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Abstract

We describe a general N -solitonic solution of the focusing nonlinear
Schrödinger equation in the presence of a condensate by using the dressing
method. We give the explicit form of one- and two-solitonic solutions and
study them in detail as well as solitonic atoms and degenerate solutions. We
distinguish a special class of solutions that we call regular solitonic solutions.
Regular solitonic solutions do not disturb phases of the condensate at infinity
by coordinate. All of them can be treated as localized perturbations of the
condensate. We find a broad class of superregular solitonic solutions which
are small perturbations at a certain moment of time. Superregular solitonic
solutions are generated by pairs of poles located on opposite sides of the cut.
They describe the nonlinear stage of the modulation instability of the condensate
and play an important role in the theory of freak waves.
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1. Introduction

This research was motivated by the intention to develop an analytic theory of freak (or rogue)
waves in ocean and optic fibres. In recent times the simplest and most universal model
for description of these waves is the focusing nonlinear Schrödinger equation (NLSE). In
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application to the theory of ocean waves this equation has been used since 1968 [1]. In
nonlinear optics it was known even earlier [2].

The focusing NLSE is a first approximation model. For the surface of fluid this model
describes the essentially weakly nonlinear quasimonochromatic wave trains with maximal
steepness not more than 0.15 [3]. In nonlinear optics its application is also limited to the case
of waves of small amplitudes (see, for instance [4]). Nowadays numerous models generalizing
the NLSE have been developed. For the surface waves they are Dysthe equations [5, 6],
for the waves in optic fibres equations include the third time derivatives and more complex
forms of nonlinearity (see for instance [7, 8]). Also, freak waves in the ocean were studied
by numerical modelling of exact Euler equations for potential flow with free boundary [9,10].
The behaviour of freak waves studied by NLSE and by more sophisticated models shows
considerable quantitative difference. Nevertheless, advanced improvement of NLSE does not
lead to any qualitatively new effects. That means that a careful and detailed study of NLSE
solutions is still a very important problem.

There is a point of common agreement that extreme waves on deep water appear as a
result of modulation instability of quasimonochromatic weakly nonlinear stationarity waves
[9,11,12]. In terms of the focusing NLSE model it means that we should study the instability of
the condensate—a simple NLSE solution, the monochromatic wave with frequency dependent
on amplitude.

It has been known since 1971 that the NLSE is a system that is completely integrable
by the inverse scattering method (ISM) [13]. Since this time hundreds of papers and several
books have been written on this subject (see for instance the monographs [14–17]). In this
sea of literature one can find some articles devoted to development of the ISM for NLSE with
focusing in the presence of condensate (see the literature cited below). The application of the
ISM technique to the NLSE is not a novelty.

However, the central question appearing in this theory regarding what the long-term
consequences of the modulation instability are not been answered so far. In this article we
study the evolution of a special class of localized initial data presented by exact N -solitonic
solutions of NLSE. Solitonic solutions in the presence of an unstable condensate have a long
history.

In the nonsolitonic case a solution of the auxillary linear Zakharov–Shabat system (wave
function) is analytic in the right half plane of the spectral parameter λ = λR + iλI with the
exception of a cut on the real axis 0 < λR < A, where A is the condensate amplitude. Each
soliton adds a simple pole to some point of the right half plane, including possibly the cut.

The simplest solution was found by Kuznetsov in 1977 [18]. Later on this solution was
rediscovered by other authors [19,20]. In this case the pole is located on the real axis outside the
cut λR > A. The Kuznetsov solution is a localized bump oscillating in time. The oscillation
period grows as λR → A and becomes infinite in the limit λR = A. In this limit Kuznetsov’s
solution turns into the instanton found in 1983 by Peregrine [21]. This is a purely homoclinic
solution. It starts at t → −∞ from the condensate and returns at t → +∞ to the condensate
with the same phase. The importance of these solutions to the development of the theory
of freak waves is stressed in [22, 23]. Peregrine’s solution was rediscovered by Its et al in
1988 [24]. In their article it was called an ‘exulton’. In 1985 a second order Peregrine solution
was found [25]. Today ‘multi-Peregrine’ solutions are actively studied by different groups
(see for instance [26–28]).

In 1985 Akhmediev et al discovered a solitonic solution periodic in space but localized
in time (the so-called Akhmediev breather) [25]. This solution is almost homoclinic. It starts
from a condensate and returns to the condensate with the same amplitude and a different phase.
In the Akhmediev case the pole is located inside the cut 0 < λR < A.

2



Nonlinearity 27 (2014) 1 Invited Article

In the general case the pole is located in any point on the right half-plane. A generic solution
moves and oscillates. At x → ±∞ it goes to two condensates with the same amplitude and
different phases. In the explicit form it was found in the paper of Its et al [24]. Later this
solution was obtained by other methods and discussed in the frame of freak wave theory by
Slunyaev et al [29,30] and Akhmediev et al [23,31]. In 2011 a general one-solitonic solution
was obtained by the authors of this article using the ∂ problem [32]. General two-solitonic
and N -solitonic solution were suggested in 1998 by Tajiri and Watanabe [33]. Some types of
two-solitonic solutions and their degenerations were studied in the paper [34].

In this article we describe a general N -solitonic solution of the focusing NLSE in the
presence of condensate. We do not insist on our priority in this point but we believe that our
method for its construction is the most simple and economical. But this is not a major point
of our article. This article is more ‘practically oriented’. We give a partial answer to a major
question—what is the nonlinear stage of the modulation instability? When we speak about this
subject we must clearly separate development of two types of initial perturbations. One can
consider the periodic or quasiperiodic in space perturbations. Or one can study development
of perturbation localized in space. The time-behaviour of these two types of perturbations is
different even in the linear theory. The nonlinearity amplifies this difference enormously. In this
article we will speak only about the nonlinear behaviour of spatially localized perturbations.
We will show that a certain class of small perturbations can be described by 2N -solitonic
solutions.

A general N -solitonic solution tends at x → ±∞ to the condensate with different phases.
In this article we distinguish a class of regular solitonic solutions that do not disturb the
phases of the condensate at infinity. All regular solitonic solutions can be treated as localized
perturbations of the condensate. In the general case they are never small. However we are able
to construct an ample class of solutions that we call superregular solitonic solutions, which are
small perturbations of the condensate at a certain moment of time (suppose at t = 0). In fact
they are pairs of ‘quasi-Akhmediev’ breathers. We briefly reported this result in [41] and here
we present the detailed theory.

2. NLSE via the dressing method

We study solutions of the following NLSE

iϕt − 1
2
ϕxx − (|ϕ|2 − |A|2)ϕ = 0 (1)

with nonvanishing boundary conditions |ϕ|2 → |A|2 at x → ±∞. Without loss of generality
we assume that A is a real constant. Equation (1) is the compatibility condition for the following
overdetermined linear system for a matrix function Ψ [13]

∂Ψ

∂x
= ÛΨ, (2)

i
∂Ψ

∂t
= (λÛ + Ŵ )Ψ. (3)

Here

Û = Iλ + u, Ŵ =
1

2

(
|ϕ|2 − A2 ϕx

ϕ∗
x −|ϕ|2 + A2

)
,

I =
(

1 0

0 −1

)
, u =

(
0 ϕ

−ϕ∗ 0

)
. (4)
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From (2) and (3) we get the system for Ψ
−1:

∂Ψ−1

∂x
= −Ψ

−1Û ,

i
∂Ψ−1

∂t
= −Ψ

−1(λÛ + Ŵ ). (5)

and the adjoint system:

∂Ψ+

∂x
= Ψ

+Û+,

i
∂Ψ+

∂t
= −Ψ

+(λ∗Û+ + Ŵ +). (6)

We consider the adjoint system (6) in the point λ = −λ∗. We see that

Û+(−λ∗) = −Û(λ),

Ŵ + = Ŵ . (7)

Hence systems (5) and (6) coincide. This means that they have a class of solutions Ψ satisfying
the constraint

Ψ
+(−λ∗) = Ψ

−1(λ). (8)

In what follows we assume that this condition (8) is satisfied.
The idea of the dressing method is the following [35]. Suppose that we know some

solution ϕ0 of the NLSE (1) together with a fundamental solution Ψ0 as a matrix function on
x, t, λ, satisfying the corresponding linear system

∂Ψ0

∂x
= Û0Ψ0,

i
∂Ψ0

∂t
= (λÛ0 + Ŵ0)Ψ0. (9)

Here Û0 and Ŵ0 are obtained by replacing ϕ → ϕ0 in (4). Then we introduce the dressing
function

χ = ΨΨ
−1
0 . (10)

(Note that Ψ is still unknown.) We require that χ is regular at infinity

χ(λ) → E +
χ̃

λ
+ · · · , |λ| → ∞.

E =
(

1 0

0 1

)
. (11)

Evidently

χ+(−λ∗) = χ−1(λ). (12)

The dressing function χ satisfies an overdeterminated system of linear equations. The first
equation is

∂χ

∂x
= Ûχ − χÛ0, (13)

∂χ−1

∂x
= −χ−1Û + Û0χ

−1. (14)

Equation (14) can be rewritten as follows

Û = −χ

(
∂

∂x
− Û0

)
χ−1. (15)

4
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Now if we choose the dressing function χ such that Û defined from (15) has no singularities
on the λ-plane we construct a new solution of equation (2).

According to the Louiville theorem in this case the function Û must be completely defined
by its asymptotics at λ → ∞. By plugging (11) to (13) we find the so-called dressing formula

u = u0 + [χ̃, I], (16)

or

ϕ = ϕ0 − 2χ̃12. (17)

Here [ , ] is the commutator. Until now we perform the dressing of equation (2) only. From
equation (3) we can derive the following relation

λÛ + Ŵ = −χ

(
i
∂

∂t
− λÛ0 − Ŵ0

)
χ−1. (18)

If we now demand that Û , Ŵ have no singularities on the entire λ-plane, including infinity (in
other words, we require that Ŵ does not depend on λ), we realize the dressing of equations
(2) and (3). After performing the dressing procedure and determining χ, the function

Ψ = χΨ0 (19)

satisfies equations (2) and (3) where ϕ is given by (17). This is a new solution of equation (1).
There are several methods for constructing the dressing function χ. The method based on

the Riemann–Hilbert problem was described in the article of Zakharov and Shabat published
in 1979 [35]. A more advanced approach is based on the use of the local ∂-problem. This
will be a subject of our next paper. In this article we use a poor man’s version of the dressing
method to construct multisolitonic solutions of NLSE on an arbitrary background.

3. General N -solitonic solution

In this chapter we construct solutions of the NLSE following the method developed by Zakharov
and Mikhailov [36]. Let us assume that Ψ0(x, t, λ) is known and assume that χ is a rational
function of λ

χ = E +
∑

m

Um

λ − λm

. (20)

Without loss of generality we can assume Re(λn) > 0. As χ satisfies the condition (12), χ−1

can be written as:

χ−1 = E −
∑

m

U+
m

λ + λ∗
m

. (21)

Let us denote

χn = χ

∣∣∣∣
λ=−λ∗

n

= E −
∑ Um

λ∗
n + λm

(22)

and consider the identity

χχ−1 = E. (23)

At the point λ = −λ∗
n the identity (23) implies that

χnU
+
n = 0. (24)
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Hence Un, U+
n are degenerate matrices, χn, χ+

n are degenerate also. Now we introduce two
sets of complex-valued vectors pn,α , qn,α and set

Un,αβ = pn,αqn,β, U+
n,αβ = q∗

n,αp∗
n,β .

Condition (24) means that

χnq
∗
n,α = 0. (25)

Now

χαβ = δαβ +
∑

n

pn,αqn,β

λ − λn

,

χ−1
αβ = δαβ −

∑

n

q∗
n,αp∗

n,β

λ + λ∗
n

. (26)

Let us plug (26) into equation (15). In a general case the function Û acquires poles at points
λ = λn and λ = −λ∗

n. To perform dressing we must cancel residues in all poles. We consider
equation (15) in a neighbourhood of the point λ = −λ∗

n. To kill the residue at this point we
demand

χn

(
∂

∂x
− Û0(−λ∗

n)

)
q∗

n,αp∗
n,β = 0, (27)

or
∂q∗

n,α

∂x
− Û0,αβ(−λ∗

n)q
∗
n,β = 0. (28)

(Here we use (25).) This equality is resolved as follows

q∗
n,α = �0,αβ(−λ∗

n)ξn,β . (29)

Here ξα is an arbitrary complex-valued vector. In what follows we use the notation

Fn,αβ = �0,αβ(−λ∗
n). (30)

From this moment we assume that the set of vectors qn, q∗
n is known. To find the second set pn,

p∗
n we need to solve relation (25), which is equivalent to a system of linear algebraic equations.

∑

m

(qn · q∗
m)

λn + λ∗
m

p∗
m = qn. (31)

Here (qn · q∗
m) = qn,1q

∗
m,1 + qn,2q

∗
m,2 is a scalar product of qn and qm vectors. Denote

Mnm =
(qn · q∗

m)

λn + λ∗
m

, (32)

and M = det (Mnm). M is a Hermitian matrix:

M∗
nm = Mmn = MT

nm. (33)

Now (31) can be rewritten as
∑

m

MT
nmpm = q∗

n. (34)

We need to find χ̃ from the asymptotic expansion of χ (11), which can be represented as

χ̃αβ =
∑

n

pn,αqn,β . (35)

This sum can be calculated as a determinant ratio:

χ̃αβ = −
M̃αβ

M
. (36)

6
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Here M̃αβ is the following determinant:

M̃αβ =

∣∣∣∣∣∣∣∣∣

0 q1,β · · · qn,β

q∗
1,α

...

q∗
n,α

MT
nm

∣∣∣∣∣∣∣∣∣
. (37)

We find the solution of NLSE (1) from condition (17) as:

ϕ = ϕ0 + 2
M̃12

M
. (38)

Note that formulas (36) and (37) in the simplest case of dressing on a zero background were
found by Faddeev and Takhtajan [14]. Function χαβ can be presented as the following ratio

χαβ = −
M̂αβ

M
. (39)

Here

M̂αβ =

∣∣∣∣∣∣∣∣∣∣∣

δαβ

q1,β

λ − λ1
· · ·

qn,β

λ − λn

q∗
1,α

...

q∗
n,α

MT
nm

∣∣∣∣∣∣∣∣∣∣∣

. (40)

The dressing formula (19) can be written in the explicit form. Let

Ψ0 =
(

�011 �012

�021 �022

)
, (41)

then

Ψ =
1

M

(
M̂11�011 + M̂12�021 M̂11�012 + M̂12�022

M̂21�011 + M̂22�021 M̂21�012 + M̂22�022

)
. (42)

Now mention that transformation

qn → anqn, pn →
1

an

pn, (43)

where an are arbitrary complex numbers that do not change the result of dressing. Thus one
can put

ξn =
(

1

Cn

)
. (44)

The finally constructed N -solitonic solution depends on 2N complex numbers λn, Cn or on
4N real parameters. In what follows we assume Re(λ) > 0. In fact, it is enough to enumerate
all possible solitonic solutions. We will prove this fact in a separate paper. So far we are sure
that λn + λ∗

m �= 0, thus equations (31) are always solvable.
Now we present one-solitonic solution. Function χ has only one pole at λ = η, while

χ−1 has a pole at λ = −η∗. They can be presented in the following form (see [13])

χ = E +
U

λ − η
, χ−1 = E −

U+

λ + η∗ . (45)

As before

Uαβ = pαqβ . (46)

7
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Vectors p and q are connected by the relation

pα =
(η + η∗)q∗

α

|q1|2 + |q2|2
. (47)

As a result χ and χ−1 are

χ = E +
(η + η∗)P

λ − η
, χ−1 = E −

(η + η∗)P +

λ + η∗ . (48)

Here

Pαβ =
q∗

αqβ

|q1|2 + |q2|2
. (49)

P 2 = P , thus P is a projection matrix. As before we assume that the seed matrix Ψ0(x, t, λ)

is known. According to our definition (30)

Fαβ = �0,αβ(−η∗). (50)

Now

q∗
1 = F11 + CF12,

q∗
2 = F21 + CF22. (51)

Here C is arbitrary complex constant. Finally a new solution of NLSE is

ϕ = ϕ0 −
2(η + η∗)q∗

1 q2

|q1|2 + |q2|2
. (52)

This formula presents the one-solitonic solution on an arbitrary background. It was established
first in 1979 by Zakharov and Shabat [35] and reobtained in 1988 by Its et al [24] (see also [37]).

All results of this chapter can be extended to the much more general class of nonlinear
wave systems which can be presented as compatibility conditions for an overdetermined linear
system

Ψx = Û(λ)Ψ,

Ψt = V̂ (λ)Ψ, (53)

where Û and V̂ are rational matrix 2 × 2 functions on λ satisfying the follows condition

Û+(−λ∗) = −Û(λ),

V̂ +(−λ∗) = −V̂ (λ). (54)

In particular they can be extended to all higher members of the NLSE hierarchy. Only a minor
generalization is needed to extend this procedure to the case of n × n matrix systems.

4. N -solitonic solution on the condensate

The trivial condensate solution of equation (1) is ϕ = ϕ0 = A. This solution is unstable with
respect to small perturbations. The growth rate of instability is

Ŵ(p) = p
√

A2 − p2/4. (55)

Where p is wave number of perturbation. In what follows we study dressing only on the
condensate background.

Û0 =
(

λ A

−A −λ

)
, Ŵ0 = 0. (56)

8
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Ψ0 can be found as

Ψ0(x, t, λ) =
1√

1 − s2(λ)

(
exp(φ(x, t, λ)) s(λ) exp(−φ(x, t, λ))

s(λ) exp(φ(x, t, λ)) exp(−φ(x, t, λ))

)
. (57)

Here

φ = kx + t, k2 = λ2 − A2,

 = −iλk, s = −
A

λ + k
.

In what follows we assume that function k(λ) =
√

λ2 − A2 has a cut at −A < Re(λ) < A.
Thus k(λ) → λ at λ → ∞. Then

Ψ
−1
0 (x, t, λ) =

1√
1 − s2(λ)

(
exp(−φ(x, t, λ)) −s(λ) exp(−φ(x, t, λ))

−s(λ) exp(φ(x, t, λ)) exp(φ(x, t, λ))

)
. (58)

Note that

k∗(−λ∗) = −k(λ), s∗(−λ∗) = −s(λ), φ∗(−λ∗) = −φ(λ). (59)

One can check that

Ψ
−1
0 (−λ∗) = Ψ

+
0(λ). (60)

We denote for simplicity

φn = φn(λn), sn = s(λn), (61)

and by virtue of (59)

φn(−λ∗
n) = −φ∗

n, sn(−λ∗
n) = −s∗

n . (62)

Then

Fn = Ψ0(−λ∗
n) =

(
exp(−φ∗

n) −s∗
n exp(φ∗

n)

−s∗
n exp(−φ∗

n) exp(φ∗
n)

)
, q∗

n = Fn

(
1

Cn

)
, (63)

(we can omit the factor (1−s2
n)

−1/2 because, as mentioned before, it does not change the result
of dressing) and

qn1 = exp(−φn) − C∗
nsn exp(φn), qn2 = −sn exp(−φn) + C∗

n exp(φn). (64)

So far we have assumed that χ is a rational function on the λ-plane with a cut at −A < Re(λ) <

A. Now we perform the Jukowsky transform and map this plane onto the outer part of the
circle of unit radius (see figure 1).

λ =
A

2
(ξ + ξ−1), k =

A

2
(ξ − ξ−1), s = −ξ−1. (65)

The λ-plane is mapped onto exterior of the circle of radius R. If the pole is located at λ = λn,
then λn = A

2
(ξn + ξ−1

n ). In new variables

Fn =

(
exp(−φ∗

n) ξ ∗−1

n exp(φ∗
n)

ξ ∗−1

n exp(−φ∗
n) exp(φ∗

n)

)
, (66)

and

qn1 = exp(−φn) + ξ−1
n C∗

n exp(φn), qn2 = ξ−1
n exp(−φn) + C∗

n exp(φn). (67)

Finally we use parametrization

ξn = Rn exp(iαn), Cn = exp(iθn + µn), (68)

9
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Figure 1. Uniformization of the plane of spectral parameter with the help of Jukovsky
transform.

and denote Rn = exp(zn). Now

λn =
A

2
(Rn + R−1

n ) cos αn +
iA

2
(Rn − R−1

n ) sin αn

= A(cosh zn cos αn + i sinh zn sin αn). (69)

We also denote

wn = −iαn − zn. (70)

Now

Fn =
(

exp(−φ∗
n) exp(w∗

n + φ∗
n)

exp(w∗
n − φ∗

n) exp(φ∗
n)

)
. (71)

Expressions for qn can be simplified by redefining the phase factor φn. One can put

qn1 = exp(−φn) + exp(wn + φn), qn2 = exp(wn − φn) + exp(φn). (72)

Now

φn = un + ivn,

un = ænx − γnt + µn/2,

vn = knx − ωnt − θn/2,

æn =
A

2
(Rn − R−1

n ) cos αn = A sinh zn cos αn,

kn =
A

2
(Rn + R−1

n ) sin αn = A cosh zn sin αn,

γn = −
A2

4
(R2

n + R−2
n ) sin 2αn = −

A2

2
cosh 2zn sin 2αn,

ωn =
A2

4
(R2

n − R−2
n ) cos 2αn =

A2

2
sinh 2zn cos 2αn. (73)

We write following expressions for quadratic combinations of qn which will be useful in the
next paragraphs:

q∗
n1qn2 = 2e−zn

[
cos αn cosh 2un + cosh zn cos 2vn + i(sin αn sinh 2un + sinh zn sin 2vn)

]
,

|qn1|2 − |qn2|2 = 4e−zn(sin αn sin 2vn − sinh zn sinh 2un),

|qn|2 = 4e−zn(cos αn cos 2vn + cosh zn cosh 2un). (74)

10
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The N -solitonic solution is invariant with respect to shifts in time and space. If we replace

x → x − x0, t → t − t0. (75)

Then

µn → µn + 2(ænx0 + γnt0), θn → θn − 2(knx0 − ωnt0). (76)

This means that a space–time shift leads to renormalization of constants Cn:

Cn → Cn exp[2(ænx0 + γnt0) − 2i(knx0 − ωnt0)]. (77)

The N -solitonic solution can be considered as a nonlinear superposition of N separate solitons.
Each of them is characterized by the group velocity

VGrn
=

γn

æn

= −
A cosh 2zn sin αn

sinh zn

, (78)

and phase velocity

VPhn
=

ωn

kn

=
A sinh zn cos 2αn

sin αn

. (79)

When all zn > 0 the solution does not contain ‘Akhmediev components’. If all group velocities
are different, the N -solitonic solution separates asymptotically at t → ±∞ into a superposition
of individual solitons remote from one another. This makes it possible to determine asymptotic
properties at x → ±∞ of an N -solitonic solution. For an N -solitonic solution,

ϕ → −A exp(iα±), x → ±∞. (80)

The phases α± are constants in time. In the next paragraph we show that the phase of a
one-solitonic solution in the case z �= 0 is

ϕ → −A exp(±2ıα), x → ±∞. (81)

Then for far separated solitons

α+ = 2(α1 + · · · + αn), α− = −2(α1 + · · · + αn). (82)

This fact holds even in a general case when some group velocities coincide.
If we are interested in N -solitonic solutions localized in a finite spatial domain and not

perturbing the remote condensate we must demand

α+ = α−. (83)

We call this solution a regular solitonic solution and in what follows study only this case. If we
assume that the modulation instability develops from a localized perturbation, only a regular
solution can be used as a model for its nonlinear behaviour. Looking at (82) we conclude that
an N -solitonic solution is regular when

α1 + · · · + αn = 0, ±
π

2
. (84)

Among one-solitonic solutions only the Kuznetsov and Peregrine solutions are regular. In
two-solitonic case we can construct a broad class of regular solutions.

When all zn = 0 the solution is the N -Akhmediev breather, which is periodic in space
and localized in time. In this case we should study asymptotics at t → ±∞. The result is
analogous to the previous case but now the phase of the one-solitonic solution (Akhmediev
breather) is

ϕ → −A exp(±2i|α|), t → ±∞. (85)
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The modulus sign appears because the sign of α is not important for the Akhmediev breather
(see the next paragraph). Then for the N -Akhmediev breather

ϕ → −A exp(iα±), t → ±∞ (86)

α+ = 2(|α1| + · · · + |αn|), α− = −2(|α1| + · · · + |αn|). (87)

We developed an analytical code making it possible to calculate N -solitonic solutions using
‘Wolfram Mathematica’ and checked relations (82) and (87) directly for n = 2, 3.

In the case of the N-Akhmediev breather a condition of equal phases at t → ±∞ is
following

|α1| + · · · + |αn| = ±
π

2
. (88)

This is a pure homoclinic N-Akhmediev breather.

5. One-solitonic solution on the condensate

A one-solitonic solution on a condensate background can be obtained by implementing the
results of the last part of section 3. This solution is defined by only one complex eigenvalue
λ1 = η and one complex parameter C1 = C. Our standard parametrization is

ξ = R exp(iα), C = exp(iθ + µ), R = exp(z). (89)

Let us denote

φ = φ(η), s = s(η). (90)

Recall that by virtue of (59)

φ(−η∗) = −φ∗, s(−η∗) = −s∗. (91)

We need only one complex vector q = (q1, q2):

q1 = exp(−φ) + exp(−iα − z + φ), q2 = exp(−iα − z − φ) + exp(φ). (92)

Here

φ = u + iv,

u = æx − γ t + µ/2, v = kx − ωt − θ/2,

æ = A sinh z cos α, γ = −
A2

2
cosh 2z sin 2α,

k = A cosh z sin α, ω =
A2

2
sinh 2z cos 2α. (93)

The general one-solitonic solution depends on four scalar parameters R, α, θ, µ. Two of
them θ, µ are responsible for shifts in time and in space. If we put µ = 0, θ = 0, the
one-solitonic solution can be written as follows:

ϕ = − A(cosh z cosh 2u + cos α cos 2v)−1[cosh z cos 2α cosh 2u + cosh 2z cos α cos 2v

+ i(cosh z sin 2α sinh 2u + sinh 2z cos α sin 2v)]. (94)

To obtain the general solution we replace t → t − t0, x → x − x0 where x0 = (µω + θγ )/2�,
t0 = (µk + θæ)/2�. Here � = kγ − æω. This solution is localized in space if R �= 1. In this
case the asymptotics of (94) are

ϕ → −A exp(−2iα), x → −∞,

ϕ → −A exp(2iα), x → +∞,

|ϕ|2 = A2, x → ±∞. (95)

12
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Figure 2. Species of one-solitonic solution. —Kuznetsov soliton, �—Akhmediev
breather, �—general solution, •—quasi-Akhmediev breather, �—Peregrine soliton.

We see that solution (94) has identical asymptotics at x → ±∞ only in the case α = 0, when
the pole is on the real axis. The position of pole defines the type of the soliton. Different
possible positions are plotted in figure 2. We describe below all these species of one-solitonic
solutions. Let us put α = 0, R > 1, z > 0. This is exactly the Kuznetsov solution. If the
solution is centred at x = 0 and θ = 0 it is presented by the following expression

ϕ = −A
cosh z cosh 2u + cosh 2z cos 2v + i sinh 2z sin 2v

cosh z cosh 2u + cos 2v
. (96)

Here

u = A sinh(z)x, v = −
A2

2
sinh(2z)t. (97)

This solution is periodic in time. Its oscillation period is

T =
4π

A2 sinh 2z
. (98)

Note that

T → ∞, z → 0, R → 1

T → 0, z → ∞, R → ∞. (99)

It was reported that recently Kuznetsov soliton was observed experimentally in optical fibres
[38]. The typical behaviour of the Kuznetsov soliton is given in figure 3. In the limit
R → 1, T → ∞ the Kuznetsov solutions turns into the Peregrine homoclinic soliton given
by expression

ϕ = −A + 4A
1 − 2iA2t

1 + 4A2x2 + 4A4t2
. (100)

This solution is actually ‘instanton’ appearing from the condensate and disappearing. Indeed
ϕ → A at t → ±∞. The Peregrine soliton was observed experimentally in water wave
tank [40] and optical fibres [39]. N -‘instantonic’ solutions can be obtained by analogous limit
for N poles. Multisolitonic solutions describe a special scenario of modulation instability
development, when growing perturbation in the long run return back to condensate. We will
show in this article that this is a very special scenario, badly unstable with respect to small
deformations. In a more general case waves developed from small perturbation do exist
infinitely long time.

13



Nonlinearity 27 (2014) 1 Invited Article

Figure 3. Kuznetsov soliton ϕ at the moment of minimum (left) and maximum (right)
of its amplitude. R = 2, µ = 0, θ = 0. Green dashed lines—real part of ϕ, red short
dashed lines—imaginary part of ϕ and blue solid lines—absolute squared value of ϕ.

Figure 4. Akhmediev breather ϕ at moments of time t = −3 (left) and t = 0 (right).
α = π/4, µ = 0, θ = 0. Green dashed lines—real part of ϕ, red short dashed
lines—imaginary part of ϕ and blue solid lines—absolute squared value of ϕ.

We now put R = 1, z = 0. Again we will put θ = 0, µ = 0. We obtain the famous
Akhmediev breather, which is periodic in space and localized in time.

ϕ = −A
cos 2α cosh 2u + cos α cos 2v + i sin 2α sinh 2u

cosh 2u + cos α cos 2v
, (101)

here

u = 1
2
A2 sin(2α)t, v = A sin(α)x.

The Akhmediev breather is plotted in figure 4. Note that the Akhmediev breather is identical
at α and −α. This is expected, because these two points are equal in the initial λ plane. This
leads to a modulus sign in asymptotic expressions at t → ±∞:

ϕ → −A exp(−2i|α|), t → −∞
ϕ → −A exp(2i|α|), t → +∞.

The Akhmediev breather is homoclinic in a weak sense, i.e. |A+|2 = |A−|2, but A+ �= A−.
We can see it by comparison of the solution plotted in figure 4 at moments of time t = −3
and t = 3. In the especially interesting case α = π/4, which corresponds to the maximum
of modulation instability increment (55), we find that A+ = −A−. The spatial period of the
Akhmediev breather

L =
2π

A sin α
, (102)
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Figure 5. General one-solitonic solution ϕ at the moment of the minimum (left) and
maximum (right) of its amplitude with parameters: R = 2, α = 5π/16, µ = 0, θ = 0.
Green dashed lines—real part of ϕ, red short dashed lines—imaginary part of ϕ and blue
solid lines—absolute squared value of ϕ.

tends to infinity if α → 0. In this limit the solution tends to a periodic set of Peregrine solitons
remote from one another. Now we return to the general one-solitonic solution. This is a
localized object of size l ≈ (A sinh z cos α)−1 propagating along the condensate with group
velocity

Vgr =
γ

æ
= −

A cosh 2z sin α

sinh z
. (103)

The soliton’s amplitude oscillates with angular frequency ω. The soliton is filled with a carrying
wave propagating with phase velocity.

Vph =
ω

k
=

A sinh z cos 2α

sin α
. (104)

If α → 0 this carrying wave vanishes. A typical general one-solitonic solution is plotted in
figure 5.

It is important to average by integrating over an oscillation period T = 2π/ω the squared
absolute value of one-solitonic solution (94). This demonstrates the behaviour of the average
value of the number of particle integral. Remarkably, the answer can be obtained analytically
in a very simple form. We move to the coordinate system which travels with group velocity Vgr

x → x +
γ

æ
t. (105)

Then the dependence on time in hyperbolic functions disappears and they can be regarded as
constant when integrating over time. As a result

〈|ϕ|2〉T =
A2

2π

∫ 2π

0

dτ(cosh z cosh 2u + cos α cos τ)−2

[
(cosh z cos 2α cosh 2u + cosh 2z cos α cos τ)2

+ (cosh z sin 2α sinh 2u + sinh 2z cos α sin τ)2
]
. (106)

The integral is evaluated using residues after the standard change of variables w = exp(iτ).
The path of integration now |w| = 1. The integrand has one pole of the first order at point
w0 = 0 and two poles of the second order in points

w1,2 = − cosh z cosh 2u cos−1 α ±
√

cosh2 z cosh2 2u cos−2 α − 1. (107)
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Figure 6. Time-averaged absolute squared value of one-solitonic solutions presented
in figure 5 (left) and by formula (109) (right). Dashed and solid lines in the left panel
correspond to the moments of time t = 0, t = 0.755 from figure 5 respectively.

However, only w0 and w1 lie inside the circle |w| = 1. After integration we need to change
back to initial coordinate system. The final answer is

〈|ϕ|2〉T = A2 +
4A2 cosh 2u

(cosh2 2u − cos2 α cosh−2 z)3/2

sinh2 z cos2 α(sinh2 z + sin2 α)

cosh2 z
. (108)

The case from figure 5 averaged by time is presented in figure 6.
It is interesting to perform an averaging of the Kuznetsov solution at the point x = 0. In

this case α = 0, u = 0 and

〈|ϕ|2〉T = A2 + A2 sinh4 z

cosh2 z
. (109)

In particular in the limiting case R → 1, z → 0 we obtain the expected result

〈|ϕ|2〉T = A2. (110)

We now pay attention to the special case of general one-solitonic solution when R → 1, z → 0.
This is the ‘quasi-Akhmediev’ breather of very large size

L ≈
1

Az cos α
. (111)

moving with very high group velocity

Vgroup ≈ −
A sin α

z
, (112)

and very low phase velocity

Vph ≈
Az cos 2α

sin α
. (113)

The soliton has an inner quasiperiodic structure with characteristic scale l ≈ 2π(A sin α)−1.
Observing this solution from a fixed point (for example x = 0) the total passing time of this
soliton is

T ≈
L

Vgroup
=

1

A2 cos α sin α
. (114)

T → ∞ if α → 0. It is interesting that this time does not depend on z. It is important to
stress that the ‘quasi-Akhmediev’ breather remain after its passing slowly decaying ‘tails’.
The ‘quasi-Akhmediev’ breather is plotted in figure 7.

16



Nonlinearity 27 (2014) 1 Invited Article

Figure 7. Absolute squared value of ‘quasi-Akhmediev’ solutions ϕ at t = 0 with
different α. Left: R = 1.02, α = π/4, µ = 0, θ = 0, right: R = 1.02, α =
π/11, µ = 0, θ = 0.

6. Two-solitonic solution

A general two-solitonic solution on a condensate background can be obtained by applying
the dressing procedure described in section 2. As before we write solution in uniformizing
variables. However, for intermediate calculations in the next paragraphs it is more convenient
to use two-solitonic solution in λ variable:

ϕ = A − 2
Nλ

�λ

,

Nλ =
|q1|2q∗

21q22

λ1 + λ∗
1

−
(q∗

1q2)q
∗
21q12

λ∗
1 + λ2

−
(q1q

∗
2)q

∗
11q22

λ∗
2 + λ1

+
|q2|2q∗

11q12

λ2 + λ∗
2

,

�λ =
|q1|2|q2|2

(λ1 + λ∗
1)(λ2 + λ∗

2)
−

(q1q
∗
2)(q

∗
1q2)

(λ∗
1 + λ2)(λ

∗
2 + λ1)

. (115)

In uniformizing variables two-solitonic solution is given in the following form

ϕ = A − 2A
Nξ

�ξ

. (116)

Here

Nξ = H1|q1|2q∗
21q22 + H2|q2|2q∗

11q12 + iH3[(q1 · q∗
2)q

∗
11q22 − (q∗

1 · q2)q
∗
21q12],

�ξ = H4|q1|2|q2|2 − H5|(q1 · q∗
2)|

2. (117)

The vectors q1 and q2 are determined by the general expression (72) and

H1 = 2 cos α2 cosh z2[(sin α1 sinh z1 − sin α2 sinh z2)
2 − cos2 α1 cosh2 z1 + cos2 α2 cosh2 z2],

H2 = 2 cos α1 cosh z1[(sin α1 sinh z1 − sin α2 sinh z2)
2 + cos2 α1 cosh2 z1 − cos2 α2 cosh2 z2],

H3 = 4 cos α1 cos α2 cosh z1 cosh z2

(
sin α1 sinh z1 − sin α2 sinh z2

)
,

H4 =
(
sin α1 sinh z1 − sin α2 sinh z2

)2
+

(
cos α1 cosh z1 + cos α2 cosh z2

)2
,

H5 = 4 cos α1 cos α2 cosh z1 cosh z2. (118)

One can check that following identities are valid

|q1|2q∗
21q22 − (q∗

1 · q2)q
∗
21q12 − (q1 · q∗

2)q
∗
11q22 + |q2|2q∗

11q12 ≡ 0,

(q1 · q∗
2)q

∗
11q22 − (q∗

1 · q2)q
∗
21q12 = (|q11|2 − |q12|2)q∗

21q22 + (|q21|2 − |q22|2)q∗
11q12,

|q1|2|q2|2 − |(q1 · q∗
2)|

2 = |q11q22 − q12q21|2. (119)

17



Nonlinearity 27 (2014) 1 Invited Article

Figure 8. General two-solitonic solution ϕ at moments of time t = −10 (left) and t = 0
(right) with parameters: R1 = 2, α1 = π/8, R2 = 3, α2 = π/3, µ1 = µ2 = 0, θ1 =
θ2 = 0. Green dashed lines—real part of ϕ, red short dashed lines—imaginary part of
ϕ and blue solid lines—absolute squared value of ϕ.

Let us note that when poles are not on the real axes (α1 �= 0, α2 �= 0) and group velocities are
not equal (VGr1

�= VGr2
) we can make µ1 = 0 and µ2 = 0 by shifts in space and time. Now the

solitons collide at (x = 0, t = 0). In what follows we put µ1 = 0 and µ2 = 0 in these cases.
The signs of α1 and α2 determine the signs of the group velocities. In general two-solitonic
solution changes the phase of the condensate. The example of two solitons which move in one
direction and collide is presented in figure 8. We can write two-solitonic solution in explicit
form by using expressions (74) and

(q1 · q∗
2) = 4 exp

(
z2 − z1

2
+ i

α2 − α1

2

)

×
[
(cos(v1 − v2) cosh(u1 + u2) + i sin(v1 − v2) sinh(u1 + u2))

×
(

cos
α1 − α2

2
cosh

z1 + z2

2
+ i sin

α1 − α2

2
sinh

z1 + z2

2

)

+ (cos(v1 + v2) cosh(u1 − u2) + i sin(v1 + v2) sinh(u1 − u2))

×
(

cos
α1 + α2

2
cosh

z1 − z2

2
+ i sin

α1 + α2

2
sinh

z1 − z2

2

)]
. (120)

Let us write another useful expression:

q11q22 − q12q21 = − 4 exp

(
−

z1 + z2

2
− i

α1 + α2

2

)

×
[
(cos(v1 + v2) cosh(u1 + u2) + i sin(v1 + v2) sinh(u1 + u2))

×
(

cos
α1 − α2

2
cosh

z1 − z2

2
+ i sin

α1 − α2

2
sinh

z1 − z2

2

)

+ (cos(v1 − v2) cosh(u1 − u2) + i sin(v1 − v2) sinh(u1 − u2))

×
(

cos
α1 + α2

2
cosh

z1 + z2

2
+ i sin

α1 + α2

2
sinh

z1 + z2

2

)]
. (121)

In section 4 we obtained that the solution is regular when the sum of angular parameters is
equal to zero or ±π/2. For the two-solitonic case this leads to the existence of two types of
regular solutions. When α1 = α, α2 = −α the solution is a regular two-solitonic solution of
the first type. It consists of two solitons which move in opposite directions and collide. The
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Figure 9. Regular two-solitonic solution ϕ of the first type at moments of time t = −4
(left) and t = 0 (right) with parameters: R1 = 1.5, α1 = π/4, R2 = 2.5, α2 =
−π/4, µ1 = µ2 = 0, θ1 = θ2 = 0. Green dashed lines—real part of ϕ, red short
dashed lines—imaginary part of ϕ and blue solid lines—absolute squared value of ϕ.

group velocities are

VGr1 = −
A cosh 2z1 sin α

sinh z1
, VGr2 =

A cosh 2z2 sin α

sinh z2
. (122)

We set µ1 = 0 and µ2 = 0, and finally a regular two-solitonic solution of the first type depends
on five real parameters R1, R2, α, θ1, θ2. The regular two-solitonic solution of the first type is
plotted in figure 9. In the special symmetric case z1 = z2 = z the eigenvalues are complex
conjugates. Then φ1 and φ2 are given by its definition (73) with

æ2 = æ1 = æ = A sinh z cos α,

k1 = −k2 = k = A cosh z sin α,

γ1 = −γ2 = γ = −
A2

2
cosh 2z sin 2α,

ω1 = ω2 = ω =
A2

2
sinh 2z cos 2α. (123)

Nξ and �ξ for two-solitonic solution (116) in symmetric case (see figure 10) are given by

Nξ = sinh 2z sinh z sin 2α sin α(|q1|2q∗
21q22 + |q2|2q∗

11q12),

+ i cosh z cos α((q1 · q∗
2)q

∗
11q22 − (q∗

1 · q2)q
∗
21q12),

�ξ = 2 cosh2 z cos2 α|q11q22 − q12q21|2 + 2 sinh2 z sin2 α|q1|2|q2|2, (124)

and

q11 = exp(−φ1) + exp(−iα − z + φ1), q21 = exp(−φ2) + exp(iα − z + φ2),

q12 = exp(−iα − z − φ1) + exp(φ1), q22 = exp(iα − z − φ2) + exp(φ2). (125)

When α1 = α, α2 = π/2 − α, α > 0 or α1 = α, α2 = −π/2 − α, α < 0 the solution
is a regular two-solitonic solution of the second type. It consists of two solitons moving in
one direction and in the general case colliding (unless the group velocities coincide). Let us
consider only the case α > 0 (the case α < 0 is different only in the direction of movement).
Note that now we cannot put µ1 = 0 and µ2 = 0 simultaneously because the group velocities
can coincide. A regular two-solitonic solution of the second type is plotted in figure 11.
For regular solutions of the second type the condition z1 = z2 = z does not lead to serious
simplifications as for the first type. Therefore we will omit expressions for this case.
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Figure 10. Regular two-solitonic solution ϕ of the first type in symmetric case at
moments of time t = −4 (left picture) and t = 0 (right picture) with parameters:
R1 = 2, α1 = π/4, R2 = 2, α2 = −π/4, µ1 = µ2 = 0, θ1 = θ2 = 0. Green
dashed lines—real part of ϕ, red short dashed lines—imaginary part of ϕ and blue solid
lines—absolute squared value of ϕ.

Figure 11. Regular two-solitonic solution ϕ of the second type at moments of time
t = −10 (left) and t = 0 (right) with parameters: R1 = 3, α1 = π/12, R2 = 3, α2 =
5π/12, µ1 = µ2 = 0, θ1 = θ2 = 0. Green dashed lines—real part of ϕ, red short
dashed lines—imaginary part of ϕ and blue solid lines—absolute squared value of ϕ.

When z1 = z2 = 0 the solution is a double Akhmediev breather. This is a solution periodic
in space and localized in time. In general a double Akhmediev breather is almost homoclinic
because the phases of condensate at t → ±∞ are not equal: ϕ → exp(±i(|α1| + |α2|)). Now
expression (116) can be written as

ϕ = A + 4A
(cos2 α1 − cos2 α2)(cos α2|q1|2q∗

21q22 − cos α1|q2|2q∗
11q12)

(cos α1 + cos α2)2|q1|2|q2|2 − 4 cos α1 cos α2|(q1 · q∗
2)|2

. (126)

Double Akhmediev breather is shown in figure 12. For the double Akhmediev breather we
can put µ1 = 0 and θ1 = 0. Let us denote µ2 = µ and θ2 = θ . Now the first component of the
Akhmediev breather is centred by x and t and µ, θ correspond to phase shifts with the second
component. Now

φ1 =
A2

2
sin(2α1)t + iA sin(α1)x,

φ2 =
A2

2
sin(2α2)t + µ/2 + i(A sin(α2)x − θ/2), (127)
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Figure 12. Double Akhmediev breathers ϕ at moments of time t = −5 (left), t = 0
(middle) and with t = 5 (right). Top—double Akhmediev breather with parameters
α1 = π/6, α2 = π/4, µ = 0, θ = 0. Bottom—homoclinic double Akhmediev
breather with parameters α1 = π/12, α2 = 5π/12, µ = 0, θ = 0.

and

q11 = exp(−φ1) + exp(−iα1 + φ1), q21 = exp(−φ2) + exp(−iα2 + φ2),

q12 = exp(−iα1 − φ1) + exp(φ1), q22 = exp(−iα2 − φ2) + exp(φ2). (128)

If µ ≫ A2 sin 2α2 the solution is two Akhmediev breathers which appear at different moments
of time. In other case the solution is complicated nonlinear superposition of two Akhmediev
breathers.

When |α2| = π/2 − |α1| double Akhmediev breather is homoclinic. The solution is

ϕ = A + 4A
(cos2 α − sin2 α)(sin α|q1|2q∗

21q22 − cos α|q2|2q∗
11q12)

(cos α + sin α)2|q1|2|q2|2 − 2 sin 2α|(q1 · q∗
2)|2

. (129)

Now

φ1 =
A2

2
sin(2α)t + iA sin(α)x,

φ2 =
A2

2
sin(2α)t + µ/2 + i(A cos(α)x − θ/2), (130)

and

q11 = exp(−φ1) + exp(−iα + φ1), q21 = exp(−φ2) − i exp(iα + φ2),

q12 = exp(−iα − φ1) + exp(φ1), q22 = −i exp(iα − φ2) + exp(φ2). (131)

This solution has equal phases at t → ±∞. An example is shown in figure 12.
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Figure 13. Bounded two-solitonic solution ϕ at moments of collision (left) and
maximum distance (right) with parameters: R1 = 2, α1 = 0, R2 = 3, α2 = 0, µ1 =
µ2 = 0, θ1 = θ2 = 0. Green dashed lines—real part of ϕ, red short dashed lines—
imaginary part of ϕ and blue solid lines—absolute squared value of ϕ.

Figure 14. Combination of Akhmediev breather and Kuznetsov soliton. Absolute
squared value of ϕ at the moment of time at moments of time t = −10 (green dashed
line), t = −2 (red short dashed line) and t = 0 (blue solid line) with parameters:
R1 = 3, α1 = 0, R2 = 1, α2 = π/3, µ1 = µ2 = 0, θ1 = θ2 = 0.

When both poles are on the real axis (α1 = 0, α2 = 0) the solution is a bounded state.
Now Nξ and �ξ for (116) are given by

Nξ = 2 cosh z2(cosh2 z2 − cosh2 z1)|q1|2q∗
21q22 + 2 cosh z1(cosh2 z1 − cosh2 z2)|q2|2q∗

11q12,

�ξ = (cosh z1 + cosh z2)
2|q1|2|q2|2 − 4 cosh z1 cosh z2|(q1 · q∗

2)|
2. (132)

One can put as in the previous case µ1 = 0, θ1 = 0, µ2 = µ, θ2 = θ . Then

φ1 = A sinh(z1)x − i
A2

2
sinh(2z1)t,

φ2 = A sinh(z2)x + µ/2 − i

(
A2

2
sinh(2z1)t − θ/2

)
. (133)

The example of bounded solution is presented in figure 13. Many two-soliton combination
types are possible. The example of a combination of an Akhmediev breather and a Kuznetsov
soliton is plotted in figure 14.
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Figure 15. Two-solitonic atom ϕ at moments of time t = −10 (left) and t = 0 (right)
with parameters: R1 = 1.5, R2 = 2.5, α1 = π/5, α2 = 0.6721, µ1,2 = 0, θ1,2 = 0.
Green dashed lines—real part of ϕ, red short dashed lines—imaginary part of ϕ and
blue solid lines—absolute squared value of ϕ.

Figure 16. Three-solitonic atom ϕ at moments of time t = −10 (left) and t = 0 (right)
with parameters: R1 = 2, R2 = 2.25, R3 = 2.5, α1 = π/3, α2 = 1.00148, α3 =
0.933785, µ1,2,3 = 0, θ1,2,3 = 0. Green dashed lines—real part of ϕ, red short dashed
lines—imaginary part of ϕ and blue solid lines—absolute squared value of ϕ.

7. Solitonic atoms

In the case when all group velocities coincide the solution represents a solitonic atom (first
mentioned in [35])—a complicated configuration of solitons moving together. Complicated
solitonic atoms containing a large number of solitons should be described by methods of
statistical mechanics. In the two-solitonic case

cosh 2z1

sinh z1
sin α1 =

cosh 2z2

sinh z2
sin α2. (134)

The shapes of typical two-solitonic and three-solitonic atom are presented in figures 15 and 16.
We can construct a ‘regular N -solitonic atom’. This is possible only when

|α1| + · · · + |αn| = ±
π

2
. (135)

An example of a regular two-solitonic atom is given in figure 17.

23



Nonlinearity 27 (2014) 1 Invited Article

Figure 17. Regular two-solitonic atom ϕ with parameters R1 = 3.5, R2 = 1.664 56,
α1 = 5π/24, α2 = 7π/24, µ1,2 = 0, θ1,2 = 0. Green dashed lines—real part of ϕ, red
short dashed lines—imaginary part of ϕ and blue solid lines—absolute squared value
of ϕ.

8. Annulation of solitons

Let us consider the limiting case

R1 = R2 = 1, α1 = −α2 = −α. (136)

In this paragraph we use λ-variables. Now

λ1 = λ∗
1 = λ2 = λ∗

2 = A cos α. (137)

Then (see (119))

Nλ =
|q1|2q∗

21q22 − (q∗
1 · q2)q

∗
21q12 − (q1 · q∗

2)q
∗
11q22 + |q2|2q∗

11q12

2A cos α
≡ 0,

�λ =
|q11q22 − q12q21|2

4A2 cos2 α
, (138)

as well

æ1 = æ2 = 0, ω1 = ω2 = 0,

k1 = −k2 = k = A sin α, γ1 = −γ2 = γ =
A2

2
sin 2α. (139)

u1 = −γ t + µ1/2, u2 = γ t + µ2/2,

v1 = kx − θ1/2, v2 = −kx − θ2/2. (140)

Then vectors q1, q2 are periodic functions of x and exponential functions of time. We denote

µ1 ± µ2 = µ±, θ1 ± θ2 = θ±. (141)

From (121) we obtain that

q11q22 − q12q21 = −4 sin α

(
cos

θ+

2
sinh

µ+

2
− i sin

θ+

2
cosh

µ+

2

)
. (142)

Finally

�λ =
4 sin2 α

A2 cos2 α

(
cos2 θ+

2
sinh2 µ+

2
+ sin2 θ+

2
cosh2 µ+

2

)
. (143)

The denominator � in this case does not depend on x and t . It is just a number. � �= 0 if
θ+ �= 0 or µ+ �= 0 (we do not consider the special Peregrine case α = 0). Since N = 0 this
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means that in a general case θ+ �= 0 two pure Akhmediev breathers with opposite values of α

completely annihilate each other. In this case the dressing function χ is given by the scalar
matrix

χ =
(

1 +
2A cos α

λ − A cos α

) (
1 0

0 1

)
. (144)

When θ1 = −θ2 = θ and µ1 = −µ2 = µ, both the numerator N and the denominator � in
(179) are zero. We consider this case separately.

The annihilation of solitons takes place for the general case of 2N pairs of poles. This
can easily be shown mathematically. Now

RN+k = Rk = 1, αN+k = −αk. (145)

Here k = 1, . . . N . Let us discuss the system (34)

∑

m

(qn · q∗
m)

λn + λ∗
m

p∗
m = qn. (146)

This system can be solved explicitly if we assume that all λn are real. Their total number is
2N and

λN+k = λk, k = 1, . . . N. (147)

We introduce following new variables

Xn = pn,1qn,1 + pN+n,1qN+n,1, Yn = pn,1qn,2 + pN+n,1qN+n,2. (148)

We check that system (146) is satisfied if Yn = 0 while Xk satisfies following system of
equations.

N∑

k=1

Xk

λn + λk

= 1. (149)

This system has a unique solution if λi �= λj as long as Xk are known. If we assume
Sn = qn,1qN+n,2 − qn,2qN+n,1 �= 0, then

pn,1 =
1

qn,1qN+n,2 − qn,2qN+n,1

∣∣∣∣
Xn qN+n,1

0 qN+n,2

∣∣∣∣ =
XnqN+2

qn,1qN+n,2 − qn,2qN+n,1
,

pN+2,1 =
1

qn,1qN+n,2 − qn,2qN+n,1

∣∣∣∣
qn,1 Xn

qn,2 0

∣∣∣∣ = −
Xn

Sn

. (150)

The dressing function χ is diagonal

χ = E

(
1 +

∑

k

Xk

λ − λk

)
. (151)

But the condition Yn = 0 is equivalent to the pairwise annihilation of the solitons, which
was to be proved. It is important that here we do not specify the form of vectors qn. This
means that the annulation of solitons takes place for a wide class of background solutions (the
background solution must correspond to a cut in the plane of spectral parameter; it is a subject
for discussion in another article), particularly on N -solitonic solutions, described in this paper.
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Figure 18. Superregular pair of poles corresponds to a small perturbation of the
condensate.

9. Superregular two-solitonic solutions

This chapter is central to our paper. The remarkable fact of the exact cancellation of two
Akhmediev breathers with opposite values of angular parameter α makes it possible to construct
a special and very important class of 2N -solitonic solutions describing the evolution of an
infinitesimally small perturbation of the condensate. These solutions form a subset of regular
solutions. We call them superregular solitonic solutions. We start with the case N = 1 and
assume that R1, R2 are close to one:

R1 ≃ 1 + ε, R2 ≃ 1 + aε, (152)

ε > 0, a > 0, |ε| ≪ 1. We call such poles a superregular pair (see figure 18). Denote the
deviation of a solution from the condensate at the moment of solitons collision by δϕ:

ϕ = A + δϕ. (153)

Again we make intermediate calculations in λ variable. The deviation δϕ is given by the
expression

δϕ = −2
δNλ

�̃λ

. (154)

Here δNλ is a variation of the numerator while �̃λ is a modified version of the denominator
calculated with higher accuracy. In what follows to calculate the modified function we have
to neglect the parameter ε except for the case when ε is multiplied by x. We do so because
the product εx is not small at x > ε−1. Actually such products appear in functions φn. First
of all we note that

λ1 ≈ A cos α + iεA sin α, (155)

λ2 ≈ A cos α − iaεA sin α, (156)

and

λ1 + λ∗
2 = 2A cos α + i(1 + a)εA sin α,

λ∗
1 + λ2 = 2A cos α − i(1 + a)εA sin α. (157)

Then

�̃λ =
|̃q11q̃22 − q̃12q̃21|2

4A2 cos2 α
. (158)
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By analogy

δNλ =
iε(1 + a) sin α

4A cos2 α
((q̃1 · q̃∗

2 )̃q
∗
11q̃22 − (q̃∗

1 · q̃2)̃q
∗
21q̃12). (159)

The vectors q̃1, q̃2 are given by formulae (131) but now

k1 = −k2 = k = A sin α,

æ1 = εA cos α = εζ,

æ2 = aεA cos α = aεζ. (160)

Here we denote ζ = A cos α. In what follows in this paragraph we put µ1 = µ2 = 0, which
corresponds to solitons colliding at x = 0, t = 0. Now

φ1 = ikx + εζx − iθ1/2, φ2 = −ikx + aεζx − iθ2/2. (161)

As a result the vectors q̃1 and q̃2 have following components

q̃11 = exp(−ikx − εζx + iθ1/2) + exp(−iα + ikx + εζx − iθ1/2),

q̃21 = exp(ikx − aεζx + iθ2/2) + exp(iα − ikx + aεζx − iθ2/2),

q̃12 = exp(−iα − ikx − εζx + iθ1/2) + exp(ikx + εζx − iθ1/2),

q̃22 = exp(iα + ikx − aεζx + iθ2/2) + exp(−ikx + aεζx − iθ2/2). (162)

We calculate �̃ assuming θ+ �= 0

�̃λ =
4 sin2 α

A2 cos2 α

(
cos2 θ+

2
sinh2(ε(1 + a)ζx) + sin2 θ+

2
cosh2(ε(1 + a)ζx)

)
. (163)

The denominator is a function slowly oscillating in space. The products q̃12q̃22 and q̃∗
21q̃

∗
11 in

the numerator consist of both quickly and slowly changing components. Hence ϕ can be given
as a sum of two terms

δϕ = δϕslow + δϕfast. (164)

Here

δϕslow ≈
εAi(1 + a) sin θ+

cos2 θ+

2
sinh2(ε(1 + a)ζx) + sin2 θ+

2
cosh2(ε(1 + a)ζx)

, (165)

is a function slowly varying in space, while

δϕfast ≈[
−εA(1 + a) sin α(sinh(2ǫaζx) sin(2kx − θ1) + sinh(2ǫζx) sin(2kx + θ2))

+i cos α(cosh(2ǫaζx) sin(2kx − θ1) − cosh(2ǫζx) sin(2kx + θ2)) − i sin θ+

]/

[
cos2 θ+

2
sinh2(ε(1 + a)ζx) + sin2 θ+

2
cosh2(ε(1 + a)ζx)

]
, (166)

is rapidly oscillating. In the symmetric case a = 1 and δNλ and �̃λ become

δNλ = 2ε sin α sinh(2εζx) sin

(
2kx −

θ−

2

)
cos

θ+

2

−i cos α cosh(2εζx) cos

(
2kx −

θ−

2

)
sin

θ+

2
− i sin θ+

�̃λ = cos2 θ+

2
sinh2(2εζx) + sin2 θ+

2
cosh2(2εζx). (167)
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Figure 19. Superregular two-solitonic solution ϕ with parameters: R1 = R2 =
1.075, α1 = π/4, α2 = −π/4, µ1 = µ2 = 0, θ1 = θ2 = π/2. Absolute squared
value (top, blue solid lines), real (bottom, green dashed lines) and imaginary (bottom,
red solid lines) parts of solution ϕ at moments of time t = 0 (left) and t = 10 (right).

The simplest case appears when θ+ = π and a = 1

δϕ ≈ 4iεA

cos α cos

(
2kx − θ−

2

)

cosh(2εζx)
. (168)

It is important that this perturbation grows exponentially at the first time. It is described
by well-known equations for the linear stage of modulation instability. This can be seen by

looking at the expansion of ϕ at t �= 0, exp(γ t) < ε−1 (remember that γ = −A2

2
sin 2α). Let

us write only the simplest expression for the latter case (168):

δϕ ≈ 2iεA

(exp(iα − 2γ t) + exp(−iα + 2γ t)) cos

(
2kx − θ−

2

)

cosh(2εζx)
. (169)

The derived two-solitonic solution describes the following physical process. An initially
small localized perturbation of the condensate generates a pair of quasi-Akhmediev breathers
propagating in opposite directions, as a rule having fast group velocity. In the symmetric case
a = 1 these solitons are symmetric. The typical development of these superregular solitonic
solution is given in figures 19 and 20. The examples of initial small condensate perturbations
are presented in figure 21. It is important to note that superregular solutions leave after the
propagation of quasi-Akhmediev breathers a condensate with a different phase (a difference
with the phase at infinity is 4α, see figure 19). Two-solitonic superregular solution is described
by five parameters α, ε, a, θ+, θ− and can be shifted in space and in time, thus the total number
of free parameters is seven.
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Figure 20. The development of superregular two-solitonic solutions. Absolute squared
value of solution ϕ at moments of time t = 0 (left) and t = 10 (right) with parameters:
R1 = R2 = 1.2, α1 = π/3, α2 = −π/3, µ1 = µ2 = 0, θ1 = θ2 = π/2 (top) and
R1 = 1.1, R2 = 1.05, α1 = π/3, α2 = −π/3, µ1 = µ2 = 0, θ1 = θ2 = π/2
(bottom).

Figure 21. The enlarged small perturbation at the moment of time t = 0 which is given
on the top of figure 20 (left) and the same perturbation with different constants C1, C2:
µ1 = 0, θ1 = 0, µ2 = 0, θ1 = π (right).

Note that the generated solitons have a small number of oscillations if we choose the
parameter α near zero. Figure 22 demonstrates such a situation. At the end of our paper we
show that these results can be essentially generalized. We construct 2N -solitonic superregular
solutions representing small perturbation of the condensate at t = 0.

10. Degenerate solutions

We start this paragraph by discussing the degenerate case θ+ = 0 mentioned previously.
Now the numerator and the denominator of the two-solitonic solution are both zero. This
indeterminate form can be resolved using l’Hôpital’s rule. We choose α1 = α2 = α,
R1,2 = 1 + ε,ε → 0 and θ1 = −θ2 = θ , µ1 = −µ2 = µ in (124) and expand the numerator
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Figure 22. Superregular two-solitonic solution ϕ with small angular parameter at
moments of time t = 0 (left) and t = 10 (right) with parameters: R1 = R2 = 1.05, α1 =
0.1, α2 = −0.1, µ1 = µ2 = 0, θ1 = θ2 = π/2. Green dashed lines—real part of
ϕ, red short dashed lines—imaginary part of ϕ and blue solid lines—absolute squared
value of ϕ.

and the denominator to the second order by ε. It is convenient to use explicit expressions
(74), (120) and (121) for quadratic functions of vectors qn and its components. If we put
θ = 0, µ = 0 the solution is centred in space and time and given in the following form

ϕ = A − 2A sin 2α
M − iK

H
. (170)

Here

M = sin α(cosh 2γ t + cos α cos 2kx)(cos α cosh 2γ t + cos 2kx)

+ cos α sin α sinh 2γ t (sinh 2γ t − 2t sin α cos 2α cos 2kx)

+ cos α sin α sin 2kx(2ζx sin α cosh 2γ t + sin 2kx),

K = sin2 α sinh 2γ t (cosh 2γ t + cos α cos 2kx)

− cos α(sinh 2γ t − 2t sin α cos 2kx)(cos α cosh 2γ t + cos 2kx)

− 2 cos α sin α sin 2kx(ζx cos α sinh 2γ t − t sin 2kx),

H = cos2 α
[
(2ζx sin α + sin 2kx cosh 2γ t)2 + (cos 2kx sinh 2γ t − 2t sin α)2

]

+ sin2 α(cosh 2γ t + cos α cos 2kx)2 (171)

and

k = A sin α, γ = −
A2

2
sin 2α,

ζ = A cos α,  = A2 cos 2α. (172)

The solution is a combination of trigonometric, hyperbolic and polynomial functions. The
typical behaviour is illustrated in figure 23.

The second question which should be discussed here is the following. The numerator
vanishes not only when poles are complex conjugate but also when they coincide at an arbitrary
point λ1 = λ2. Indeed, now

R1 = R2 = R, α1 = α2 = α. (173)

λ1 = λ2 = A cosh z cos α + iA sinh z sin α. (174)
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Figure 23. The development of degenerate two-solitonic solution. Absolute squared
value of solution ϕ at different moments of time. The pole is on the cut: R = 1, α1 =
π/5, µ = 0, θ = 0.

Then

Nλ =
|q1|2q∗

21q22 − (q∗
1 · q2)q

∗
21q12 − (q1 · q∗

2)q
∗
11q22 + |q2|2q∗

11q12

2A cosh z cos α + 2iA sinh z sin α
≡ 0,

�λ =
|q11q22 − q12q21|2

4A2 cosh2 z cos2 α
, (175)

as well as

æ1 = æ2 = æ = A sinh z cos α, ω1 = ω2 = ω =
A2

2
sinh 2z cos 2α,

k1 = k2 = k = A cosh z sin α, γ1 = γ2 = γ = −
A2

2
cosh 2z sin 2α. (176)

Now

u1 = æx − γ t + µ1/2, u2 = æx − γ t + µ2/2,

v1 = kx − ωt − θ1/2, v2 = kx − ωt − θ2/2. (177)

Again, the vectors q1,q2 are periodic functions of x and exponential functions of time. But
now

q11q22 − q12q21 = −4 sin α

(
cos

θ−

2
sinh

µ−

2
− i sin

θ−

2
cosh

µ−

2

)
, (178)

and

�λ =
4 sin2 α

A2 cosh2 z cos2 α

(
cos2 θ−

2
sinh2 µ−

2
+ sin2 θ−

2
cosh2 µ−

2

)
. (179)
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Figure 24. Absolute squared value of two-solitonic solution ϕ with close poles located
on the unit circle (the area of poles location is illustrated in the subfigure) at the moment
of its collision (t = 0). The difference in angular variable is 0.05 (left) and 0.025
(right). Parameters: R1 = R2 = 1, α1 = 3π/4 + 0.05 (left), α1 = 3π/4 + 0.025 (right),
α2 = 3π/4, µ1 = µ2 = 0, θ1 = π/2. θ2 = −π/2.

Figure 25. Absolute squared value of two-solitonic solution ϕ with close poles located
near an arbitrary point (the area of poles location is illustrated in the subfigure) at
the moment of time t = 0. The distance between poles is 0.1 (left) and 0.000 01
(right). Parameters: R1 = 2.9 (left), R1 = 2.999 99 (right), R2 = 3, α1 = π/5, α2 =
π/5, µ1 = µ2 = 0, θ1 = π/2, θ2 = 0.

Again the denominator � does not depend on x and t . But now � �= 0 if θ− �= 0 or µ− �= 0.
The degenerate case appears when θ1 = θ2 = θ and µ1 = µ2 = µ. However, as we will
see later, there is no cancellation of solitons and small perturbations do not appear in the limit
λ1 → λ2. Roughly this can be explained as follows. A small perturbation cannot dramatically
change the phase of the solution, thus they cannot appear in an arbitrary point of ξ -plane. But
how do we approach this solution to the condensate in the limit λ1 → λ2?

We first discuss the case when the poles are close on the unit circle. As we know this
is a particular case of a double Akhmediev breather, thus the solution is periodic in space.
When α1 → α2 periodic beats occur at the difference frequency. The amplitude of the beats
tends to a constant, while the distance between the beats L increases in inverse proportion to
the difference α1 − α2. This situation is illustrated in figure 24. Thus the limit is reached by
tending the distance between beats to infinity: L → ∞.

When one pole tends to another at an arbitrary point, the solitons move in one direction.
As we mentioned in section 6 if we put µ1 = µ2 = 0 the solitons collide at x = 0, t = 0.
But the distance of interaction becomes nonzero. Indeed, on figure 25 solitons at the moment
of collision are presented. We see that they interact with nonzero distance which is in inverse

32



Nonlinearity 27 (2014) 1 Invited Article

Figure 26. Degenerate two-solitonic solution ϕ at moments of time t =
0, 10, 100, 1000. Parameters: R = 2, α = π/3, µ = 0, θ = 0. Green dashed
lines—real part of ϕ, red short dashed lines—imaginary part of ϕ and blue solid lines—
absolute squared value of ϕ.

proportion to the logarithm of the difference between poles location. It means that now the
limit is reached by tending to infinity the distance between solitons at the moment of collision.
To obtain a solution in the general case we must put µ1 = µ2 = µ and θ1 = θ2 = θ . Now
l’Hôpital’s rule should be applied to the general two-solitonic solution (116). The result is
two solitons which moves and oscillates in time. At certain moment they collide and than
the distance between them increases logarithmically with time. It is again a combination
of trigonometric, hyperbolic and polynomial functions. The expression for the degenerate
solution at an arbitrary point is rather cumbersome, so we only give a picture for this case (see
figure 26).

When α1 = α2 = 0 (the bounded state) the situation is similar—with R1 → R2

the distance between solitons at the moment of their collision increases logarithmically.
The degenerate solution can be written in following explicit form:

ϕ = A − 2A sinh 2z
M − iK

H
. (180)

Here

M = sinh z(cosh 2æx + cosh z cos 2ωt)(cos 2ωt + cosh z cosh 2æx)

− sinh z cosh z sinh 2æx cos 2ωt(cos 2ωt sinh 2æx + 2ζx sinh z)

− sinh z cosh z cosh 2æx sin 2ωt(sin 2ωt cosh 2æx + 2t sinh z),

K = sinh2 z sin 2ωt(cos 2ωt + cosh z cosh 2æx)

− cosh2 z sinh 2æx sin 2ωt(cos 2ωt sinh 2æx + 2ζx sinh z)

+ cosh z(cosh 2æx cos 2ωt cosh z + 1)(sin 2ωt cosh 2æx + 2t sinh z),
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Figure 27. Absolute squared value of degenerate two-solitonic solution ϕ at moments
of time t = 0 (blue solid line), 10 (red short dashed line) and 100 (green dashed line).
The pole is on the real axis: R = 2, α = 0, µ = 0, θ = 0.

H = cosh2 z
[
(cos 2ωt sinh 2æx + 2ζx sinh z)2 + (sin 2ωt cosh 2æx + 2t sinh z)2

]

+ sinh2 z(cos 2ωt + cosh z cosh 2æx)2 (181)

now

æ = A sinh z, ω =
A2

2
sinh 2z,

ζ = A cosh z,  = A2 cosh 2z. (182)

This is two solitons with the distance increasing logarithmically with time. The example is
given in figure 27. Note that a particular case on a zero background is well known and was
mentioned in the first work on the focusing NLSE by Zakharov and Shabat [13]. At the
end of this paragraph we discuss degenerate superregular solitonic solutions. Indeed, it is
possible to construct a solution with a superregular pair of degenerated poles (α3 = α1 = α

and α4 = α2 = −α) as a limit R3 → R1 and R4 → R2, (µ3, θ3 = µ1, θ1, µ4, θ4 = µ2, θ2,
again θ1 + θ2 �= 0). The result is a small localized perturbation which develops into four
quasi-Akhmediev breathers which move in general with high group velocity. But now they
separate from each other in the pair which moves in one direction logarithmically with time.
It is a straightforward result of the paragraph which, however, is very hard to obtain explicitly
by the methods described above. We calculate the limit by using ‘Wolfram Mathematica’.
The result can be naturally generalized to the case of 2N degenerated pairs similarly to the
nondegenerate case described below. The example is given in figure 28. The detailed study of
the degenerate case deserves a separate paper which should include an adequate mathematical
scheme.

11. Superregular 2N -solitonic solutions

Let us consider the case of N superregular pairs of poles. Now

αn = −αn+N , Rn = 1 + ε, Rn+N = 1 + anε. (183)

Here n = 1, . . . N is the number of the pair. A small parameter expansion of the general
formula (38) is quite a tedious task. Fortunately, the scheme of the dressing method avoids
this difficulty. As was mentioned at the end of section 2 we can start from an arbitrary initial
solution ϕ0. In this way, we can consistently add (dress the initial solution) complex conjugated
pairs of poles to the solution.
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Figure 28. The development of degenerated superregular four-solitonic solution.
Absolute squared value of solution ϕ at different moments of time with parameters:
R1 = R2 = 1.1, α1 = π/3, α2 = −π/3, µ1 = µ2 = 0, θ1 = θ2 = π/2.

Let us denote by ϕn, χn, Ψn the solution, the dressing function and matrix Ψ which
correspond to the solution with n pairs of poles. ϕ0 = A and Ψ0 (is given by (63)) correspond
to the condensate as usual. Then ϕn can be found by the use of the recurrence relation

ϕn = ϕ(n−1) − 2χ̃(n),12. (184)

We know how to find the function χn knowing Ψn from section 6. Thus the main problem
is to construct a recurrence relation for the function Ψn. Suppose that we know the solution
ϕn−1 and the corresponding function Ψn−1, χn−1. Then Ψn can be found by the use of (10) as
Ψn = χnΨn−1. Then

Ψn = χnχn−1 · · · χ1Ψ0 (185)

by virtue of (26)

χn,µν = δµν +
p1,µq1,ν

λ − λn

+
p2,µq2,ν

λ − λn+N

= δµν +
(λ − cos αn)(p1,µq1,ν + p2,µq2,ν) − iε sin αn(p1,µq1,ν − p2,µq2,ν)

(λ − λn)(λ − λn+N )
. (186)

Now qn and pn are much more complicated than vectors calculated earlier, because they are
result of dressing on 2(n−1) solitonic background. χn can be presented in the following form

χn = χ(0)
n E + χ(1)

n + χ(2)
n + · · · + χ(n)

n (187)

Here χ(0)
n is a leading order. This is a result of dressing on the condensate background. χ(1)

n is
proportional to ε, χ(2)

n is proportional to ε2 etc—the results of previous superregular dressings.
χ(0)

n can be obtained by the limit ε → 0 in (186) as

χ(0)
n =

(
1 +

2A cos αn

λ − A cos αn

) (
1 0

0 1

)
. (188)
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Figure 29. The development of superregular four-solitonic solution. Absolute squared
value of solution ϕ at different moments of time with parameters: R1 = 1.05, R3 =
1.05, α1 = π/5, α3 = −π/5, µ1 = µ3 = 0, θ1 = θ3 = π/2; R2 = 1.075, R4 =
1.075, α2 = π/5, α4 = −π/5, µ2 = µ4 = 0, θ2 = θ4 = π/2.

Note that this is exactly formula (144) with α = αn. χ(0)
n satisfy to the condition

χ(0)∗

n (−λ∗) = χ(−1)
n (λ). (189)

Now if we expand (191) and keep only the first order terms, we will get such a sum:

n∑

k=1

(χ(0)
n · · · χ(0)

k+1χ
(1)
k χ

(0)
k−1 · · · χ(0)

1 )Ψ0. (190)

However, according to (43), multiplying the dressing matrix on scalar factors such as χ(0)
n does

not change the result of dressing. Then in the first order we write (191) as

Ψn = (E + χ(1)
n + χ

(1)
n−1 + · · · + χ

(1)
1 )Ψ0. (191)

It proves that ϕn is a linear sum of perturbations δϕn corresponding to the nth pair of poles:

ϕn = A +

N∑

m=1

δϕn. (192)

Each ϕn is calculated in the first order by (164) with its own parameters.
An example of a small localized perturbation of the condensate at the moment t = 0 for

four- and six-solitonic solutions are given in figures 29 and 30. The examples of initial small
condensate perturbations are presented in figure 31. Note that in figure 29 superregular pairs
have the same angle.
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Figure 30. The development of the superregular six-solitonic solution. Absolute
squared value of solution ϕ at different moments of time with parameters: R1 =
1.05, R4 = 1.075, α1 = π/4, α4 = −π/4, µ1 = µ4 = 0, θ1 = θ4 = π/2;
R2 = 1.05, R5 = 1.1, α2 = π/7, α5 = −π/7, µ1 = µ5 = 0, θ1 = θ5 = π/2;
R3 = 1.1, R6 = 1.1, α3 = π/12, α6 = −π/12, µ3 = µ6 = 5, θ3 = θ6 = π/2.

Figure 31. Enlarged small perturbations at the moment of time t = 0 presented in
figure 29 (left) and in figure 30 (right).

12. Conclusion

In this paper we have made an attempt to completely describe the focusing NLSE solitonic
solutions in the presence of a condensate from the general point of view. We describe the
general N -solitonic solution and explicitly study all the most important species of one- and
two-solitonic solutions.

One can easy plot any N -solitonic solution by using our general formula (38) and
appropriate software and analyse their behaviour with our explicit formulas. The analysis
is significantly easier in uniformizing variables.

The central result of our work is the following. We find a broad class of regular solitonic
solutions which are localized perturbations of the condensate at t = 0. Superregular solutions
form a subset of regular solutions and describe small localized perturbations. They develop into
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a nonlinear superposition of N pairs of quasi-Akhmediev breathers. This can be treated as a
sort of ‘integrable turbulence’ appearing as a result of nonlinear development of the modulation
instability. When ε → 0 this superposition is linear, so that at t = 0 superregular solutions
form an infinite-dimensional linear functional space. This remarkable fact will be discussed
in another article.

Superregular solutions theory is an important step towards a truly self-consistent theory
of the nonlinear stage of the modulation instability. This theory must be only statistical and
should include averaging over the variety of unstable solutions belonging to the classes of
regular solutions, standing localized solitons (the Kuznetsov and the Peregrin solitons as well
as their multisolitonic analogues) and the continuous spectrum.
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