handle the interaction between the overlapping models
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|Ri > Rj| is the number of points that are explained by both mod-
els. [ij corrects the diagonal error terms in case both models are
selected
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The error terms d(x, Mi) and d(x, Mj) are calculated in the area of
intersection and correspond to deviations from the ith and jth
models, respectively. For details the reader is referred to [10], [12].
In Appendix A we propose a fast greedy algorithm to solve the
Quadratic Boolean Problem.

5 EXPERIMENTAL DETAILS AND RESULTS

The method has been tested on a variety of real and synthetic
range images. Fig. 3 shows a sequence of growing and selection
phases on a real-range image. Individual images in the sequence
are marked with a letter as follows:

a) input-range image,
b) initial seeds,
c) models after the first growth iteration,
d) remaining models after the first selection,
e) models after the second growth iteration,
f) remaining models after the second selection,
g) models after the third and final growth iteration,
h) remaining models after the third and final selection.

To reduce the computational burden, mostly dictated by the nu-
merical minimization during recovery of superquadrics, the im-
ages were subsampled at factor four. The initial size of the seeds
was 16 � 16 pixels, that is 4 � 4 pixels after the subsampling. The
thresholds in the model-recovery procedure were determined on
the basis of the analysis of the noise properties of the acquisition
process and on the selected subsampling and were kept constant
during the segmentation. The actual values used were:

max_point_distance = 6.0

max_average_model_error = 2.0

K1 = 1.0, K2 = 0.25, K3 = 0.5

To prevent numerical degeneracies in minimization of the super-
quadric fitting function for subsets of points from planar regions,
parameters a1, a2, a3 were limited from below at 1.0 during the
minimization by a projection method. In most cases, 15 iterations
of Levenberg-Marquardt method were sufficient for convergence.
On the average, it took less than 10 minutes to obtain the final
results on HP 715/100 workstation running HP-UX or on Intel
Pentium 133 MHz running Linux. However, processing time is not
critical, since individual models could be recovered in parallel.
Besides, the computation of the superquadric fitting function and
its derivatives is independent for each range point and can also be
parallelized in a straightforward way.

Figs. 4a, c, and e demonstrate the inherent limitation on preci-
sion of the basic recover-and-select segmentation paradigm. Points

from parts that touch or penetrate the part, which is being recov-
ered, are sufficiently close to the recovered model to get included
into the dataset, since the points do not cause the average error-of-
fit of the new model to increase over the threshold. This effect of
misclassifying data points influences the recovered model, which
may, in turn, accumulate even more data points belonging to other
parts. To improve segmentation results we applied a simple post-
processing method. For each recovered model Mi, we constructed

                          (a)                                                  (b)

                           (c)                                                  (d)

                          (e)                                                  (f)

                          (g)                                                  (h)

Fig. 3. A typical sequence of growing and selection phases of the seg-
mentation algorithm.
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they were eight-connected to the region corresponding to the clos-
est model. From this set of regions a new set of models was recov-
ered and this procedure of assigning data points to the closest model
and subsequent model recovery was repeated until there were no
points left that could be assigned to a model. As the Figs. 4b, d,
and f show, the postprocessing results in better segmentation and
consequently in models with smaller average error. For further
details on the rationale behind the postprocessing method and
experimental evidence on the effect of postprocessing on error
distributions of individual parts, see [9].

To test the stability of segmentation with respect to different
views of the same object, we generated a set of synthetic range
images. Figs. 5a, b, c, d show the recovered models. The number of
recovered models is stable with respect to changing viewpoint.
Instead of a direct numerical comparison of superquadric pa-
rameters and parameters for position and orientation of super-
quadrics, which is not trivial, since the mapping from superquad-
ric size and shape parameters to shapes is not one-to-one, we

chose a simple application as a test of the stability of the recovered
representations. From the recovered superquadrics, we compute
an estimate of rigid transformation between two range images
based on centers of gravity and moments of inertia of the recov-
ered compositions of superquadrics in each range image. The
computation of volume and moments of inertia of individual su-
perquadrics is straightforward with closed-form expressions de-
rived in [9]. The results presented in Figs. 6a and b show that the
recovered descriptions are sufficiently stable for pose estimation,
despite the fact that completely different sides of objects are visible
in the corresponding images. The recovered transformation is in
good accordance with known ground truth and, as expected, su-
perior in precision in comparison to the same method applied to
raw range data [9].

                          (a)                                                  (b)

Fig. 6. Recovery of a rigid transformation based on volumetric models:
(a) The recovered model from image in Fig. 5a overlaid on the image in
Fig. 5b using recovered rigid transformation from the corresponding
representations. (b) The recovered model from Fig. 5b overlaid on the
image in Fig. 5d.

The procedure is robust with respect to noise (outliers) as dem-
onstrated in Fig. 7. A slightly rotated set of range image data
points in Fig. 7a clearly shows outlier-points produced by the

                          (a)                                                  (b)

   
                         (c)                                                  (d)

   
                          (e)                                                  (f)

Fig. 4. Segmentation results before postprocessing (a), (c), (e) and
after postprocessing (b), (d), (f).

                          (a)                                                  (b)

                          (c)                                                  (d)

Fig. 5. Segmentation of different range images of the same object (a),
(b), (c), (d).



1294 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  11,  NOVEMBER  1997

range scanner at depth discontinuities. The outliers are not in-
cluded in the regions produced during the segmentation, as
shown in Fig. 7b.

During the course of experimentation, we observed that the
method degrades gracefully if the assumptions which are made by
the choice of primitives are not met, i.e., when the data cannot be
globally modeled by superquadrics. For example, a geometric
object, like a croissant in Fig. 8, is described by numerous super-
quadric models with average error-of-fit close to the
max_average_model_error, which do not result in a simple descrip-
tion, indicating that different kinds of models should be invoked.
On the other hand, the range image of a human-like model is rela-
tively well represented.

Experiments were performed within an object-oriented frame-
work for image segmentation called Segmentor [8]. The frame-
work provides the necessary tools for application of the recover-
and-select segmentation paradigm to specific images and models.
It is written in C++ and can be obtained in source code from
http://razor.fri.uni-lj.si/~alesj.

6 CONCLUSIONS

We have successfully combined the two existing methods, namely
recovery of superquadric models [20] and the recover-and-select
paradigm [10]. Thus, we showed that a direct segmentation into
part-level volumetric models is possible.

The idea to initiate a redundant set of models in the image not
only enables us to cope with inherently unreliable initial estimates,
but it also makes possible to successfully deal with nonlinear pa-
rameter estimation procedures where the convergence to a unique
solution is not guaranteed. Starting to develop a redundant set of
models from multiple seeds means potentially different initial
estimates from which the solution is sought. The sensitivity of the
method to the models that get stuck in local minima is thus reduced,
since such models get rejected during the model-selection procedure
if there are other models that better describe the same data.

We also plan to explore the possibility to use the proposed
method for simultaneous recovery of multiple geometric modali-
ties (surfaces and volumes) in different image modalities (range
and intensity images). The final description of a scene would then
result from a selection procedure employing the MDL principle.

APPENDIX A
FAST GREEDY ALGORITHM

To simplify the description and analysis of the fast greedy algo-
rithm, we will use alternative notation f(S) for the objective func-
tion F(m) in (7)

F(m) = f(S) = cij
j Si S °°

ÇÇ �              S = {i; mi = 1}.            (11)

Although the set S contains natural numbers as elements, we will
refer to the elements as models, having in mind a natural bijection
between the indices and the models.

The greedy algorithm starts with an empty set of selected mod-
els S and a set of candidates C that contains all the models. At each
iteration of the selection procedure a single model y from the set of
candidates C is selected such that it maximizes the f(S < {x}) over
all elements x of the set C

f(S < {y}) = max
x C°

 f(S < {x})                           (12)

and that the quality of the overall description increases by includ-
ing the model y in the set S

f(S < {y}) > f(S).                                      (13)

The set S is then replaced with S < {y} and the set C with the set
C\{y}. The iteration proceeds until there is no model in set C satis-
fying conditions (12) and (13) or the set C is empty.

To find a model x ° C satisfying conditions (12) and (13), or to
find out that there is no such model, it is sufficient to calculate the
change of f(S) if the model x is included into the set of models S

'f(S, x) = f(S < {x}) � f(S)

                                             = cxx + c cxi ix
i S

�

°

Ç 1 6

                                             = cxx + 2 cix
i S°
Ç . (14)

The change can be calculated in O(|S|) time, which leads to O(N3)
worst case time complexity for the algorithm. Further reduction
of the time complexity to calculate 'f(S, x) can be achieved by ob-
serving that the set S is built incrementally and so can be 'f(S, x).
Suppose that the value of 'f(S, x) is known and that we would like
to know its relationship to 'f(S < {y}, x). From the definition it
follows:

                           (a)                                                  (b)

Fig. 7. The constant monitoring of error-of-fit measure and individual
point distance from the current model during growing phases in the
segmentation procedure filters out outliers. (a) Raw range image data.
(b) Data from the final regions.

                       (a)                                                         (b)

                       (c)                                                         (d)

Fig. 8. Segmentation of objects that cannot be perfectly modeled by
superquadrics.
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'f(S < {y}, x) = cxx + 2 cix
i S y° ª

Ç
; @

                                                  = cxx + 2 c cix xy
i S

�

°

Ç 2

                                                  = 'f(S, x) + 2cxy.
(15)

Thus, the 'f(S < {y}, x) can be calculated in constant time assuming
that the 'f(S, x) is known.

At the beginning of iteration, the set S is empty so the 'f(¨, x)
= cxx. After the set C is examined and an element y is found, the set
C is replaced by C\{y} and the 'f(S, x) values in the array are in-
cremented by corresponding 2cxy terms. Alternatively, the diago-
nal elements of matrix Q can be incremented by 2cxy and the ma-
trix dimension reduced by one. We can also interpret the algo-
rithm’s incremental calculation of 'f(S, x) as a reduction of the
problem of size N in time 2N � 1, that is spent during the search
for model y and to update the 'f(S, x) values, to the problem of
size N ��1. This leads to a nonhomogenuous recurrence equation
for worst-case time complexity

T(N) = 2N ��1 � T(N ��1),                             (16)

with solution in O(N2).
It is readily apparent from the algorithm that the elements cij of

matrix Q can be calculated on a need basis, leading to substantial
computational time savings when the number of finally selected
models is much lower than N, since we do not have to construct
the whole matrix Q of size N2.

set function incremental_greedy(matrix Q)
// input: symmetric matrix Q of dimensions N � N 
// with elements cij

// output: set S of selected models, variable f contains 
// f(S) on return
S � ¨
C � {i; 1 � i � N}
f � 0
while C is not empty

 find y ° C such that c cyy x C xx 
°

max
 if (cyy > 0)

 S � S < {y}
 C � C \ {y}
 f � f + cyy

 for x ° C
 cxx � cxx + 2 cxy

 else
 return S

end
return S

Fig. 9. Fast greedy algorithm of worst case time complexity O(N
2
)
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