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Experiments on Identification of Multiple

Scatterers in Spaceborne SAR Data
Fabrizio Lombardini, Senior Member, IEEE, and Matteo Pardini, Member, IEEE

Abstract—Interest is growing in the application of coherent pro-
cessing of synthetic aperture radar (SAR) data to the monitoring
of complex urban or infrastructure areas. However, such scenarios
are characterized by the layover phenomenon, in the presence
of which conventional interferometric SAR techniques degrade
or cannot operate. As a consequence, to monitor reliably a high
number of ground structures, the identification, i.e., the detection
and height and deformation velocity estimation, of both single
and multiple scatterers interfering in the same SAR cell can be
a key step. This issue is addressed here by means of differential
tomography (Diff-Tomo), a recent multibaseline–multitemporal
generalized interferometric framework which allows to resolve
multiple moving scatterers at different heights in the same cell.
In particular, superresolution adaptive Diff-Tomo is extensively
tested and augmented with a new information extraction algo-
rithm for the automated identification of the multiple scatterers.
Experiments have been carried out with real C-band spaceborne
data over urban areas; corresponding results are shown and
discussed.

Index Terms—Detection, differential interferometry, multi-
dimensional signal processing, synthetic aperture radar (SAR),
tomography.

I. INTRODUCTION

IN THE past three decades, synthetic aperture radar (SAR)

images have demonstrated unique capabilities for geo-

science applications. To overcome the imagery misinterpre-

tations due to the 3-D scattering projection onto the 2-D

range–azimuth plane, cross-track SAR interferometry (InSAR)

has been introduced. By exploiting the pixel-by-pixel phase

variation between two or more SAR images acquired in view-

ing angle diversity (producing one or more interferometric

baselines), InSAR has become a well-assessed technique for

the generation of accurate digital elevation models (DEMs)

[1]. However, such InSAR techniques do not take account

of possible scatterer movements. For this reason, differential

InSAR (D-InSAR) has been proposed based on the analysis of
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Fig. 1. Example of a MB acquisition geometry (K SAR images) over a
scenario with three scatterers in layover at heights z1, z2, and z3 in a first
range–azimuth cell (denoted with an arc), and two scatterers in second cell
at a larger range. (x) Azimuth direction. (y) Ground-range direction. (z)
Vertical height direction. (r) Slant range. (δr) Slant-range resolution. (B) Total
baseline.

temporal phase changes. In this context, D-InSAR stacking [2],

persistent scatterer interferometry (PSI) [3], and the small base-

line subset (SBAS) processing [4] are mature techniques based

on multiple pass satellite SAR acquisitions. The possibility of

accurately detecting and mapping centimeter- to millimeter-

scale deformations of the ground and of monitoring buildings,

glacier flows, and slope instabilities with large coverage, high

density of measures, and low cost has been widely demon-

strated.

Nonetheless, the well-known layover phenomenon arises if

the imaged area is characterized by the presence of a steep

enough surface topography, generating critical projection of

the scatterers in the slant imaging geometry, or by a high

spatial density of strong scatterers. As a consequence, the signal

collected in a SAR pixel may contain the superposition of the

signals from multiple scatterers [1], [5], [6]. This condition is

common also for volumetric scenarios such as forested areas,

glaciers, and arid zones, particularly for low-frequency SARs,

and it is frequent when data are acquired over complex scenar-

ios such as urban areas or large structures and infrastructures.

An example of a scenario with a step height variation (typical

of urban areas) is shown in Fig. 1 in the ground-range–height

plane, with three scatterers in layover in the first cell (denoted
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with an arc) and two scatterers in a second cell at a larger range.

Existing InSAR and D-InSAR algorithms cannot separate the

multiple-scattering phenomena in the same pixel, thus degrad-

ing or denying operation in these conditions.

Consequently, much interest has recently concerned the SAR

3-D tomography (Tomo-SAR) [7]–[18]. Tomo-SAR combines

multibaseline (MB) acquisitions constituting a cross-track spa-

tial array to achieve focused fully 3-D images through elevation

beamforming (BF), i.e., spatial (baseline) spectral estimation,

thus overcoming the limitation of standard InSAR techniques.

Basically, Tomo-SAR can be regarded as a coherent (i.e.,

amplitude and phase) data combination technique in which

the amplitude information is useful for exploiting the mod-

ulation induced by the beating phenomena to separate the

multiple signals and to enhance the statistical accuracy even

for single scatterers. In doing so, Tomo-SAR can add more

features for solving InSAR height and reflectivity misinterpre-

tation caused by layover geometries in natural or urban areas

and for applications involving estimation of forest biomass

and height, subcanopy topography, soil humidity, and ice

thickness.

Although Tomo-SAR can separate multiple scatterers, it has

no measuring sensitivity to their deformation motions in the

line-of-sight direction. The first efforts to extend D-InSAR to

the multiple-scatterer case have been recently proposed in [19]

and [20]. In particular, the general framework of “differential

tomography” (Diff-Tomo) in [19] handles jointly the spatial

and the temporal dimensions deeply integrating the Tomo-SAR

concept with the D-InSAR concept and fully exploiting the

information content of MB–multitemporal data with terrain

movements. Joint resolution and estimation of the heights and

the deformation velocity is thus allowed of the multiple scat-

terers in the same cell through a 2-D space–time “BF” in the

height–velocity plane (i.e., 2-D baseline–time spectral estima-

tion). Diff-Tomo-based techniques are thus powerful candidates

for the analysis of layover urban scenarios.

Different processors have been proposed in the recent lit-

erature for Diff-Tomo analyses. To overcome the limited

height–velocity resolution of the 2-D Fourier-based BF [19]

and its poor sidelobe reduction capability, a deterministic ap-

proach was proposed in [21] and [22] in the framework of

linear inverse problems. The Diff-Tomo image is obtained

from the singular value decomposition (SVD) of the relevant

linear imaging operator. However, even if the SVD can reduce

the sidelobe amplitude, it does not have superresolution ca-

pabilities. Statistical methods have also been considered. The

2-D version of the adaptive BF based on the Capon spectral

estimator has been proposed in [19], together with the Fourier-

based framework, and first tested with real data in [23]. Starting

from a multilook estimate of the covariance matrix of the

MB–multitemporal data vector, the adaptive Diff-Tomo BF has

been demonstrated to possess the capabilities of superresolve

scatterers in the height–velocity plane and reduce the sidelobe

amplitudes. Recently, also the compressive sensing approach

has been proposed for Tomo-SAR in [17] and applied to Diff-

Tomo in [18].

This paper presents how superresolution adaptive Diff-Tomo,

augmented with a scatterer number detector, can be employed

for the automated extraction of the information about the height

and deformation velocity of single and multiple scatterers in the

same radar cell. More specifically, the contribution of this paper

is threefold. First, the originator method of superresolution

adaptive Diff-Tomo is improved beyond the first tests in [23]

in order to handle automatically a large data set by augmenting

it with a new original scatterer multiplicity detector for the

extraction of the height/deformation velocity information. In

particular, we tackle the detection problem by combining adap-

tive Diff-Tomo with a model-based least squares (LS) fitting

in the complex (i.e., amplitude and phase) data domain. All

the theoretical details and the discussion about the novelty

of the proposed identification (i.e., detection and parameter

estimation) algorithm are reported in Section II. Second, by

means of the developed scatterer multiplicity detector, the

extracted height/deformation velocity information is validated

extensively, instead of on a number of selected cells. Third, a

preliminary phenomenological analysis of the characteristics

of the detected scatterers is performed, which is novel also

considering the superresolution of the adaptive processing.

These two points and the related results have been addressed

in Section III by processing real C-band ERS-1/2 data over an

area around the San Paolo stadium in the city of Naples and over

the Cinecittà area in the city of Rome, with particular emphasis

on single and double scatterers.

II. DIFF-TOMO IDENTIFICATION OF THE

MULTIPLE SCATTERERS

This section is devoted to the theoretical presentation of

the algorithm proposed for the scatterer identification. In Sec-

tion II-A, the Diff-Tomo concept is recalled, and the relation is

given linking the available MB–multitemporal data vector and

the radar reflectivity function in the height–deformation veloc-

ity plane. Afterward, Section II-B presents the superresolution

adaptive Diff-Tomo imaging algorithm, which constitutes the

core technique used by the proposed scatterer identification

method. Finally, Section II-C shows how the adaptive Diff-

Tomo processor can be augmented with a new model-based 2-D

baseline–time LS fitting in order to estimate automatically the

number of scatterers interfering in the same radar cell.

A. Diff-Tomo Concept

The Diff-Tomo framework deeply integrates Tomo-SAR and

D-InSAR, whereas the temporal dimension is neglected for

Tomo-SAR, and only a single (possibly mean) height is ex-

tracted in conjunction with displacement measurements for

D-InSAR. With reference to this latter technique, Diff-Tomo

represents an extension of the D-InSAR scatterer separation

concept in [20], in which the specific case of two layover

scatterers with the same velocity is investigated.

We assume to process the data from K repeated flight tracks

of a single-channel SAR over the area of interest; multistatic

SARs with multichannel acquisition capability [26] are avail-

able. After accurate (subpixel) calibration procedures, i.e., the
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coregistration of the images, the deramping operation,1 and

the atmospheric propagation effect compensation,2 the focused

signal collected in a generic range–azimuth pixel at the kth

track (k = 1, . . . ,K) can be written as [21], [22]

[y]k =

∫∫

γ(h, v) [a(h, v)]k dhdv (1)

where y is a K-dimensional data vector collecting the complex

pixel amplitude at each track, γ(h, v) is the unknown complex

radar reflectivity function in the height–velocity domain, h

denotes the height, v denotes the velocity, and [a(h, v)]k is the

kth element of the so-called steering vector, defined as

[a(h, v)]k = exp

[

j2π

(

2h

λR sin θ
Bk +

2v

λ
Tk

)]

. (2)

In (2), λ is the radar wavelength, θ is the look angle, R is

the slant range, Bk is the kth orthogonal baseline, and Tk is

the kth acquisition time. Notice that, for a single-scattering

component, (2) corresponds to a permanent scatterer response

at the interferometric array [3]. It is apparent from (2) that the

relation (1) between the received data at the different tracks

and γ(h, v) is a spatial–temporal spectral Fourier integral, with

height-dependent spatial frequency

ωS =
2h

λR sin θ
(3)

and velocity-dependent temporal frequency

ωT =
2v

λ
. (4)

In other words, each scattering component in the data originates

a 2-D spatial–temporal harmonic from the data, and inversion

of (1) is equivalent to a 2-D spatial–temporal spectral estima-

tion. If the track distribution is uniform in the baseline–time

plane, the reconstruction of γ(h, v) can be simply obtained

by a 2-D Fourier transform of the data. However, the dis-

tribution is generally far from being uniform, resulting in a

very sparse 2-D sampling pattern. This sparsity produces in-

tolerable 2-D sidelobes or quasi-grating lobes in the estimated

height–deformation-velocity profiles. An example is shown in

Fig. 2, which plots the point-spread function (i.e., the Diff-

Tomo profile of a pointlike scatterer) of the data set over the

city of Naples, with a peak sidelobe level around −6 dB. This

aspect is peculiar to the Diff-Tomo imaging and requires the

setup of advanced processing. For this reason, in this work,

we make use of the 2-D version of the adaptive BF (indicated

with ABF from here on for brevity) [19], which furnishes a

leakage-reduced estimate of the backscattering intensity, i.e., of

Pγ(h, v) = E{|γ(h, v)|2}.

1The deramping compensates a phase term quadratic with the elevation
along the baselines by using the orbital information and an available coarse
DEM of reference. Moreover, the interferometric array constituted by the K
SAR acquisition positions is taken back to the convenient far-field behavior,
furnishing a phase history which is linear with the orthogonal baselines. The
deramping is effective only in a range of elevations around a reference one.

2The atmospheric phase calibration is carried out at low resolution by using
specific multitemporal filtering procedures [10].

Fig. 2. Point-spread function (in decibels) of the ERS-1/2 data set over the
city of Naples used for the real data experiments.

B. Superresolution Diff-Tomo Processing

The signal model (1) allows a reconstruction of the Diff-

Tomo profile in the array signal processing framework [19],

since a space–time distribution of equivalent phase centers of

a “hybrid” planar array can be synthesized starting from the

MB–multitemporal distribution of the radar platform passes in

the cross-track plane. As a consequence, the application is en-

abled of 2-D spectral estimation methods to obtain an estimate

of Pγ(h, v). In particular, the Diff-Tomo ABF is nonparametric

and belongs to the class of filterbank approaches for spectral

estimation. Its expression can be derived by designing a finite

impulse response of order K that passes the spatial–temporal

harmonic corresponding to the generic height h and the velocity

v in the MB–multitemporal data vector y without distortion

and, at the same time, attenuates as much as possible the power

of noise and of other elevation–velocity components different

from that of interest, making the produced 2-D response change

depending on the input data during the height–velocity scan

[19]. This behavior allows gains in terms of both resolution

and leakage (sidelobe) level.3 The design criterion described

before leads to the following expression for the filter coefficient

vector:

g(h, v) =
R̂−1a(h, v)

aH(h, v)R̂−1a(h, v)
(5)

where R̂ is a multilook estimate of the covariance matrix of

the data vector y. The Diff-Tomo ABF estimate of the power

spectrum Pγ(h, v) is then obtained by calculating the power of

the output of the filter (5).

We remark that vector a(h, v) in the processing is calculated

given the orbital information and times in which the images

have been acquired [10] with reference to the calibrated data.

However, spurious phase contributions produced by residual

3The leakage level reduction is achieved by setting proper nulls in the
produced spatial–temporal beam shape, thus rejecting the interference coming
from scattering from other heights and velocities than the selected. In this sense,
the spatial–temporal filter is data adaptive and exploits the information about
the spatial–temporal power spectrum through the array covariance matrix.
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atmospheric effects and possible deramping errors can make

the real form of the steering vector different from the nomi-

nal one (2). This mismatch can cause noticeable performance

degradation, leading to the so-called signal self-nulling or self-

cancellation, in which the useful signal at the (h, v) coordinate

of interest is seen as an interference and partially suppressed by

the filter, instead of being left unaltered [27]. To mitigate these

nonlinear radiometric effects and to avoid inversion problems

of the covariance matrix due to the small number of looks

compared with the number of tracks, a diagonal loading of R̂

can be included, with a total loading factor which is a multiple

of the noise power estimate through a coefficient δ [9], [24]. In

other words, the filter coefficients (5) are calculated by using

R̂+ δσ2
W I in lieu of R̂, where σ2

W is the additive thermal

noise power. However, there is not any simple rule for the

choice of δ, and it is usually determined empirically from a data

analysis.

A second remark is in order. In addition to the mentioned

improvements of ABF in terms of sidelobe rejection and su-

perresolution with respect to the Fourier-based BF [23], a

disadvantage is the need to implement a spatial multilook-

ing that decreases the horizontal resolution of the height

and velocity estimates of the detected scatterers. Neverthe-

less, the spatial multilooking is typically used also in polari-

metric Tomo-SAR analyses of airborne urban data [14] and

in the application of standard D-InSAR techniques, e.g., in

the SBAS processing (for distributed scatterers) [4]. Anyway,

for urban applications, single-look processing would be more

desirable.

C. Proposed Scatterer Detection Algorithm

From a statistical point of view, at the nth look available

for processing, the received signal vector in the presence of

layover at the interferometric cross-track array can be modeled

as a multicomponent K-dimensional complex-valued random

vector as follows [5], [25]:

y(n) =

NS
∑

i=1

√
τia(hi, vi)⊙ xi(n)⊙ e+w(n) (6)

where n = 1, . . . , N , N being the number of independent

looks, NS is the number of scatterers, hi and vi are the height

and the velocity, respectively, of the ith scatterer, τi is the

power of the ith scatterer, and the symbol “⊙” denotes the

Schur–Hadamard product. Moreover, xi(n) is a multiplicative

noise modeling the speckle vector at the nth look and the

ith scatterer, possibly partially decorrelated in space (baseline

decorrelation) and time. Vector w(n) is the thermal noise.

Vector e contains the residual random miscalibration errors

after atmospheric compensation and deramping; its kth element

can be written as [e]k = exp(jφk), where the phases φk are

commonly modeled as zero-mean random variables.

The detection of single scatterers (i.e., for NS = 1, absence

of layover), with completely correlated speckle and, after the

compensation (at least at a small scale) of the phase errors, has

been first afforded in the PSI framework [3]. In that context,

working with phase-only data, a scatterer is declared persistent

if the mismatch between its phase history and the corresponding

steering vector is below a threshold selected according to the

experimental evidence. Recently, working in a coherent data

combination framework, other techniques have been proposed

based on the generalized likelihood ratio test [28].

In the case of multiple speckled scatterers (i.e., NS > 1),

possibly corrupted by phase errors, the detection problem be-

comes atypical. A first contribution has been given in [20],

even if it is limited to nondecorrelating double scatterers with

the same velocity. In the multicomponent signal processing

area, the classical detection methods are based on the infor-

mation theoretic criteria (ITC), which rely on the eigenvalue

distribution of the data covariance matrix. ITCs were originally

conceived to operate with additive white Gaussian noise only

(i.e., in the absence of multiplicative noise and phase errors);

therefore, in a Tomo-SAR context, they are subjected to op-

erate under a model mismatch, with a possible performance

degradation. Nevertheless, their use has been investigated in

ideal conditions in [29] and experimented in [12] by pro-

cessing a spaceborne data set with reduced temporal decor-

relation. Although reasonable results were obtained, the main

concern with this “quick-look” detection technique is that it

does not furnish a quality index on the estimated number of

scatterers.

A suboptimal, but effective, detection algorithm was pro-

posed in [30]. This technique combines adaptive tomography

and a model-based fitting in the complex data domain for

the estimation of the reflectivity of a number of hypothetical

scatterers, which are then thresholded to obtain an estimate of

NS . The simulated analysis reported in [30] shows that this

algorithm can outperform the ITC methods also in their reg-

ularized version. Recently, this algorithm has been extended to

the case of the presence of data nonidealities and experimented

on real data in [24] and [25], with a preliminary validation of

the results obtained. A different algorithm has been presented

in [31] and extended to the Diff-Tomo framework in [32]. It

is based on a spectral model fitting in which the scattering

distribution in the height–velocity plane is compared with the

response to an ideal pointlike scatterer.

The detection algorithm presented here for scatterer iden-

tification extends the detection algorithm proposed in [25] to

the Diff-Tomo framework, i.e., it combines superresolution

adaptive Diff-Tomo processing with a 2-D model-based fitting

in the complex data domain. Owing to the superresolution prop-

erties of the core adaptive Diff-Tomo processor, the proposed

detector is expected to identify and locate a high number of

layover scatterers at a height difference below the Rayleigh

resolution limit. It is worth noting that experimental scatterer

superresolution was neither claimed nor demonstrated at a large

scale in the previous literature about scatterer separation [18],

[20], [32]. The novelties of the proposed scatterer detector with

respect to the ones existing in the literature are four. First, it

is flexible, as it can handle easily the detection of a number

of scatterers higher than two, which is different from [20]

and [32]. In addition, different from the approach in [20], the

detectable scatterers are not hypothesized to be pointlike, and

no assumptions have been made about their relative velocity.

Moreover, the proposed detector requires a simple setting of



LOMBARDINI AND PARDINI: SUPERRESOLUTION DIFFERENTIAL TOMOGRAPHY 1121

the thresholds, which are only two (on the estimated scatterer

SNR and on a properly defined fitting error) independently

of the order, in contrast with the approach in [32], in which

the number of thresholds to be set amounts to four to detect a

double scatterer and it is expected to increase if the algorithm

is extended to detect higher scatterer multiplicities. Finally, the

computational complexity of the proposed detector is lighter

with respect to both the approaches in [20] and [32], since the

test statistics can be calculated in closed form for each model

order and height and velocity estimates are directly extracted

from the peaks of the Diff-Tomo ABF spectrum, which is

calculated only once. Conversely, in [20], a multidimensional

nonconvex search is needed for the nonlinear LS estimation of

all the unknown parameters. On the other hand, the detection

of double scatterers is performed in an iterative fashion in [32],

and an SVD spatial–temporal spectrum is calculated two times

at each iteration.

The detection of the scatterers is carried out by means of a

sequential test. At the generic step, the presence of M hypo-

thetical scatterers is tested, with M starting from one. Their

heights and velocities are estimated from the locations of the M

highest peaks of the Diff-Tomo ABF spectrum. Notice that the

calculation of the 2-D ABF spectrum is not needed at each step,

resulting in a nonnegligible saving of computational burden.

These estimates are then conveyed to a 2-D model-based LS

fitting for the estimation of the corresponding scatterer powers

according to the following functional (see [33] for the 1-D

version):

α̂(n) = arg min
α(n)

‖y(n)−Aα(n)‖2 , n = 1, . . . , N (7)

where α(n) is an M -dimensional vector, whose elements are

the scatterer complex amplitudes at the nth look, and A is

the steering matrix whose columns are the steering vectors

calculated for the M heights and velocities estimated from

ABF (denoted with ĥm and v̂m, m = 1, . . . ,M , respectively,

in the following). Once the complex amplitudes are estimated

from the fitting (7), the scatterer reflectivity estimates τ̂m are

computed through the averaging of the squared absolute values

of the amplitudes. It is worth remarking that the employment

of the LS fitting is crucial to make the overall algorithm robust

to the peak self-cancellation phenomenon affecting the ABF.

Moreover, the functional (7) is model based since it is designed

for the estimation of the power backscattered from pointlike

targets, and it is statistically efficient only when white Gaussian

noise is present. Nevertheless, the simulated analysis in [25],

[30], and [33] has shown that the mismatch between (6) and (7)

due to the presence of noncompact scatterers is generally not

of concern. Finally, the signal-to-noise ratio associated to each

hypothetical source is estimated as

SN̂Rm =
τ̂m

σ̂2
W

. (8)

Aside from the estimation of the signal-to-noise ratio, a nor-

malized fitting error ε(M) is calculated as well after solving

Fig. 3. Block scheme of the proposed scatterer multiplicity detector. Refer to
Section II-C for detailed comments.

(7) defined as the ratio between the multilook averaged power

of the fitting residuals and the total data power, i.e.,

ε(M) =

N
∑

n=1

∥

∥

∥

∥

y(n)−
M
∑

m=1
α̂m(n)a(ĥm, v̂m)

∥

∥

∥

∥

2

N
∑

n=1
‖y(n)‖2

(9)

where α̂m(n) is the estimate of the complex amplitude of the

mth hypothetical scatterer, obtained from (7), at the nth look

(i.e., the mth element of vector α̂(n), m = 1, . . . ,M ).

Both the SN̂R’s and ε(M) are thresholded to control the

iterations and output the estimated number of scatterers. For the

sake of clearness, a block scheme of the detection algorithm

is shown in Fig. 3. In ideal conditions, a simple yet effective

strategy proceeds blockwise (i.e., it estimates the SNR of

an assumed maximum number of sources) and declares that

a scatterer is present if the corresponding SN̂Rm is higher

than a threshold; otherwise, it is classified as a noise com-

ponent. In [30], this criterion has been demonstrated to be

sufficient to outperform ITC-based methods. However, when

data miscalibration and signal decorrelation are jointly present,

a situation which typically occurs with real data, it can be

observed that, for the tested model order exceeding the correct

one, the false-scatterer SN̂R increases, whereas the SN̂R of

the true scatterers decreases. To visualize this phenomenon, we

simulated the signal received from two elevation compact scat-

terers in layover according to model (6) with the baseline–time

pattern of the 30-track Naples data set used for the real data

experiments (see Section III for a brief description), with a

distance of 10 m in vertical height, which is slightly larger

than the Rayleigh resolution limit (8.8 m), and equal velocity.

We generated 100 Monte Carlo realizations of the multilook

signal vectors, for different values of the SNR of one scatterer,

while the SNR of the other was kept fixed to 12 dB. We then

estimated the reflectivities of five hypothetical scatterers, and

we calculated the corresponding SNR. Fig. 4(a) shows the
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Fig. 4. Mean values of the estimated SNR’s of five hypothetical scatterers in the presence of miscalibrations, with NS = 2 as a function of the SNR of one
scatterer. (Blue continuous line) True scatterers. (Red dashed lines) Other scatterers (overfitting). (a) Ideal case. (b) In the presence of residual miscalibration and
a slight baseline decorrelation.

mean value of the five estimated SNR’s as a function of the

varying SNR in the absence of miscalibration. The estimated

SNR of the false (overfitted) scatterers remains constant and

lower than −14 dB, thus allowing to set a low threshold on

the SN̂R for high-performance detection, as in the algorithm

in [30]. When a residual phase miscalibration and a slight

baseline decorrelation are introduced to corrupt the data, the

curves in Fig. 4(b) are obtained. The estimated SNR’s of

the false scatterers increase noticeably, particularly for high

SNR. As a companion effect, the mean estimated SNR of the

true scatterers can be slightly reduced with respect to the true

value. The observed behavior is tantamount to conclude that

the presence of miscalibrations makes SN̂R-only thresholding

become very challenging, resulting in increased probability of

false alarm or low detection sensitivity.

A possible remedy to keep the number of false alarms low (at

least at middle–high signal-to-noise ratios, generally observed

in urban scenarios) is the thresholding of the fitting error ε(M).
In fact, ε(M) does not approach zero with the correct model

order (as in the ideal case), and it decreases further when

the hypothesized scatterer multiplicity M becomes higher than

the correct one. This is due to the fact that components of

signal perturbations from the data nonidealities are fitted as

if they were from true scatterers [25]. This phenomenon is

exploited in the proposed sequential algorithm, i.e., ε(M) must

not be below a certain threshold; otherwise, the condition of

overfitting is declared by the test. In conclusion, at the generic

M th step, the LS fitting (7) is carried out fed by ĥ1, . . . , ĥM

and v̂1, . . . , v̂M extracted from the ABF spectrum, and the

SN̂R’s (SN̂R1, . . . , SN̂RM ) and the fitting error ε(M) are

compared to their respective thresholds. If both comparisons are

positive (i.e., all the hypothetical scatterers have enough SN̂R

and the overfitting is not declared), then the algorithm tests the

presence of M + 1 scatterers; otherwise, it outputs the presence

of M − 1 scatterers. In other words, the detector outputs the last

tested order corresponding to significant components without

overfitting. The thresholds are set by a data analysis over

selected scatterers.

III. DIFF-TOMO RESULTS

In this section, the results obtained from experiments carried
out with simulated and real data are presented. In particular,
the real data experiments have been carried out by processing
C-band spaceborne ERS-1/2 data, with different phase cali-
bration qualities. Two MB–multitemporal data sets have been
considered over a suburban area in the city of Naples (Italy)
around the San Paolo stadium. A third data set has been pro-
cessed over the “Cinecittà” area in the city of Rome (Italy). For
each data set, before carrying out the tomographic processing,
the images have been coregistered precisely. Then, exploiting
an external DEM, the deramping operation has been performed,
steering the MB array to the local topography, which is also the
reference of the estimated heights. Finally, the phase distortions
due to the atmospheric screen [3] have been removed by means
of a low-resolution processing [10], [24]. These calibration
steps have been carried out by Istituto per il Rilevamento
Elettromagnetico dell’Ambiente–Consiglio Nazionale delle
Ricerche (IREA-CNR).The first data set over Naples is
composed of 30 images covering a time span of approximately
six years and three months (1992–1998), corresponding to a
line-of-sight velocity resolution of 4.5 mm/year. The overall or-
thogonal baseline measures 1066 m, which furnishes a vertical
height Rayleigh resolution limit of 8.8 m. Baseline distribution
and acquisition times are reported in [10]. The second data set
over Naples is composed of 63 images acquired between 1992
and 2004, with an overall baseline of 1700 m, a height resolu-
tion limit of 5.5 m, and a velocity resolution of approximately
2.3 mm/year. The Rome data set is composed of 40 images
acquired between 1995 and 2000, with an overall baseline of
1500 m and a height resolution of 6.4 m. The time span of
about five years leads to a velocity resolution of 5.6 mm/year.
All of the three data sets have a slant-range resolution equal
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Fig. 5. Estimated Diff-Tomo spectra (in decibels) of two simulated pointlike targets at a height difference below the Rayleigh resolution limit and with a relative
motion. (a) Diff-Tomo BF. (b) Diff-Tomo ABF.

to 9.6 m (corresponding to 24.7 m in ground range) and an
azimuth resolution equal to 5.6 m. Experiments have been
carried out by averaging five adjacent pixels in the azimuth
direction, the resulting multilook cell projected onto the ground
being almost a square, with a side measuring about 25 m. It is
worth noting that the 63-track Naples and the Rome data sets
are calibrated in phase with more refined procedures; the effect
in the velocity and height estimation will be further commented
upon analysis of the results.

A. Simulated Analysis

To get a flavor of the potentialities of the Diff-Tomo
ABF processing, a simulated analysis has been carried out.
Considering the baseline–time pattern of the 30-track data set,
the presence of two pointlike scatterers with a relative motion of
4 mm/year has been simulated according to the signal model
(6), in the absence of random phase residuals, with a total
signal-to-noise ratio of 12 dB. The height difference amounts
to 6 m, which is below the Rayleigh resolution limit for this
data set. The Diff-Tomo profile estimated with the Fourier-
based BF is shown in Fig. 5(a), normalized with respect
to its maximum and rescaled in decibels. Apart from the
presence of inflated sidelobes, the two scatterers are not
distinguishable. Conversely, by employing the ABF spectral
estimator [Fig. 5(b)], the two scatterers are perfectly separated,
and their heights and velocities can be extracted. Moreover,
with ABF, it is possible to obtain a peak sidelobe level of
−15 dB, which is 10 dB better than that achievable with BF.
We remark that, with a Tomo-SAR focusing of the same data
vector, a misinterpretation of the baseline signal histories
(i.e., related to scatterer heights) with the temporal histories
(i.e., related to the scatterer deformation) would occur. As a
consequence, even the extraction of the scatterer heights would
have been impossible with a height-only focusing.

B. Real Data Results of Scatterer Identification

The test area over Naples is located around the San Paolo
stadium. This area measures about 1.5 km in ground range

Fig. 6. Photograph captured with Google Street View of the typical buildings
present in the test area of the Naples data set.

and about 5.5 km in azimuth, and it is a part of the whole
data set, which covers nearly 8.1 km in ground range and the
same extension in azimuth. The area surrounding the stadium
is composed mainly of buildings of three/four floors or even
more, of which an example is shown in the picture in Fig. 6, and
other industrial buildings and infrastructures. Also, vegetated
areas are present. An aerial photograph of the entire test area is
shown in Fig. 7(a); the San Paolo Stadium is the elliptical struc-
ture approximately at the center of the image. The proposed
automated scatterer identification method has been applied over
the whole scene; zones with low coherence have not been
processed. The coherence has been estimated by averaging
11 azimuth pixels; this number has been chosen from an
empirical tradeoff analysis, taking into account precision of the
estimation and homogeneity of the multilook cell. In order to
obtain a reliable estimation of the coherence, we selected an
image pair with, at the same time, the shortest possible spatial
baseline and a time span covering at least half of the total
time span of the acquisitions. A very short baseline is needed
to minimize as much as possible the baseline decorrelation
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Fig. 7. Color-coded deformation-velocity estimates of the identified single scatterers with the 30-track data set, superimposed to the MB-averaged single-look
ERS radar image. Range direction is on the horizontal axis, and azimuth direction is on the vertical one. (a) Google Earth image of the test area. (b) Estimated
velocities of the identified single scatterers. (c), (d) Estimated velocities of the identified double scatterers (dominant and secondary, respectively).

Fig. 8. Deformation-velocity estimates of the identified dominant double
scatterers over the whole area (30-track data set), superimposed to the radar
image. The dashed rectangle indicates the test area. The color coding is the
same as that in Fig. 7.

induced by the presence of interfering signals coming from
multiple (possibly extended) scatterers in the same cell. In
doing so, the observed coherence is mainly due to temporal
effects. Concerning the two data sets of Naples, the coherence
has been estimated with a baseline of about 10 m and a temporal
span of 5.5 years. In order to estimate the SNR’s from the
reflectivity estimates, the noise power was estimated on an
independent area.

The estimated (unfiltered) velocities of single scatterers de-

tected with the 30-track data set (the one with lower phase

calibration quality) over the test area are shown in Fig. 7(b),

coded with colors and superimposed on the radar image.

Fig. 9. Deformation-velocity differences of the detected single scatterers on
the test area with respect to available independent D-InSAR measurements,
superimposed to the radar image. The color coding is the same as that in Fig. 7.
(a) Thirty-track data set. (b) Sixty-three-track data set.

Areas with homogeneous velocity distribution can be found.

Moreover, it can be observed that the velocity progressively

decreases passing from the bottom left to the top right parts

of the test area where well-known subsidence phenomena are
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Fig. 10. Normalized histogram of the deformation-velocity differences shown
in Fig. 9.

Fig. 11. Cinecittà area in Rome (Italy) and the estimated deformation-velocity
differences with respect to available independent D-InSAR measurements of
the detected single scatterers, superimposed to the radar image. Range direction
is on the horizontal axis, and azimuth direction is on the vertical one. The color
coding is the same as that in Fig. 7. (a) Google Earth image. (b) Estimated
relative deformation-velocity map.

present. Fig. 7(c) and (d) shows the estimated velocities of the

identified dominant and secondary (weaker) double scatterers,

respectively. In Fig. 8, the velocities of the dominant double

scatterers are shown over the entire area covered by the data set.

The large-scale velocity behavior of the dominant double scat-

terers agrees with that of the secondary and of the single ones,

as it is reasonable to expect. We also notice that the detected

single scatterers are about 9500, whereas the double scatterers

are 3200 (33.5% of the single ones). As a consequence, the

Fig. 12. Normalized histograms of the deformation-velocity differences
shown in Fig. 11.

Fig. 13. Histogram of the height differences of the identified double scatterers
with the 30-track data set. The vertical dashed line delimits the histogram
region (on the left) corresponding to double scatterers with sub-Rayleigh height
difference.

total number of velocity measures obtained with the double

scatterers amounts to 67% of those corresponding to the single

scatterers. A performance evaluation of the velocity estimation

with respect to what is obtained with an operative D-InSAR

technique is reported in the next section, also considering the

better calibrated 63-track data set on the same area.

Scatterer identification has been carried out also with the

Rome data set, which refers to a suburban area of about 5 km in

ground range and about 2.5 km in azimuth. For this data set, the

coherence has been estimated with a spatial baseline of 70 m

and a temporal span of 2.5 years. In areas with medium–high

coherence, we detected about 14 300 single scatterers and

2500 double scatterers, i.e., around 17% of the single ones.

C. Validation of the Extracted Velocity Measures

As regards the data sets over Naples, the velocities of the

single scatterers have been compared with the velocities ob-

tained with the SBAS technique [4]. The velocity differences
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Fig. 14. Example of Diff-Tomo spectra (in decibels) of a double scatterer with sub-Rayleigh height difference on a flank of the San Paolo stadium detected with
the 30-track data set. (a) Diff-Tomo BF. (b) Diff-Tomo ABF.

Fig. 15. Example of Diff-Tomo spectra (in decibels) of a double scatterer with sub-Rayleigh height difference on a building close to the San Paolo stadium
detected with the 30-track data set. (a) Diff-Tomo BF. (b) Diff-Tomo ABF.

are mapped in Fig. 9(a) with the same color coding as that in

Fig. 5, again superimposed to the radar image; the correspond-

ing normalized histogram is plotted in Fig. 10 (blue curve). The

standard deviation of the velocity difference is 1.4 mm/year,

which makes the velocities estimated by the proposed auto-

mated Diff-Tomo processing reasonably consistent with those

estimated by an operative D-InSAR technique. This analysis

has also been carried out for the 63-track data set over the

same area. The velocity difference map is shown in Fig. 9(b),

and the corresponding normalized histogram is the red curve

in Fig. 9. In this case, owing also to a more effective data

calibration with respect to the 30-track data set given the more

dense baseline–time sampling pattern, the standard deviation

decreases to 0.7 mm/year.

The validation of the estimated scatterer velocities has been

carried out on the data set over the city of Rome as well. In

this case, we compared the estimated velocities with the avail-

able D-InSAR measures obtained with the recently developed

enhanced spatial difference algorithm [24], [34]. In Fig. 11(a),

an optical image of the area is shown; the map of the velocity

differences is shown in Fig. 11(b), superimposed to the radar

image, and the corresponding histogram is plotted in Fig. 12.

The standard deviation of the velocity differences amounts to 1

mm/year, a low value obtained also owing to the more refined

calibration procedures (see [24] and references therein).

D. Height Superresolution Assessment and

Phenomenological Analysis

Jointly with the deformation velocities in Fig. 7, also the

heights of the single and double scatterers have been esti-

mated. In Fig. 13, the histogram of the height difference of the



LOMBARDINI AND PARDINI: SUPERRESOLUTION DIFFERENTIAL TOMOGRAPHY 1127

Fig. 16. (Dark red dots) Geocoded positions of the scatterers detected with the Rome data set. (a) Single scatterers. (b) Dominant double scatterers.

double scatterers is reported estimated with the 30-track data

set over Naples. The mean height difference is around 15 m, a

reasonable value considering the kind of buildings on the test

area (see also Fig. 5) and taking into account that a typical

height difference between floors is 3 m. It is apparent also that

a number of double scatterers have been detected with a height

difference below the Rayleigh resolution limit (8.8 m with this

data set), owing to the superresolution properties of the ABF

Diff-Tomo profiling. More precisely, they are about 550, i.e.,

about 18% of the double scatterers. Concerning the Rome data

set, we found 470 double scatterers superresolved in height, i.e.,

18% of the total number of the scatterer pairs.

The following results refer to the 30-track Naples data set.

Examples of ABF Diff-Tomo profiles of two superresolved

close-by targets are shown in Figs. 14 and 15, detected on a

flank of the stadium and on a building in its neighborhoods,

respectively. The corresponding BF Diff-Tomo profiles have

been reported for comparison. The profiles are normalized

with respect to their maxima and rescaled in decibels for

easiness of visualization. In Fig. 14, the two scatterers are

located at about 0- and 6-m heights, with a height difference

below the Rayleigh resolution limit and with a velocity of

−3.5 mm/year. It is apparent that they are separated by the

superresolution Diff-Tomo ABF, whereas they collapse into one

spectral peak with BF. The peak sidelobe level obtained with

ABF is approximately 5 dB better than that of BF. In Fig. 15,

two scatterers are imaged at −3 and 4 m, with a deformation

velocity around −3 mm/year. Again, ABF can separate the two

scatterers, while BF cannot. Moreover, in this case, it is appar-

ent that the ABF spectral peaks are sharper than those of BF.

It is also worth observing that the superresolved scatterers in

these two ABF examples have a slightly different deformation

velocity.

Still considering the 30-track Naples data set, to get an

indication of the quality of the heights estimated with the

automated Diff-Tomo processing, we compared them with the

heights extracted via the Tomo-SAR processing described in

Fig. 17. Histogram of the estimated SNR differences (in decibels) between
double scatterers.

TABLE I
COMPUTATIONAL TIME OBTAINED IN TESTING THE PRESENCE OF ONE,

TWO, AND THREE SCATTERERS IN A CELL, AVERAGED OVER THE

WHOLE DATA SET

[25] on the same data set, after the compensation of the phase

histories related to the ground deformation [10]. In fact, owing

to the experiments in [24] and [25], it is reasonable to assume

the Tomo-SAR heights as a benchmark. The correlation coef-

ficients between the estimates in the two frameworks show a

good agreement, as they amount to 0.95 for the single-scatterer

heights and 0.85 and 0.80 for the higher and the lower heights of

the double scatterers. With the same quality check, a very good
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agreement is indeed shown on the Rome data set, for which

the height correlation coefficients are equal to 0.98 for single

scatterers and 0.95 and 0.91 for the higher and lower heights

of the double scatterers. This improvement can be explained

with the improved calibration of the Rome data set with respect

to the 30-track Naples data set. A further confirmation of the

quality of the estimated scatterer heights can be gained by

geolocalizing the scatterer coordinates and superimposing them

on an ortophotograph. In fact, should the scatterer heights be

wrongly estimated, a ground mislocation would result in the

geocoded map, provided also that the scattering mostly comes

from buildings and infrastructures. The geocoded maps for

single and double dominant scatterers in the Rome data set are

reported in Fig. 16 and show a good match between identified

scatterer locations and ground structures.
Also, the estimated SN̂R differences between double scat-

terers have been analyzed; the resulting histogram is plotted in
Fig. 17. The mean difference is around 2.5 dB, indicating that,
typically, the weaker of the scatterer pair is comparable to the
dominant in terms of backscattered power.

To complete the analysis of the performance of the proposed

algorithm, the computational time has been measured in testing

the presence of one, two, and three scatterers in a cell. The

obtained values have been averaged over all the range–azimuth

cells and reported in Table I. A quasi-linear increase of the

computational time with the tested number of scatterers is

apparent.

IV. CONCLUSION

In this paper, a new Diff-Tomo algorithm for multiple-

scatterer identification in scenarios affected by the layover

phenomenon has been proposed and tested with real spaceborne

data sets over the cities of Naples and Rome, also validating

the capabilities of superresolution adaptive differential tomo-

graphic processing. The focus was on single- and double-

scatterer detection, height and deformation velocity estimation,

and the phenomenological analysis of the results. Indications

of the goodness of the information extracted over an extended

area have been obtained. Moreover, owing to the superresolu-

tion properties of the adaptive processing, we confirmed the

possibility to identify double-scattering sources with height

difference lower than the Rayleigh limit which affects linear

processing. It is worth noting that the proposed algorithm is

also able to extract higher order scatterers without significantly

increasing the computational burden.

A drawback of the proposed identification algorithm is the

need for multilooking to make ABF operative, which reduces

the spatial horizontal resolution of the velocity map. Future

work will regard the reduction of the multilook degree in the

adaptive processing; a first sample result has been reported

in [35]. Efforts will also be spent in experimenting a single-

look adaptive Diff-Tomo method, proposed in [36], in order

to obtain superresolution height and velocity measures at full

horizontal resolution. However, given the very high spatial

resolution available with the new generation X-band systems,

e.g., TerraSAR-X [15], [18] and COSMO-SkyMed [37], it

is expected that it will be possible to reach a satisfactory

multilooking degree for a stable covariance matrix inversion

in the ABF focusing without necessarily employing a large

multilook cell. Furthermore, concerning the specific aspect of

height superresolution, comparisons are in order between the

ABF scatterer identification and the compressive-sensing-based

method proposed in [18] for Diff-Tomo, which has shown good

promise.
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