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In the presence of massive bosonic degrees of freedom, rotational superradiance can trigger an
instability that spins down black holes. This leads to peculiar gravitational-wave signatures and
distribution in the spin-mass plane, which in turn can impose stringent constraints on ultralight
fields. Here, we demonstrate that there is an analogous spindown effect for conducting stars. We
show that rotating stars amplify low frequency electromagnetic waves, and that this effect is largest
when the time scale for conduction within the star is of the order of a light crossing time. This
has interesting consequences for dark photons, as massive dark photons would cause stars to spin
down due to superradiant instabilities. The time scale of the spindown depends on the mass of
the dark photon, and on the rotation rate, compactness, and conductivity of the star. Existing
measurements of the spindown rate of pulsars place direct constraints on models of dark sectors.
Our analysis suggests that dark photons of mass mV ∼ 10−12 eV are excluded by pulsar-timing
observations. These constraints also exclude superradiant instabilities triggered by dark photons as
an explanation for the spin limit of observed pulsars.

I. INTRODUCTION

The nature of dark matter is one of the biggest open
questions in physics. Broadly speaking, there are two
approaches to explain the gravitational anomalies that
indicate the existence of dark matter. The first is to
change the way that gravity works on large scales while
preserving the short-distance behavior, e.g. MOND [1].
However, theories of modified gravity still require the ad-
dition of a dark matter particle to explain large scale
structure [2, 3]. The second approach postulates that
the gravitational anomalies are due to dark matter. The
most popular of these explanations advocates the exis-
tence of new degrees of freedom beyond the Standard
Model (SM) that form a dark sector.

A. Ultralight bosonic fields

Some popular candidates for dark sector matter are ul-
tralight bosonic fields. Indeed, bosonic fields are a generic
feature of many theories [4, 5]. A well-motivated scalar
candidate is the QCD axion, a light bosonic degree of
freedom introduced in physics to explain the smallness
of the neutron electric dipole moment, years before the
dark matter problem was fully appreciated [6–8]. In ad-
dition, a plethora of new light scalars was predicted to
arise in the String Axiverse [4], making them important
potential dark matter candidates.

Vector candidates are equally well-motivated. Addi-
tional U(1) gauge sectors arise in many string-motivated
extensions to the SM [5, 9, 10]. In these scenarios, there
can be extra degrees of freedom which are charged under
both the U(1) hypercharge of the SM and a “hidden”
U(1)′, known as dark photons. This has motivated the
study of kinetic mixing of the hidden sector with the SM.

Many of these searches have been focused on eV-GeV
scales using direct detection and low-energy accelerator
experiments (see e.g. [11] for a summary of current ef-
forts).

B. Superradiant instabilities and ultralight fields

However, ultralight (i.e., sub-eV) fields which are
weakly coupled to SM particles are difficult to probe with
traditional colliding beam, fixed-target, and direct de-
tection experiments. Instead, one can search for their
imprints through their gravitational effects. A promis-
ing mechanism to probe bosonic fields is rotational su-
perradiance [12–15]. Superradiance affects all known
free, bosonic fields and has been well-studied for black
holes. In this context, low-frequency wavepackets of
bosonic fields are amplified upon scattering off rotating
black holes, when the frequency of the field wave satis-
fies ω < mΩ, where m is the azimuthal number and Ω is
the angular velocity at the event horizon [15]. When the
bosonic field is massive, the effects of superradiance turn
the entire system unstable [16–23], and the instability
gives rise to a slowly-spinning black hole surrounded by
a cloud of bosonic field [cf. Ref. [15] for an overview]. This
cloud has a time-dependent quadrupole moment, and
slowly dissipates through gravitational waves producing
a monochromatic signal, which is a promising channel
and smoking gun for new physics [24–27]. Furthermore,
because superradiance drives the spin down, observations
(either in the electromagnetic or gravitational-wave spec-
trum) of the spin-mass diagram of black holes may also
bring convincing evidence for new physics [28]. Finally,
it is also possible that superradiant effects are directly
observable through enhanced scattering of electromag-
netic or gravitational waves [29, 30], or even through in-
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stabilities triggered in interstellar plasma environments
surrounding black holes [31, 32].

C. Superradiance in stars

However, superradiant effects are not limited to rotat-
ing black holes and in fact can appear in any classical sys-
tem that is able to absorb radiation [12, 14, 15, 22, 33, 34].
In this work, we show that superradiance also occurs
in the presence of rotating and conducting spheres, and
most notably in (rotating) stars with nonzero conduc-
tivity. This seemingly classical problem in electromag-
netism has never – to the best of our knowledge – been
worked out. We find that rotating stars amplify low-
frequency photons, whenever their frequency satisfies the
usual superradiant condition, ω < mΩ, where now Ω is
the rotational velocity of the fluid.

These superradiant effects may have interesting impli-
cations for theories of dark photons as well as more com-
plicated hidden sector theories. We find that massive
dark photons trigger an instability of rotating and con-
ducting stars, analogous to the black hole case. Further-

more, the superradiant effects may be entirely contained
within the dark sector, but have observable consequences
that are worthy of further investigation. The most di-
rect signature of this scenario is the spindown of pulsars
due to the superradiant instability. As we discuss, ex-
isting pulsar-timing measurements of the spindown rate
of pulsars already constrain these models. Because these
pulsar-timing constraints are rather stringent, they also
exclude superradiant instabilities triggered by dark pho-
tons as an alternative explanation for the spin limit of
observed pulsars (cf., e.g., Refs. [35–39] for a discussion
on proposed limiting mechanisms on the spin of pulsars).
Throughout this work, we use G = c = 1 units and un-
rationalized Gaussian units for the charge.

II. SETUP

A. Maxwell and Proca theory in curved spacetime

To understand the effects of superradiance in stars, we
work with the theory involving one vector field Aµ with
mass mV = µV ~,

S =

∫
d4x
√
−g
(
R

16π
− 1

4
FµνFµν −

µ2
V

2
AνA

ν + 4πjµAµ

)
+ Smatter , (1)

where Fµν ≡ ∇µAν − ∇νAµ is the field strength. The
vector Aµ can describe either Maxwell theory with the
standard massless photon, in which case µV = 0, or a
Proca theory in which the vector field is massive. We
will show below that in both cases there are nontrivial
superradiant effects around rotating stars. The theory
above is a toy model designed to capture the main fea-
tures of a general relativistic theory where a (possibly
hidden) vector field is minimally coupled to the geome-
try.

The resulting field equations are

∇νFµν + µ2
VA

µ = 4πjµ , (2)

Gµν = 8πTµνmatter + 16π

(
1

2
FµαF

να − 1

8
FαβFαβg

µν

−1

4
µ2
VAαA

αgµν +
µ2
V

2
AµAν − 4πj(µAν)

)
. (3)

where Gµν is the Einstein tensor and Tµνmatter is the stan-
dard stress-energy tensor of matter fields, the latter being
collectively described by Sm in action (1).

B. Background: slowly-rotating, conducting star

Because the star is assumed to be uncharged, fluctu-
ations in the vector Aµ affect the geometry only at the

quadratic order. Thus, to linear order, we can consider
a standard general relativity background as a fixed ge-
ometry, around which the vector field evolves. We will
always neglect backreaction of the vector field on the ge-
ometry. This is a reasonable approximation for all known
astrophysical setups.

We consider a slowly-spinning star and neglect
quadratic- or higher-order corrections in the spin. To
linear order in the spin, the background line element is
described by

ds2 = −F (r)dt2 +
dr2

B(r)
− 2r2ζ(r) sin2 ϑdtdϕ+ r2dΩ2 ,

(4)
and the star’s four velocity reads

uµ = F−1/2 {1, 0, 0,Ω} , (5)

where Ω is the rotational velocity of the fluid. The slow-
rotation approximation requires Ω� ΩK , with

ΩK :=

√
M

R3
(6)

being the mass-shedding frequency, whereas M and R
are the star’s mass and radius, respectively.

In the exterior, F = B = 1 − 2M/r and ζ = 2J/r3,
where J is the angular momentum of the star. The in-
terior depends on the type of matter and it is described
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by the classical Tolman-Oppenheimer-Volkoff equations
for a perfect fluid with Tµνmatter = (P + ρ)uµuν + Pgµν ,
namely

Φ′ =
2
(
M+ 4πr3P

)
r(r − 2M)

, M′ = 4πr2ρ , (7)

P ′ = −
(P + ρ)

(
M+ 4πr3P

)
r(r − 2M)

, (8)

$′′ =
4πr(P + ρ) (r$′ + 4$)

r − 2M
− 4

r
$′ , (9)

where we defined F = e2Φ, B = 1 − 2M(r)/r and $ :=
Ω − ζ(r). Assuming a barotropic equation of state in
the form P = P (ρ), these equations can be integrated
numerically with standard methods. For simplicity, we
will focus on backgrounds describing a constant density,
perfect-fluid star. In this case, the static part of the
metric has an exact solution,

M =
4π

3
ρr3 , P = ρ

( √
1− 2Mr2/R3 −

√
1− 2M/R

3
√

1− 2M/R−
√

1− 2Mr2/R3

)
,

eΦ =
3

2

√
1− 2M/R− 1

2

√
1− 2Mr2/R3 , (10)

where ρ = 3M/(4πR3). The equation for $ (and there-

fore for ζ) cannot be solved analytically for generic val-
ues of the compactness, whereas in the Newtonian limit
yields ζ(r) = 2J/R3 = const in the interior, which
smoothly connects to ζ(r) = 2J/r3 in the exterior.

Finally, the vector Aµ is evolving in the vicinities of
an uncharged, rotating star made of material with con-
ductivity σ and proper charge density ρEM. We assume
that the coupling between the vector and the material is
given by the constitutive Ohm’s law, which in covariant
form reads [14],

jα = σFαβuβ + ρEMu
α , (11)

where all quantities are computed in the frame of the
material whose 4-velocity is uα. This relation should be
accurate for weak fields and represents the lowest order
term in the family of possible couplings between the ma-
terial and the vector field.

C. Perturbations of a spinning, conducting star in
Maxwell and Proca theory

An uncharged star in electrovacuum (Aµ = 0) is a
trivial solution to the previous equations. We now wish
to understand linearized fluctuations around this back-
ground. We start by expanding the vector field Aµ in
4-dimensional vector spherical harmonics,

Aµ(t, r, ϑ, φ) = e−iωt
∑
l,m




0
0

alm(r)
sinϑ ∂φYlm

−alm(r) sinϑ∂ϑYlm

 +


f lm(r)Ylm
hlm(r)Ylm
klm(r)∂ϑYlm
klm(r)∂φYlm


 . (12)

The first term on the right-hand side has parity (−1)l+1

and the second term has parity (−1)l, m is an azimuthal
number and l is the angular number. Likewise, we ex-
pand the charge density in scalar spherical harmonics,
ρEM(t, r, ϑ, φ) = e−iωtρ̂EM(r)Ylm.

Because the background is not spherically symmetric,
the above decomposition introduces couplings between
polar and axial modes and between perturbations with
different harmonic indices [40]. To linear order in the
spin, the coupling between polar and axial modes can be
consistently neglected and one is left with an “axial-led”
and a “polar-led” system of ordinary differential equa-
tions [19, 20, 41]. The decoupling procedure is given in
Appendix B. Here, we report only the final result for the
axial-led system to linear order in the spin,

d2a

dr2
∗

+
(
ω2 − 2mωζ(r)− V

)
a = 0 , (13)

V = F

(
l(l + 1)

r2
+ µ2

V −
4iπσ(ω −mΩ)√

F

)
. (14)

where dr/dr∗ =
√
BF . Note that, within our slow-

rotation approximation, σ can be a generic radial func-
tion. For simplicity, we take σ = const.

The polar sector is more involved and we leave it for
future work. Here, we briefly mention that in the mass-
less case (µV = 0) the polar sector can be reduced to
a single second-order differential equation by using some
gauge freedom, whereas in the Proca case the polar sec-
tor describes the propagation of two physical degrees of
freedom, and one is left with a system of two, coupled,
second-order, differential equations. In both cases, the
charge density ρ̂EM(r) is fixed in terms of σ and of the
perturbations of the electromagnetic field by the field
equations, similarly to the fluid density ρ which is fixed
by the Tolman-Oppenheimer-Volkoff equations in terms
of the pressure once an equation of state is given. This
can be also understood by the fact that an applied elec-
tric field will modify the charge distribution, even when
the object is globally neutral.
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III. SUPERRADIANT SCATTERING FROM
SPINNING AND CONDUCTING STARS

We now consider a scattering experiment. We focus
on the axial sector, but the computation for the polar
sector, although more technically involved, follows simi-
larly. In the axial sector, the solutions to Eq. (13) behave
asymptotically as

a(ω, r) ∼ rl+1 , r → 0 , (15)

a(ω, r) ∼ Aine
−iωr +Aoute

+iωr , r →∞ , (16)

We have selected the regular solution at the center of the
star. From our conventions for the time-dependence of
the fields, it follows that this state is composed of a piece,
Aine

−iωr, which is an ingoing wave and is scattered by
the star, giving rise to an outgoing component Aoute

+iωr.
It is also easy to verify that the incoming and outgoing
fluxes at infinity are proportional to |Ain|2 and |Aout|2,
respectively [13]. We thus define the superradiant factor

Z :=
|Aout|2

|Ain|2
− 1 . (17)
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FIG. 1. Amplification factor Eq. (17) for dipole modes
l = m = 1 as a function of the frequency, for a moderately-
spinning star (Ω = 0.3 ΩK) with compactness M/R = 0.15
and for different values of the conductivity.

We have computed the superradiant factor Z numeri-
cally, by integrating Eq. (13) from the center of the star,
outwards to some finite but large value of the radial coor-
dinate r, where the numerical solution is matched against
a higher-order version of expansion (16). The numerical
results are shown in Fig. 1. As expected, Z > 0 when
the superradiant condition is satisfied, ω < mΩ. The am-
plification factor grows with σ, until it saturates in the
large-σ limit displaying a sharp maximum at ω . mΩ.
Although not shown, the amplification grows with the
compactness and with the spin of the object.

We can also gain some analytical insight on the super-
radiant amplification. In the Newtonian limit, the exter-
nal solutions are linear combinations of Bessel functions√
rJl+1/2(ωr) and

√
rYl+1/2(ωr). In the interior, and for

small conductivities, the only regular solution admissible
is
√
rJl+1/2(−ir

√
4imπσΩ− 4iπσω − ω2). Matching the

functions and their derivatives at the surface of the star
and expanding for small frequencies, we find

Z = − 21−2lπ2

Γ[l + 3/2]Γ[l + 5/2]
σR2 (ω −mΩ) (ωR)2l+1 .

(18)
The above expression agrees remarkably well with the ex-
act numerical result up to M/R ∼ 0.2 and for σM � 1.
This relation is also interesting, as it extends an obser-
vation made in Ref. [34]: one can try to naively compute
the superradiant amplification factors of Kerr black holes
by letting R = 2M and 1/σ = M , as this is now the
only possible time scale in the problem. With this sub-
stitution, the above relation predicts that slowly rotating
black holes in general relativity amplify l = 1 scalar fields
with Z = 64π

45 M (Ω− ω) (2Mω)3. On the other hand,
a matched-asymptotic expansion calculation in full gen-
eral relativity yields the same result to within an order
of magnitude (the coefficient turns out to be 8/9 instead
of 64π/45) [15]. As we show in Appendix A, one can im-
prove on this relation by using the membrane paradigm
for describing horizons [42]. In this framework, horizons
are endowed with a surface conductivity of 1/4π, and a
simple Newtonian analogue recovers exactly the general
relativistic prediction.

For large conductivities, we have been unable to find
concise analytical expressions, but in the Newtonian limit
our results are well approximated by

Z = kl
(ωR)

2l+1√
σR2 (mΩ− ω) + cl

[
1 +

1

2σR2 (mΩ− ω)

]−1

,

(19)
in the superradiant regime, with k1 ∼ 0.78, k2 ∼ 0.09
and c1 ∼ 2, c2 ∼ 25. The amplification factor is peaked
at ω −mΩ ∼ 1/(σR), and bounded. The analytical ex-
pression above is not very accurate close to the peak of
the amplification factor, but we find numerically that, for
σM � 1, the l = m = 1 peak is described by

Zmax ∼ (0.48− 0.78M/R)(ΩR)3 , (20)

where, interestingly, the prefactor decreases at large com-
pactness.

IV. SUPERRADIANT INSTABILITIES OF
SPINNING AND CONDUCTING STARS

In analogy with the black hole case, we expect that the
mass term for the Proca field can lead to superradiant
instabilities in conducting stars. We show this explic-
itly by solving the perturbation equations numerically as
an eigenvalue problem, and computing the quasinormal
modes of the system, ωlmn = ωR + iωI , where n is the
overtone number. In our notation, an instability corre-
sponds to ωI > 0, and τ ≡ 1/ωI is the instability time
scale. The parameter space of the spectrum is large and
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complicated, since – even for fixed “quantum” numbers
(l,m, n) – it still depends on four dimensionless parame-
ters, namely (µVM,M/R,Ω/ΩK , σM).

In the axial case, our results for the l = m = 1 funda-
mental unstable mode are well approximated in the small
µVM limit and to linear order in Ω/ΩK by

ω2
R ∼ µ2

V

(
1− µ2

VM
2

8

)
, (21)

ωI ∼ −
[
α1

σM

α2 + (σM)3/2

]
(µVM)8(µV −mΩ) ,(22)

where αi are dimensionless constants that depend on the
compactness and also on Ω since the combination Ω/σ
is not necessarily small. Besides the prefactor in square
brackets in Eq. (22), the functional form of the super-
radiantly unstable modes is the same as that found for
a black hole [19–21, 43]. The dependence of the prefac-
tor in Eq. (22) on σ and M/R are presented in Fig. 2,
which confirms the linear behavior in σ at small conduc-
tivities and the ∼ σ−1/2 behavior at large conductivi-
ties. Furthermore, the dependence on the compactness
is monotonic at small conductivities, but it is more com-
plicated at large conductivities, in line with our findings
for the amplification factor of massless fields [see discus-
sion around Eq. (19)]. Note that, because ωR ∼ µV , the
small-rotation approximation together with the superra-
diant condition requires µV . mΩ � mΩK , which im-
plies µVM � 1. To avoid the factor (µVM)8 in Eq. (22)
to be exceedingly small, we consider in Fig. 2 a large
rotation rate, Ω ∼ 0.9ΩK , although we stress that our
results are also valid for smaller values of Ω.

In Appendix A, we discuss a simple model that shares
many features with our numerical results.
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FIG. 2. The prefactor in square brackets of Eq. (22) as a
function of σM and for different values of the compactness
at fixed Ω/ΩK = 0.9. A fit of the numerical data is consis-
tent with Eq. (22) with (α1, α2) ∼ (39, 0.13), (429, 11) and
(4.2, 0.48) for M/R = 0.1, 0.15, 0.2, respectively.

V. PHENOMENOLOGICAL IMPLICATIONS

We now discuss some potential phenomenological im-
plications of the superradiant instability of stars. We
begin with a discussion of the standard (i.e., electromag-
netic) conductivity of a neutron star and then general-
ize the discussion to the conductivity of a hidden sector.
Finally, we discuss the implications of the superradiant
instability of pulsars for models of dark photons.

A. Conductivity in Maxwell theory

The conductivity of a material can be estimated by a
simple Drude model,

σ =
nee

2τft
me

, (23)

where ne, e, and me are the number density, the charge,
and the mass of the charge carriers, and τft is the mean
free time between ionic collisions. The standard charge
carriers are electrons and the ionic collisions are between
the electrons and protons through electromagnetic inter-
actions. The interaction between electrons and neutrons
is small as it proceeds solely through the neutron mag-
netic moment.

More generally, the expression for τft will depend on all
possible interactions of the electron with protons within
the conducting material,

1

τft
=

~2k2
F

48π

(
T

Tp

)2 ∫ 2kF

0

dq q2|M|2, (24)

where kF =
√

2meEF /~ = (3π2ne)
1/3 is the Fermi

wavenumber, Tp = ~2k2
F /(2mpkB) is the proton Fermi

temperature, mp is the proton mass, ~q is the momen-
tum transfer of the collision, and kB is the Boltzmann
constant. |M|2 is the proton-electron scattering matrix
element, and in the limit where the electron energies are
much smaller than the proton mass, it is given by the
Mott formula

|M|2 =

[
4πe2

~2(q2 + k2
FT)

]2(
1− q2

4k2
F

)
, (25)

where kFT is the Fermi-Thomas screening wavenumber
for the system. In a neutron star, the protons are much
more polarizable than electrons and so kFT corresponds
to the contribution of protons alone, i.e.

k2
FT =

4kFmpe
2

π~2
=

4mpe
2

π~2
(3π2ne)

1/3 . (26)

We assume the star to be electrically neutral, ne = np.
To first order in kFT/kF � 1,

1

τft
∼ e4 π2

12~2

(
T

Tp

)2
k2
F

kFT
. (27)
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Together with Eq. (23), this yields [44]

σEM ∼ 2

(
3

π

)3/2 ~4(mpne)
3/2

em3
pk

2
BT

2
, (28)

where we included the label “EM” to distinguish the
above electromagnetic conductivity from the hidden con-
ductivity discussed below.

For a typical neutron star with mass density mpne '
1013 g/cm

3
and T ' 108 K, the above formula yields

σEM ' 6 × 1022 s−1, which in our units translates to
σEMM ' 1017 for a typical neutron star mass. In this
scenario, where σEMM � 1, we obtain from Eq. (22) a
typical instability time scale

τ ∼
√
σEMM

α1(µVM)8(µV − Ω)
M ' 106 yr , σEMM � 1

(29)
where in the last estimate we considered M = 1.4M�,
M/R = 0.15, α1 = 429, Ω = 0.9ΩK , µVM = 0.05, and
σEM = 6×1022 s−1. Therefore, even when σEMM ∼ 1017,
the instability timescale can be smaller than a typical ac-
cretion time scale, τSalpeter ' 4.5 × 107 yr. Note that
the above estimate was in the regime where the stel-
lar angular velocity is close to the mass-shedding limit,
Ω = 0.9ΩK , and the compactness corresponds to the
strongest instability [cf. Fig. 2]. In this case, the su-
perradiant instability timescale of neutron stars is actu-
ally shorter than that of nearly-extremal BHs [45]. As
discussed below, the measured spin of neutron stars is at
least a factor of two smaller than the mass shedding limit.
Since the timescale will increase for lower angular veloc-
ities and for other values of the compactness, Eq. (29)
can be taken as a lower limit.

B. Conductivity in Hidden Sectors

We now extend the above discussion to include models
of a secluded U(1)′ [9, 46, 47] with a massive vector boson
X. For this scenario, we will consider the low-energy
effective Lagrangian,

Leff ⊃ −
1

4
FµνF

µν − 1

4
XµνX

µν (30)

+
ε

2
FµνX

µν +
m2
X

2
XµX

µ + jµA
µ,

where Fµν is the field strength of the Maxwell vector Aµ,
Xµν is the field strength of the new U(1)′ gauge boson
Xµ, mX is the mass of X, and ε is the kinetic mixing be-
tween the two sectors. One can rotate away the kinetic
mixing term by working in the mass basis with Aµ →
Aµ + εXµ, but this induces a new term εjµX

µ in the La-
grangian. The physical consequence is that particles with
electric charge also carry a hidden charge εe. Therefore,
Eq. (11) is modified with σFµνuν → σFµνuν+σεX

µνuν ,
where σε = εσEM to leading order in ε. For sub-eV mX ,

the primary constraints on ε are from stellar produc-
tion of the vector [48, 49], precision tests of electromag-
netism [50–52], and distortion of the cosmic microwave
background (CMB) due to conversion of γ → X [53],
which sets ε < O(10−7 − 10−5), depending on mX . One
can further limit ε < O(10−12−10−8) by constraining the
cosmic abundance of X through CMB distortions due to
the conversion of X → γ [54, 55], while proposed elec-
tromagnetic resonator technologies can potentially probe
even smaller values of ε [56]. Thus, the effective con-
ductivity in these models can be much smaller than in
Maxwell theory, σε � σEM.

In this context it is also relevant to estimate plasma
effects, since neutron stars will be surrounded by plasma
in various forms. In Maxwell theory, ordinary photons
propagating in a plasma acquire an effective mass given
by [57]

ωp~ =

√
4πe2nplasma

me
≈ 3× 10−11

√
nplasma

1 cm−3
eV , (31)

where nplasma is the electron number density in the
plasma. In the millicharged cases, we should replace
e → εe in the above equation. In the context of su-
perradiance [31, 32], plasma effects can be neglected as
long as ωp � µV . As discussed below, the relevant range
of dark-photon masses is µV ~ ∼ 10−12 eV. Therefore,
if ε < O(10−12) plasma effects are negligible whenever
nplasma < 1021 cm−3.

We can also consider a case of a more complicated hid-
den sector in which the conductivity σ′ is set by the inter-
actions between particles of opposite U(1)′ charge, which
we denote as hidden electrons and hidden protons, with
the hidden electrons serving as the charge carriers (cf.,
e.g., Refs. [58, 59]). Here, jµ → j′µ = σ′Xµνuν + ρ′uµ,
which is entirely contained within the hidden sector. The
calculation of σ′ requires the replacement1 in Eq. (28) of
e by the hidden electric charge e′, me and mn by the mass
of hidden electrons me′ and nucleons mn′ , and ne by the
number density of hidden electrons ne′ . This manifests
itself in Eq. (28) by the replacements e→ e′, mn → mn′

and ne → ne′ , giving

σ′

σEM
=

(
ne′mp

nemp′

)3/2
e

e′
. (32)

Taking for instance e′ = 0.01e [59, 60], mp′ = 100 TeV,
and assuming that the mass density of hidden protons
inside the star is 1% (0.1%) of the mass density of or-
dinary protons, we estimate a conductivity for hidden
electrons σ′ ' 10−16σEM (3× 10−18σEM), i.e. σ′M ' 10
(0.3). In other words, models of hidden U(1)′ sectors

1 In the context of superradiant mechanisms, the relevant Comp-
ton wavelength of dark photons is much larger than the mean free
path of the hidden electrons in the stars. Thus, the mass of the
mediator has a negligible effect on the conductivity calculation.
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above the TeV scale can have dramatically smaller val-
ues of neutron-star conductivity for the hidden electron
than that of ordinary electrons, and values σ′M ∼ O(1)
are allowed. Thus, in our estimates we will consider σ as
a free parameter.

C. Instability Time Scale

As discussed in Refs. [19, 20], the minimum instability
time scale τ ≡ 1/ωI can be estimated by computing the
value of µV which corresponds to the maximum value
of ωI . From Eq. (22), dωI/dµ = 0 yields µmin

V = 8Ω/9,
which corresponds to

τmin =
387420489

16777216

(
α2 + (σM)3/2

α1σ(mMΩ)9

)
. (33)

The minimum instability time scale is shown in Fig. 3 as
a function of the ratio σ/σEM where σEM is the typical
conductivity of ordinary electrons in a neutron star. As
expected, τmin diverges both when σ → 0 and when σ →
∞, and it displays a minimum at σ ' 10−17σEM, which
corresponds to σM ' 1. Note also that τmin depends
strongly on Ω. In Fig. 3, we considered the extreme case
Ω = 0.9ΩK , but τmin roughly scales with (ΩK/Ω)9. Thus,
the time scale for Ω = 0.3ΩK will be roughly 5×104 times
longer than that shown in Fig. 3.

��-�� ��-�� ��-�� ��-�� ��-� �
��-�

�

���

���

���

σ/σ��

τ
�
��
[�
�]

��� �� ��� �������� (���� ���)

τ��������≃ �� ���

Ω/Ω� = ���
μ�� = ���
� = � = �
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FIG. 3. Minimum time scale for the superradiant instability
of a neutron star against hidden vectors in the axial sector as
a function of the the ratio σ/σEM where σEM is the typical
conductivity of ordinary electrons in a neutron star. We con-
sidered a typical neutron star with M = 1.4M�, M/R = 0.15,
and rotating near the mass-shedding limit, Ω = 0.9ΩK . The
minimum instability time scale corresponds to a dark photon
with mass mV ' 4× 10−12 eV.

D. Pulsar-Timing Constraints on Dark Photons

Various arguments [15] suggest that the superradiant
instability extracts angular momentum from the central

object, spinning it down until the superradiant condi-
tion is saturated, µV ∼ ωR = mΩ (this was recently
confirmed by the first numerical simulations2 of massive
vector fields around a spinning black hole [63]). The su-
perradiant instability develops by extracting energy away
from the spinning object and depositing it on a bosonic
condensate (or a “cloud”) outside the object. This cloud
has, in general, a time-varying quadrupole moment and
will slowly dissipate through emission of gravitational
waves. On very long timescales, the end product is an
object spinning so slowly that the instability is no longer
active.

Because angular-momentum extraction occurs on a
time scale τ = 1/ωI , the observation of an isolated com-
pact object with spindown time scale τspindown excludes
superradiant instabilities for that system, at least on time
scales τ < τspindown. Therefore, compact objects for
which a (possibly small) spindown rate can be measured
accurately are ideal candidates to constrain the mecha-
nism and, in turn, the dark-sector models discussed here.

Unfortunately, measurements of the spin derivative
of black holes are not available, so that constraints
on superradiant instabilities using black-hole mass and
spin measurements are only meaningful in a statistical
sense [24, 25, 64]. On the other hand, both the spin and
the spindown rate of pulsars are known with astonish-
ing precision through pulsar timing (cf., e.g., Ref. [65]).
For several sources, the rotational frequency is moder-
ately high, fspin = Ω/(2π) ' (500 − 700) Hz, and the
spindown time scale can be extremely long, τspindown =

Ω/(Ω̇) ' 1010 yr. As an example, the ATNF Pulsar
Catalogue [66, 67] contains 398 (40) pulsars for which
τspindown > 2× 109 yr (τspindown > 2× 1010 yr).

In Fig. 4, we show the excluded regions in the con-
ductivity vs dark-photon mass plane obtained by impos-
ing τ < τspindown for three known sources, namely pul-
sars J1938+2012 [68] and J1748-2446ad [69], and pul-
sar binary B1957+20 [70]. The first one is represen-
tative of a pulsar with an exceptionally long spindown
time scale (τspindown ' 1.1 × 1011 yr), but with a mod-
erately large spin (fspin ' 380 Hz, which corresponds to
Ω/ΩK ≈ 0.28 assuming M = 1.4M� and M/R = 0.15).
The second one is the fastest pulsar known to date
(fspin ' 716 Hz, corresponding to Ω/ΩK ≈ 0.53 for
M = 1.4M� and M/R = 0.15), but only an upper bound
on its spin derivative is available, from which we infer
τspindown > 7.6× 107 yr. The last one is representative of
a pulsar with very large spin (fspin ' 622 Hz, which cor-
responds to Ω/ΩK ≈ 0.46 again assuming M = 1.4M�
and M/R = 0.15), but moderately long spindown time
scale (τspindown ' 3× 109 yr). Furthermore, because our
fits for α1 and α2 appearing in Eq. (22) are independent

2 A related result was shown to hold for charged scalar pertur-
bations of Reissner-Nordström black holes (which also exhibit
superradiance [15]) both perturbatively [15] and in full nonlinear
simulations [61, 62].
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FIG. 4. Exclusion plots in the σ/σEM vs. mV plane obtained
from the measurements of spin and spindown rate of pulsars
J1938+2012 (orange) [68] and J1748-2446ad (green) [69], and
of the pulsar binary B1957+20 (blue) [70]. In all cases we
assumed M = 1.4M� and two values of the compactness,
namely M/R = 0.15 (solid) and M/R = 0.2 (dotted). The
shaded areas correspond to regions excluded by the superra-
diant instability because τ < τspindown for a given pulsar (i.e.,
the pulsar is observed to spin down at much longer rate than
that predicted by the superradiant instability in that region
of the parameter space). The horizontal dashed line corre-
sponds to where σ = σEM. We only display the region where
σ � Ω. In the opposite limit, the instability time scale grows
as τ ∼ 1/σ [cf. Eq. (22)] and eventually τ > τspindown for suf-
ficiently small σ, cf. discussion in the main text. The shaded
gray region is excluded for σε from distortions of the CMB
blackbody from γ → X photon depletion [53].

of Ω only for Ω/σ � 1, in Fig. 4 we show only values of
the conductivity which satisfy σ � Ω.

The exclusion plot shown in Fig. 4 is obtained as fol-
lows. For a given measurement of the spin frequency of a
pulsar, fspin, we can estimate Ω and compute the instabil-
ity time scale as a function of σ and µV through Eq. (22).
Furthermore, the measurement of a spindown timescale
for a pulsar, τspindown, implies that a faster spindown rate
caused by the superradiant instability would be incom-
patible with observations. Thus, imposing τ < τspindown

yields an excluded region in the σ-mV plane. Fastly spin-
ning pulsars constrain the rightmost part of the σ-mV di-
agram because the instability requires µV ∼ ωR < mΩ.
On the other hand, pulsars with longer spindown time
scale correspond to higher threshold lines in the leftmost
part of the σ-mV diagram.

E. Superradiantly-induced maximum spin
frequency for pulsars

Accreting neutron stars in the weakly magnetic Low-
Mass X-Ray Binaries (LMXBs) are expected to be spun
up near the mass-shedding frequency in a spinup time

scale

τspinup ∼ 108

(
109M� yr−1

Ṁ

)
yr , (34)

where Ṁ is the mass-accretion rate. Since the above
time scale is much less than the age of a typical LMXB,
many accreting neutron stars in weakly magnetic LMXBs
should be observed rotating near the mass-shedding fre-
quency, ΩK/(2π) & 1 kHz. The lack of observed systems
with fspin & 700 Hz has motivated various limiting mech-
anisms for the maximum spin of a pulsar, many of them
involving gravitational-wave dissipation – either through
an accretion-induced mass quadrupole on the crust [71],
a large toroidal magnetic field [72], or through the excita-
tion of the unstable r-modes [73, 74] – and more recently
advocating the disk/magnetosphere interaction as lead-
ing spindown mechanism [37].

One might wonder whether – besides placing direct
constraints on models of dark photons – the superradi-
ant instability of neutron stars could also provide an al-
ternative (albeit exotic) explanation for the spin limit
of observed pulsars. For fixed values of σ and µV ,
our model predicts that an accreting pulsar in a LMXB
(for which the superradiant instability is initially effec-
tive) would reach a critical angular velocity such that
τ(Ω) = τspinup in a small fraction of its age. How-
ever, because τspinup � τspindown for the observed pul-
sars discussed in the previous sections, the threshold line
τ = τspinup is already excluded by pulsar timing. In other
words, only models that are already excluded by Fig. 4
would produce a superradiant instability strong enough
to overcome accretion at a time scale given by Eq. (34).

VI. DISCUSSION AND FUTURE WORK

The scattering of light by rotating, conducting spheres
is a classical problem in electromagnetism, and can lead
to superradiant effects. Yet, to the best of our knowl-
edge, a thorough understanding of this problem has not
been framed within the context of superradiance. Su-
perradiance in stars may have interesting and important
applications in astrophysics and particle physics: stars
are made of materials with small but nonvanishing re-
sistivity in the standard Maxwell sector, leading to the
amplification of low-energy pulses. In the context of ul-
tralight dark photon models, any nonzero conductivity of
stars in the dark sector will lead to superradiant instabil-
ities that drive the star to lower rotation rates. In other
words, the superradiant mechanism leads to potentially
observable consequences, which can be used to constrain
the dark sector.

We have shown that a direct signature of superradi-
ant instabilities in stars is the spindown of pulsars in the
presence of ultralight dark photons. As we discussed, ex-
isting measurements of the spindown rate of pulsars al-
ready place some stringent constraint on models of dark
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photons and of the hidden U(1)′ sectors. Although super-
radiance is typically weaker for stars than for black holes,
the spindown rate of pulsars is measured with great pre-
cision and it is typically very low (i.e., τspindown is very
long), leading to direct constraints which are much more
robust than those coming from mass-spin distributions
in the so-called black-hole Regge plane. For example,
our preliminary analysis suggests that ordinary models
(σ . σEM) of dark photons with mass mV ∼ 10−12 eV
are excluded by pulsar-timing observations.

There are many interesting follow-up questions to the
effect of superradiance in stars. One of them concerns the
polar sector of vector perturbations. Previous studies of
black hole superradiance show that the vector sector trig-
gers instabilities with much shorter time scales [19–21].
If such a result generalizes to conducting stars, the con-
straints on dark photons will certainly improve. We hope
that the promising results of our exploratory study shown
in Fig. 4 will stimulate further investigation on this prob-
lem, including a complete analysis of the constraints that
can be placed on dark-photon models with pulsar timing.
From a theoretical perspective, another interesting open
issue concerns the functional dependence of the amplifi-
cation factor on the frequency. Previously, effective field
theory approaches have investigated the frequency de-
pendence in the context of black holes [22]. It would be
interesting to extend such an approach to stars. Further-
more, in this work we modelled the conductivity with
a simple Drude model, in which electrons only scatter
with protons. This gives us an order of magnitude of the
constraints that one can impose via superradiance, and
motivates a more complete calculation (e.g. [75, 76]).

In the scenario in which the dark photon couples to
Maxwell vectors, superradiance could work in more intri-
cate ways: on the one hand both vectors are superradi-
antly amplified by the star’s material, potentially leading
to a stronger effect. On the other hand, Maxwell fields
are massless and could easily escape, not being subject to
the confinement necessary to create the instability. How
exactly the mechanism proceeds depends on this inter-
play and depends on more detailed calculations. Further-
more, it would be interesting to explore the coupling to
plasma. Equation (31) shows that even ordinary photons
would acquire an effective mass ~ωp ∼ 10−12 eV when
propagating in a plasma with electron number density
nplasma ∼ 10−2 cm−3. This might give interesting super-
radiant effects for ordinary photons [31, 32] or also alter
the instability for dark photons if the latter are coupled
to plasma sufficiently strongly.

Our analysis also shows that it is, in principle, possible
to generalize a number of results in the literature con-
cerning black hole superradiance [15]. For example, for
complex, massive vector fields there should exist new sta-
tionary solutions describing a star surrounded by a Proca
condensate. This would be a natural generalization of the
hairy black hole solutions found recently [77–79]. Like-
wise, imprints of superradiance in the luminosity of pul-
sars or black hole binaries [29, 30] should also be present

when the companion is a star, instead of a black hole.
Finally, the development of the instability will certainly
lead to nontrivial gravitational-wave emission. In the
black hole case, the emitted signal can be used to impose
interesting constraints on the models [15, 24–27]. On the
other hand, stars have typically lower masses than black
holes, and it remains to be understood if gravitational-
wave emission is relevant in this case.
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Appendix A: Thin-shell model and membrane
paradigm

In the membrane paradigm [42], a black hole can be
interpreted as a one-way membrane endowed with vari-
ous properties. In particular, the surface resistivity reads
RH = 4π ' 377 Ohm, so that the surface conductivity is
σ̂ = 1/(4π).

Within our framework, a similar model can be investi-
gated by considering a conducting thin shell in vacuum,
so that the (volume) conductivity reads σ(r) = σ̂δ(R−r).
For simplicity, we consider the Newtonian limit, in which
F = B = 1, and restrict ourselves to small frequencies,
so that ωζ in Eq. (13) is negligible. In these approxima-
tions, axial perturbations reduce to Bessel’s equation

d2a

dr2
+

(
ω2 − l(l + 1)

r2

)
a = 0 , (A1)

both in the interior and in the exterior. The delta func-
tion in σ(r) enters only in the junction conditions, which



10

imply

[[da/dr]] = −4πiσ̂(ω −mΩ)a(R) , (A2)

where [[...]] is the jump across the shell and, without
loss of generality, we assumed [[a]] = 0. We impose the
junction condition above on the solutions of the Bessel’s
equation with correct boundary conditions as discussed
in the main text. For l = 1, we obtain

Z = −16π

9
σ̂(Rω)3R(ω −mΩ) , (A3)

where m = 1, 0,−1. In the nonrotating case, this result
is valid also beyond the small-frequency regime and, in-
terestingly, it agrees exactly with that obtained in black
hole perturbation theory [cf. Ref. [15], Eq. (3.103)] upon
identification of σ̂ = 1/(4π) and R = 2M . Thus, a
by-product of our analysis is the proof that the black
hole membrane paradigm works also for linear electro-
magnetic perturbations.

The shell toy-model is also useful to understand the
results for the instability. Instead of a massive field, we
consider a spinning shell of radius R surrounded by a
nonspinning perfect conductor of radius R2. The char-
acteristic modes of the system can be found by imposing
the above junction condition and a(r = R2) = 0. For
large values of R2/R, the l = 1 fundamental mode reads

ω =
γ0

R2
− 4πiγ0

(
γ2

0 + 1
) R4

R5
2

σ̂Υ , (A4)

where γ0 satisfies tan γ0 = γ0 and

Υ =
γ0

(
9− 16π2σ̂2Ω2R2

)
− ΩR2

(
9 + 16π2R2σ̂2Ω2

)
(9 + 16π2σ̂2Ω2R2)

2 .

(A5)
Note that Υ → (γ0 − ΩR2)/9 when σ̂ΩR � 1 (thus re-
covering the superradiant condition, ωR < Ω), whereas
Υ ∼ −1/(σ̂2Ω2R2) when σ̂ΩR � 1. At fixed rotation
rate, the peak of the instability occurs at σ̂ ∼ 3/(4πΩR).
Therefore – at least qualitatively – this simple model
shows the same features that we observe numerically, in
particular the fact that the instability decreases as σ̂ → 0
and at very large σ̂, and it also informs us on the Ω de-
pendence. Finally, if we substitute R2 → 1/µ2

V as dis-
cussed in Refs. [15, 80], we recover the mass dependence
presented in the main text for µV � Ω.

Appendix B: Vector perturbations of a
slowly-spinning compact object

In this appendix we follow the framework developed
in Refs. [19, 20, 41, 81, 82] (cf. Ref. [40] for a review) to
derive the Proca perturbations of a slowly-rotating, con-
ducting star. The Proca equation (2), linearized in the
perturbations (12) on the background (4) can be written

in the following form3:

δΠI ≡
(
A

(I)
l + Ã

(I)
l cosϑ

)
Y l +B

(I)
l sinϑ∂ϑY

l = 0 ,

(B1)

δΠϑ ≡ αl∂ϑY l − imβl
Y l

sinϑ
+ ηl sinϑY

l = 0 , (B2)

δΠϕ

sinϑ
≡ βl∂ϑY l + imαl

Y l

sinϑ
+ ζl sinϑY

l = 0 , (B3)

where a sum over (l,m) is implicit and I denotes either
the t component or the r component. The various radial
coefficients in Eqs. (B1)–(B3) are given in a supplemen-
tal Mathematica R© notebook [83]. Each of these coef-
ficients is a linear combination of perturbation functions
with either polar or axial parity. Therefore we can divide
them into two sets:

Polar: A
(I)
l , αl , ζl ,

Axial: Ã
(I)
l , B

(I)
l , βl , ηl ,

where I = t, r.

1. Separation of the angular dependence

In order to separate the angular variables in Eqs. (B1)–
(B3) we compute the following integrals:∫

δΠIY
∗ ldΩ , (I = t, r) ; (B4a)∫

δΠaY
∗ l
b γ

abdΩ , (a , b = ϑ, ϕ) ; (B4b)∫
δΠaS

∗ l
b γ

abdΩ , (a , b = ϑ, ϕ) . (B4c)

where we set xµ = (t, r, xb) with xb = (ϑ, ϕ), the two-
sphere γab = diag(1, sin2 ϑ), and

Yl
b =

(
∂ϑY

l, ∂ϕY
l
)
,

Slb =

(
1

sinϑ
∂ϕY

l,− sinϑ∂ϑY
l

)
. (B5)

We also make use of the orthogonality properties of scalar
and vector harmonics, namely∫

Y lY ∗ l
′
dΩ = δll

′
, (B6)∫

Yl
bY
∗ l′
b γabdΩ =

∫
SlbS

∗ l′
b γabdΩ = l(l + 1)δll

′
,∫

Yl
bS
∗ l′
b γabdΩ = 0 , (B7)

3 We will append the relevant multipolar index l to any pertur-
bation variable but we will omit the index m, because in an
axisymmetric background it is possible to decouple the pertur-
bation equations so that all quantities have the same value of
m.
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as well as of the identities

cosϑY l = Ql+1Y
l+1 +QlY l−1 , (B8)

sinϑ∂ϑY
l = Ql+1lY

l+1 −Ql(l + 1)Y l−1 , (B9)

with Ql =
√

l2−m2

4l2−1 . By using the above relation, we

obtain the following radial equations:

A
(I)
l +Ql

[
Ã

(I)
l−1 + (l − 1)B

(I)
l−1

]
+Ql+1

[
Ã

(I)
l+1 − (l + 2)B

(I)
l+1

]
= 0 , (B10)

l(l + 1)αl − imζl
−Ql(l + 1)ηl−1 +Ql+1lηl+1 = 0 , (B11)

l(l + 1)βl + imηl

−Ql(l + 1)ζl−1 +Ql+1lζl+1 = 0 . (B12)

Note that Eqs. (B10)–(B12) can be written in the
schematic form

0 = Al + εamĀl + εa(QlP̃l−1 +Ql+1P̃l+1) , (B13)

0 = Pl + εamP̄l + εa(QlÃl−1 +Ql+1Ãl+1) , (B14)

where εa is a bookkeeping parameter for the expansion in
the angular momentum, Al, Āl are linear combinations of
the axial perturbations with multipolar index l; similarly,
Pl, P̄l are linear combinations of the polar perturbations
with index l.

2. Axial-led and polar-led perturbations

We expand the axial and polar perturbation functions
(schematically denoted as al and pl, respectively) that
appear in Eqs. (B13) and (B14) as

al = a
(0)
l + εa a

(1)
l +O(ε2a)

pl = p
(0)
l + εa p

(1)
l +O(ε2a) . (B15)

Since in the nonrotating limit axial and polar perturba-
tions are decoupled, a possible consistent set of solutions

of the system (B13)–(B14) has p
(0)
L±1 ≡ 0, where l = L is

a specific value of the harmonic index. This ansatz leads
to the so-called “axial-led” subset of Eqs. (B13)–(B14):

AL + εamĀL = 0

PL+1 + εaQL+1ÃL = 0

PL−1 + εaQLÃL = 0

, (B16)

where the first equation is solved to first order in the
spin, whereas the second and the third equations do not
contain zeroth-order quantities in the spin, i.e. pL±1 =
O(εa). The truncation above is consistent because in the
axial equations for l = L the polar source terms with
l = L±1 appear multiplied by a factor εa, so they would
enter at second order in the rotation.

Similarly, another consistent set of solutions of the

same system has a
(0)
L±1 ≡ 0. The corresponding “polar-

led” system reads
PL + εamP̄L = 0

AL+1 + εaQL+1P̃L = 0

AL−1 + εaQLP̃L = 0

. (B17)

Interestingly, within this perturbative scheme a notion of
“conserved quantum number” L is still meaningful: even
though, for any given L, rotation couples terms with op-
posite parity and different multipolar index, the subsys-
tems (B16) and (B17) are closed, i.e. they contain a finite
number of equations which describe the dynamics to first
order in the spin.

Finally, note that the first set of equations in the axial-
led system (B16) and in the polar-led system (B17) do
not involve couplings between axial and polar modes.
Once the first set of equations in the system (B16) [or in
the system (B17)] is solved, the remaining two equations
can be solved separately. Therefore, if one is interested
in the linear spin corrections to axial or polar perturba-
tions with a given harmonic index L, one can solve only
the first set of equations in the system (B16) or (B17),
respectively.

a. Final equations for the axial-led system

By using the coefficients given in the Supplemental Ma-
terial, it is easy to show that the first equation of the
system (B16) reduces to Eq. (13) in the main text.

b. Final equations for the polar-led system

The polar-led system is more involved. In general, one
of the polar equations fixes the proper charge density ρ̂EM

in terms of the other perturbation functions, even when
σ = const. In the Proca case, by using the coefficients in
the Supplemental Material, the system can be reduced
to three differential equations that can be schematically
written as

u′′1 = f1(u1, u
′
1, u2) ,

u′2 = f2(u1, u
′
1, u2, u3) ,

u′3 = f3(u′1, u2, u3) ,

where u1 ≡ f lm , u2 ≡ hlm and u3 = klm. Note that
the first equation above does not contain u3. Therefore,
it is possible to write a system of two second-order, ra-
dial equations for u1 and u2 simply by solving the sec-
ond equation above for u3, differentiate it with respect
to r, and then using the third equation above to elimi-
nate u3. The final result is not shown explicitly and a
detailed investigation is left for future work. Note that
in the Maxwell case (µV = 0) the usual gauge freedom
can be used to eliminate one spurious degree of freedom.
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Consequently, the Maxwell polar sector propagates only one degree of freedom, described by a second-order field
equation.
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