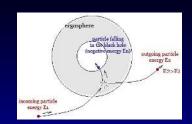
Superradiant instabilities in astrophysical systems

Helvi Witek, V. Cardoso, A. Ishibashi, U. Sperhake and anyone who is interested in joining the effort

> CENTRA / IST, Lisbon, Portugal

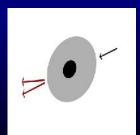
work in progress

"Recent advances in numerical and analytical methods for black hole dynamics" YITP, Kyoto, 3 April, 2012


Outline

- 1 Motivation
- 2 Massive scalar fields
- 3 Massive vector fields
- 4 Conclusions

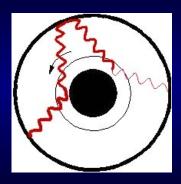
Motivation


Superradiance effect

- Penrose process (Penrose '69, Christodoulou '70)
 - scattering of particles off Kerr BH
 - ⇒ reduction of BH mass

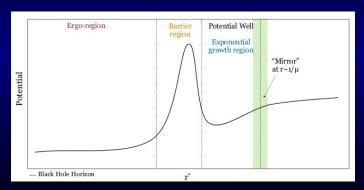
- superradiant scattering (Misner '72)
 - scattering of wave packet off Kerr BH
 - superradiance condition

$$\omega < m\Omega_H = mrac{\mathsf{a}}{2Mr_+}$$



- ⇒ extraction of energy and angular momentum off BH
- ⇒ amplification of energy and angular momentum of wave packet

Superradiance instability


"black hole bomb" (Press & Teukolsky '72, Zeldovich '71)

- consider Kerr BH surrounded by mirror
- consider field with $\omega < m\Omega_H$ \Rightarrow superradiant scattering
- subsequequent amplification of superradiant modes
- ⇒ exponential growth of modes
- ⇒ instability due to superradiant scattering

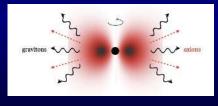
natural mirror provided by

- anti-de Sitter spacetimes
- massive fields with mass coupling $M\mu$ (Damour et al. '76, Detweiler '80, Zouros & Eardley '79)

Arvanitaki & Dubovsky '11

growth rate of massive scalar fields

• Detweiler '80: $M\mu << 1$


$$au \sim 24 \left(rac{a}{M}
ight)^{-1} (M\mu)^{-9} \left(rac{GM}{c^3}
ight)$$

ullet Zouros & Eardley '79 $M\mu >> 1$

$$au \sim 10^7 \exp(1.84 M \mu) \left(rac{GM}{c^3}
ight)$$

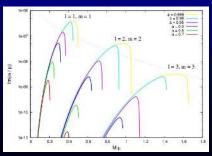
- \circ for astrophysical BHs and known particles: $M\mu \sim 10^{18}$
 - $\Rightarrow \mathsf{insignificant} \mathsf{\ for\ astrophysical\ systems?}$

- most promising mass range: $M\mu\sim 1$
- ultralight bosons proposed by string theory compactifications: axions (Arvanitaki & Dubovsky '10)
- formation of bosonic bound states around astrophysical BHs
- gravitational wave emission
- "bosenova"-like particle bursts (see Yoshino's talk)

(Arvanitaki & Dubovsky '11)

(Kodama & Yoshino '11)

- landscape of ultralight axions ⇒ "string axiverse"
- \bullet bosonic fields with $M\mu\sim 10^{-22}$ as dark matter candidates
- ullet small, primordial BHs with $M \sim 10^{-18} M_{\odot}$
- bosonic cloud around SMBHs ($M \sim 10^9 M_{\odot}$) if $10^{-21} \le M\mu \le 10^{-16}$ \Rightarrow probe of photon mass (upper bound $\mu_{\gamma} \sim 10^{-18}$ (Nakamura et al.'10))


Massive scalar field

Massive scalar fields - recent results

Klein-Gordon equation

$$(\Box - \mu^2)\psi = 0$$
, with $\psi = \exp(im\phi - i\omega t)S_{lm}(\theta)R_{lm}(r)$

- bound states: maximum instability growth rate for l=m=1, a/M=0.99, $M\mu=0.42$: $\frac{1}{\tau}\sim 1.5\cdot 10^{-7}(\frac{GM}{c^3})^{-1}$ (Dolan '07)
- numerical results:
 - Strafuss & Khanna '05: $rac{1}{ au}\sim 2\cdot 10^{-5}rac{1}{M}$
 - Kodama & Yoshino '12: $\frac{1}{\tau} \sim 3.2 \cdot 10^{-7} \frac{1}{M}$

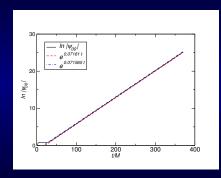
Dolan '07

11 / 26

Massive scalar fields - Code setup

goal: study time evolution of massive scalar field in Kerr background

- ullet Kerr background in Kerr-Schild coordinates o excision of BH region
- ullet Klein-Gordon equation $(\Box \mu^2)\psi = 0$ as 3+1 time evolution problem

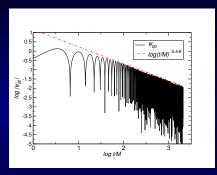

$$d_t \psi = -\alpha \Pi$$

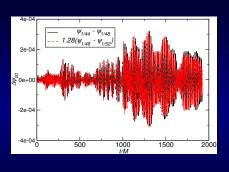
$$d_t \Pi = -\alpha (D^i D_i \psi - \mu^2 \psi - K \Pi) - D^i \alpha D_i \psi$$

- initial data: gaussian wave packet
- 4th finite differences in space, 4th order Runge-Kutta time-integrator
- extraction of scalar field at fixed r_{ex} , mode decomposition

$$\psi_{lm}(t) = \int d\Omega \psi(t, heta, \phi) Y_{lm}^*(heta, \phi)$$

Massive scalar fields - Code tests I

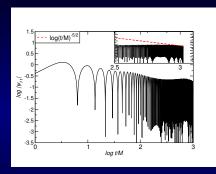

- consider unphysical scalar field mass $M\mu = -\frac{10}{r^4}$ \Rightarrow theoretical prediction: $\psi_{00} \sim \exp(\omega_I t)$ with $\omega_I = 0.071565$
- numerical result $\omega_I = 0.07161$ \Rightarrow agreement within 0.06%

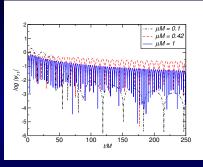


13 / 26

Massive scalar fields - Code tests II

massive scalar field $M\mu=0.42$ in Schwarzschild background

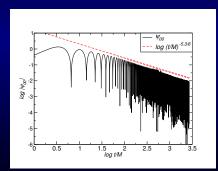


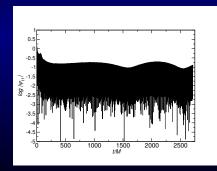


- late-time tail $\psi \sim t^{-5/6}$ (Koyama & Tomimatsu '02, Burko & Khanna '04)
- 2nd order convergence
- discretization error: $\Delta\psi/\psi=3.6\% \ \mbox{0} \ t\sim 1000M, \\ \Delta\psi/\psi=6.7\% \ \mbox{0} \ t\sim 1500M$

Massive scalar fields - Code tests II

massive scalar field in Schwarzschild background with $M\mu=0.1,0.42,1$


tails in agreement with (Koyama & Tomimatsu '02, Burko & Khanna '04):


$$egin{aligned} M\mu &= 0.1 & \psi_{11} \sim t^{-l-3/2} \sin(\mu t) \ M\mu &= 0.42 & \psi_{11} \sim t^{-l-3/2} \sin(\mu t) \ @ \ t \sim 1000M \ M\mu &= 1.0 & \psi_{11} \sim t^{-5/6} \end{aligned}$$

• slowest decay for $M\mu=0.42$

Massive scalar fields in Kerr background

- ullet evolution of scalar field with $M\mu=0.42$ in Kerr background with a/M=0.99
- ullet animation of ψ along z-axis
- observation of quasi-resonant a state?

4□ > 4酉 > 4 로 > 4 로 > 토 → 9
 16 / 26

Massive vector fields

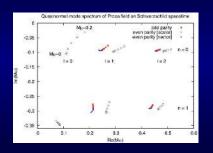
Massive vector fields

- massive hidden U(1) vector fields from string theory compactification (e.g., Jaeckel & Ringwald '10)
- expected: superradiance effect stronger than in scalar field case
- rich phenomenology
- studied by Galt'sov et al '84, Konoplya '06, Konoplya et al '07, Herdeiro et al '11, Rosa & Dolan '11
- vector field eqs. in Kerr non-separable \Rightarrow challenging problem

Massive vector fields in Schwarzschild background

Rosa & Dolan '11:

Proca field equations

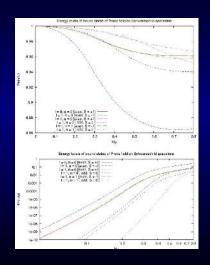

$$abla_
u F^{\mu
u} + \mu_A^2 A^\mu = 0 \quad F_\mu =
abla_\mu A_
u -
abla_
u A_\mu$$

- Lorenz condition has to be satisfied $\nabla_{\mu}A^{\mu}=0$ \Rightarrow scalar mode gains physical meaning
- decomposition of A_{μ} in vector spherical harmonics $Z_{\mu}^{(i)lm}$
- continued fraction method and forward integration

19 / 26

Massive vector fields in Schwarzschild background

Rosa & Dolan '11: QNM spectrum


- for given *l*, *n*:
 2 even parity modes
 (scalar and vector field modes),
 1 odd parity mode (vector field mode)
- in electromagnetic limit $(M\mu_A \rightarrow 0)$:
 - scalar mode = gauge mode
 - even and odd vector mode degenerate
- field mass breaking of degeneracy
- distinct frequencies of even parity modes

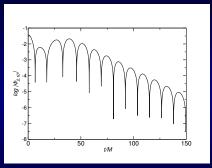
Massive vector fields in Schwarzschild background

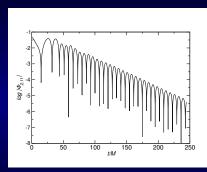
Rosa & Dolan '11: bound states

• in limit $M\mu_A \rightarrow 0$: hydrogenic spectrum $\omega_R \sim 1 - \frac{(M\mu_A)^2}{2MP}$

- mode types: $S = 0, \pm 1$
- lowest energy mode: I = 1, S = -1
- power-law dependence $\omega_I \sim (M\mu_A)^\eta$ with $\eta = 4I + 2S + 5$

Massive vector fields in Kerr - Code setup

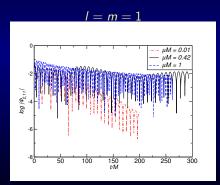

goal: study time evolution of Proca field in Kerr background (work in progress)

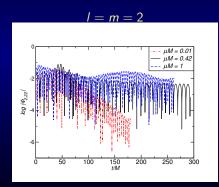

- Kerr background in Kerr-Schild coordinates \rightarrow excision of BH region
- Proca equation $abla_{
 u}F^{\mu\nu} + \mu_A^2 = 0$ Lorenz condition $abla_{\mu}A^{\mu} = 0$
- define $A_{\mu} = \mathcal{A}_{\mu} + n_{\mu} \varphi$, $E_{\mu} = F_{\mu\nu} n^{\nu}$ \Rightarrow formulation as 3 + 1 time evolution problem
- initial data: gaussian wave packet
- 4th finite differences in space, 4th order Runge-Kutta time-integrator
- extraction of Newman-Penrose scalar Φ_2 at fixed r_{ex} , mode decomposition

$$\Phi_{2,\mathit{lm}}(t) = \int d\Omega \Phi_2(t, heta,\phi) \, {}_{-1}Y^*_{\mathit{lm}}(heta,\phi)$$

Massive vector fields in Kerr - Code test I

test massless vector field $\mu_A=0$ in Kerr with a/M=0.99





- QNM frequencies $\omega_{10}M = 0.277 i \ (0.274 i0.076)$ $\omega_{11}M = 0.461 i0.041 \ (0.463 i0.031)$
- agreement with theoretical prediction (Berti et al, '09)

Massive vector fields in Kerr - Code test I

- vector field with $\mu_A = 0.01, 0.42, 1$ in Kerr with a/M = 0.99
- animation of A_z along z-axis

24 / 26

Conclusions

- massive fields in Kerr spacetimes exhibit extremely rich spectra
- evolution of scalar field wave packets
 - extensive code testing
 - resonant effect for $M\mu=0.42$, a=0.99 ?
- first evolutions of massive vector fields in Kerr background
 - low mass fields $M\mu_A=0.01$ damped
 - ullet quasi-resonant effect for $M\mu_A=0.42$ and $M\mu_A=1$?
 - still in its infantry \Rightarrow more results to come soon

Thank you!

http://blackholes.ist.utl.pt