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A superresolution algorithm was applied to spatially shifted, sin-
gle-shot, diffusion-weighted brain images to generate a new im-
age with increased spatial resolution. Detailed two-dimensional
white matter fiber tract maps of the human brain resulting from
application of the technique are shown. The method provides a
new means for improving the resolution in cases where k-space
segmentation is difficult to implement. Diffusion-weighted imag-
ing and diffusion tensor imaging in vivo stand to benefit in partic-
ular because the necessity of obtaining high-resolution scans is
matched by the difficulty in obtaining them. Magn Reson Med
45:29–35, 2001. © 2001 Wiley-Liss, Inc.
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The term superresolution refers to image processing meth-
ods that increase spatial resolution by pooling information
from a number of images. The original low-resolution im-
ages may be translated, blurred, rotated, or scaled. Super-
resolution techniques have been used, for example, for
reconstructing an image from a few frames of a movie or
from pictures taken by a moving satellite. We present the
first useful application of superresolution to MRI, fusing
spatially shifted, single-shot, diffusion-weighted images to
create new images with improved resolution and finer
detail. The method is easy to implement because it is
based on an existing pulse sequence and a simple recon-
struction algorithm. It is relatively insensitive to motion
and does not require cardiac gating.

In most MRI pulse sequences, high spatial resolution is
achieved by multi-shot acquisition of data, i.e., data col-
lected after multiple RF excitations contribute to each
image. If higher resolution is wished for, a larger area of
“k-space” (Fourier transform of image space) is acquired—
this usually means more excitations. The resolution of
images acquired in this manner is limited by the imaging
time available, and by the ability of the scanned subject to
keep still. MRI pulse sequences vary in their degree of
sensitivity to motion artifacts. Diffusion-weighted imaging
(DWI), for example, is incompatible with such simple seg-
mented k-space approaches due to the large phase varia-
tions resulting from even minimal physiological motion
during the application of the field gradients necessary for

diffusion weighting. Thus high-resolution DWI remains a
challenge.

DWI has developed into an important MR method for
neurological applications, particularly in the early detec-
tion of stroke (1,2). Improved resolution in apparent dif-
fusion coefficient (ADC) maps may mean detection of
smaller lesions. In addition to providing images of the
ADC, DWI can be used to measure the spatial anisotropy of
the diffusion in tissues whose structural characteristics
can thus be probed (3). Diffusion tensor imaging (DTI) is a
variation of DWI in which at least seven images are ac-
quired for every slice, with at least six different directions
of diffusion weighting. In the white matter of the brain,
DTI provides a unique tool for visualization of the direc-
tion and intactness of white matter fiber tracts in vivo by
identifying the preferred direction of diffusion (4).

Today there are three categories of methods for obtain-
ing DWI (or DTI):

● The most popular diffusion imaging sequences are the
ultrafast sequences, such as the diffusion-sensitized
echo-planar imaging (EPI) technique (5), which ac-
quire a complete image in one shot, thus avoiding
phase problems. Other single-shot techniques, such as
those based on RARE (6), and GRASE (7) acquisition
schemes, could possibly also be modified to provide
diffusion weighting. Single-shot techniques are inher-
ently resolution limited for brain imaging.

● Methods employing navigator echoes (8). Complex
motion, including physiological motion, cannot be
fully corrected for using navigator echoes.

● Methods that can ignore phase inconsistencies be-
tween excitations by relying on reconstruction in im-
age space and not in k-space. Examples are line scan
diffusion imaging (9) and projection reconstruction
(10,11). Line scan diffusion tensor imaging provides
undistorted images but is an inherently slow and low-
signal-to-noise ratio (SNR) technique (12). Methods
based on projection reconstruction show promise but
still require work on artifact reduction.

Our method of superresolution DTI is based on the com-
bination in image space of a few shifted single-shot im-
ages.

High-resolution DTI, combined with algorithms for trac-
ing fibers in three dimensions in tensor fields, has the
potential to enable fiber tract mapping of critical func-
tional pathways in the brain in vivo. Recently 3D white
matter fiber tract reconstructions from DTI in the rat (13),
and in the human (14–16), have been attempted. Another
approach to fiber tracing, via q-space analysis (17,18), was
recently applied (19) to diffusion data to find multiple
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white matter directions in each voxel. Currently partial
voluming effects (averaging of multiple macroscopic envi-
ronments in one voxel) pose a severe impediment to the
analysis of directional and structural axonal connectivity
(e.g., 2.5-mm voxel side in Ref. 14, 1.9 3 3.75 3 5 mm in
Ref. 15, 1.9 3 1.9 3 2.8 mm in Ref. 16, and 4-mm voxel
side in Ref. 19). The higher the spatial resolution of the
attainable diffusion imaging data, the more relevant the
endeavor of 3D fiber tract tracking will become and the
more robust the algorithms for doing so will be.

A number of superresolution algorithms exist (20–24).
We chose to use here, for demonstration purposes, the
iterative back-projection (IBP) method of Irani and Peleg
(20), and plan to perform rigorous comparisons between
the different methods in the near future to find the most
suitable one. The IBP method is based on the minimization
of differences between the original low-resolution images,
and the low-resolution images that can be generated (back-
projected) from down-sampling the current best guess of
the high-resolution image. The algorithm is simple to im-
plement and converges rapidly.

Single-shot spin-echo EPI usually provides satisfactory
images of the human brain with a matrix size of 128 3
64. Increasing the number of lines in the phase-encode
direction reduces the SNR due to T*2 decay. Higher reso-
lution in the read-out direction increases the spatial dis-
tortions resulting from magnetic field inhomogeneity, as
well as affecting the SNR. In an image field of view (FOV)
of 256 mm, a matrix size of 128 3 64 translates to in-plane
spatial resolution of 2 mm 3 4 mm. For each image re-
quired for DTI analysis, we acquired eight of these lower-
resolution images with sub-pixel shifts, and combined
them using the IBP algorithm to obtain a nominal in-plane
resolution of 1 mm2. DTI analysis was then performed on
the set of reconstructed high-resolution images.

METHODS

MRI Protocol

All images were acquired on a GE Horizon echospeed
1.5 Tesla MRI system using single-shot diffusion-weighted
spin-echo EPI. No head restraint or cardiac gating was

used. Basic imaging parameters were: TR 5 2 sec, TE 5
123 msec, FOV 5 25.6 cm, matrix 5 128 3 64 (in-plane
resolution of 2 mm 3 4 mm), effective BW of 88 kHz with
ramp sampling, eight slices of 3-mm thickness. The low-
resolution scan consisted of the acquisition of five dummy
images to reach steady state, three low diffusion-weighted
images in the cardinal directions, and six highly diffusion-
weighted images (b-value of 1000, gradient pulse length
16.4 msec at 2.2 mT/m) in the directions [1,1,0], [1,0,1],
[0,1,1], [1,21,0], [1,0,21], and [0,1,21] (25). We used a
long echo time with full k-space acquisition to avoid dif-
fusion gradient direction-dependent distortions. The high
b-value images were repeated six times to improve SNR.
Scan time was 11

2
min. The low-resolution scan was re-

peated eight times, each scan with a shifted FOV, as shown
in Fig. 1, to give a total imaging time of 12 min. Satisfac-
tory results were also obtained without averaging, in
which case the imaging time would have been 4 min for
eight DTI slices.

The first four images were acquired with 0-, 1-, 2-, and
3-mm shifts in the phase-encode direction (0, 1

4
, 1

2
, 3

4
pixel

vertical shifts in Fig. 1), and then again all four shifts were
acquired with an additional 1-mm shift in the frequency-
encode direction (0, 1

2
pixel horizontal shifts in Fig. 1).

For the phantom experiment, regular spin-echo EPI was
used with matrix size 5 64 3 64, FOV 5 14 cm, BW 5
62.5 kHz, and four image acquisition shifts of 1.1 mm (1

2
pixel).

Superresolution Image Enhancement

The method of Irani and Peleg (20) was adapted to our
needs. Following is a brief summary:

1. f is the desired high-resolution image we wish to find.
{ gk}k51

K are the K acquired low-resolution images.
The imaging process is modelled by:

gk 5 ~Tkf!2s 1 hk [1]

where Tk is the translation operator that shifts the
image, 2 s is the downsampling operator, and hk is
noise.

FIG. 1. Scheme of shifted image acquisition: eight images are acquired with subpixel spatial shifts.
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2. An initial guess is generated. In our case, we chose
the mean of all the shifted low-resolution images:

f~0! 5
1
KO

k

Tk
21~gk1s! [2]

where 1 s is an upsampling operator.
3. The low-resolution images that would be acquired if

the guess were correct are estimated for k 5 1..K:

gk
~0! 5 ~Tkf~0!!2s [3]

and a new guess is generated:

f~1! 5 f~0! 1
1
KO

k51

K

Tk
21~~gk 2 gk

~0!!1s!. [4]

For the upsampling operator at this stage, we used
bilinear interpolation. This smoothing step was im-
portant for keeping the SNR at acceptable levels.

4. The process is repeated iteratively to minimize an
error function consisting of the mean squared differ-
ence between the original images, { gk}, and the esti-
mated low-resolution images at step n, { gk

(n)}.

Most superresolution algorithms require knowledge of a
space-invariant blurring operator or point spread function
(PSF). In echo planar imaging, if one ignores spatial dis-
tortions, the PSF is negligible in the read-out direction,
and dependent on T*2 and the effective bandwidth in the
phase-encode direction. The full width at half maximum
(FWHM) of the PSF in the phase-encode direction is 2T/
(pT*2) pixels wide where T is the total acquisition time for
one slice. If we assume a value for T*2 in the brain of
approximately 70 msec at 1.5 Tesla, the FWHM of the PSF
with our imaging parameters is approximately one pixel in
the low-resolution image. Note that the PSF is in reality
space variant, such that this is not a good approximation.
There was no noticeable improvement of the image quality
when a constant blurring was incorporated into the algo-
rithm.

The convergence condition specified by Irani and Peleg
relates to the special case of deblurring of an image
through superresolution methods, i.e., does not encom-
pass situations in which images are upsampled. For 2D
translations the convergence condition is:

id 2 hppi2 , 1 [5]

where d is the unity pulse function, h is the PSF, and p is
a “back-projection” kernel. Our implementation of the al-
gorithm, with p 5 d, and with the above estimate of the
PSF, fulfills this convergence condition. The validity of
this calculation in our case remains to be shown, but so far
we have always experienced very fast convergence.

Anisotropy Calculation

For each voxel, the 3 3 3 diffusion tensor, D, is found from
the equation shown in Eq. [6], using the intensities of the

voxel in each of the nine images, S, and the corresponding
gradient vector that was applied, G (4).

ln S 5 ln S0 2 g2d2~D 2 d/3!GDGT [6]

g is the gyromagnetic ratio of 1H, d is the duration of the
diffusion sensitizing gradient pulses, and D is the time
between the centers of the two gradient pulses. The diffu-
sion weighting is usually specified in terms of the factor b
given by b 5 (gdG)2(D 2 d/3).

Determination of an index of anisotropy is a way of
reducing the diffusion tensor data to one value per pixel,
which can then be straightforwardly displayed as an im-
age. For commonly used indices and an excellent analysis
of DTI in biological tissue, see Basser and Pierpaoli (4). We
chose to derive an index from a set of geometrically intu-
itive measures of anisotropy (presented in Refs. 12 and 26)
that differentiate between diffusion that has linear, planar,
or spherical spatial characteristics. The linear, planar, and
spherical measures are given in Eq. [7].

Cl 5
l1 2 l2

l1 1 l2 1 l3
, Cp 5

2~l2 2 l3!

l1 1 l2 1 l3
, Cs 5

3l3

l1 1 l2 1 l3

[7]

where l1,2,3 are the eigenvalues of the diffusion tensor in
descending order of magnitude. An index of anisotropy is
derived, Ca, that is high in voxels that exhibit at least one
direction of relatively restricted diffusion:

Ca 5 Cl 1 Cp 5
l1 1 l2 2 2l3

l1 1 l2 1 l3
. [8]

A measure we find suitable for fiber tract delineation is Ct

given in Eq. [9]:

Ct 5 Cl 1
1
2

Cp 5
l1 2 l3

l1 1 l2 1 l3
. [9]

Using this index, voxels that exhibit pure planar diffusion
have half the intensity of voxels exhibiting pure linear
diffusion. All of the measures Cl, Cp, Cs, Ca, and Ct lie in
the range [0,1].

RESULTS

Simulation

A high-SNR, high-resolution (256 3 256 0.94 mm in-
plane) image was shifted and contracted so as to create
eight images (128 3 64) corresponding to the experimental
paradigm. Gaussian random noise was added to the low-
resolution images to give them an added SNR of 12—the
same as that of the experimental diffusion-weighted im-
ages. Part of one of the low-resolution shifted images with
noise added is shown in Fig. 2a.

An initial guess was generated from addition of the eight
shifted images, shown in Fig. 2b. The reconstructed image
after seven iterations is shown in Fig. 2c. The original image
with the same amount of noise added is shown for compar-
ison in Fig. 2d. Figure 2e–h shows the same procedure fol-
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lowed for images with an initial SNR of 36. The improve-
ment in resolution is clear, as is the detrimental effect of
noise.

Phantom Imaging

Phantom studies yielded the images in Fig. 3. Figure 3a
shows one of the original 64 3 64 resolution images. The
end result of the superresolution method is shown in Fig.
3b. For this phantom, we reduced the FOV, changing the
pixel dimensions from 2 mm 3 4 mm to 2.2 mm 3 2.2 mm.

Four shifted images were acquired in order to reconstruct
a superresolution image with nominal resolution of 128 3
128. The structure of the comb in the upper left corner of
the image is clearer in the superresolution image.

Brain Imaging

For each slice 72 images were acquired: eight shifted im-
ages for each of nine diffusion weightings. Figure 4 shows
the improvement obtained in one of the images (b 5 1000
sec/mm2). The SNR of the final images depends on the

FIG. 2. Results of simulation with noise. a has SNR of 12; e has SNR of 36; b and f is the first guess obtained from combining the
low-resolution images; c and g show the final result of the algorithm; d and h the original images 1 noise for comparison.

FIG. 3. a: Acquired phantom image 64 3 64; b:
reconstructed superresolution image 128 3
128.
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smoothing method used in the upsampling operator. In
our implementation, the SNR of the high-resolution image
in Fig. 4b is approximately 20% better than the SNR of the
image in Fig. 4a when the latter is interpolated to 256 3
256. The nine reconstructed images were used to calculate
the diffusion tensor for each voxel. Figure 5a shows the
anisotropy map (index Ca) calculated from one shifted
subset of the original low-resolution images after they had
been bilinearly interpolated to 256 3 256. Figure 5b shows
the anisotropy map calculated from the high-resolution
reconstructed images. Much more detail is apparent in the
higher-resolution image. The anatomy is shown for refer-
ence.

The white matter fiber tract directions are demonstrated
in Fig. 6a and b. We display the vector Ctê1 on the back-
ground of the corresponding anatomical image, where ê1 is
the eigenvector corresponding to the largest eigenvalue,
l1, of the diffusion tensor. The blue headless arrows rep-
resent the in-plane components of Ctê1. The out-of-plane
components of Ctê1 are shown in colors ranging from

green through yellow to red, with red indicating the high-
est value for this component. See Ref. 12 for some of the
limitations of this display method.

The detail in Fig. 6b, created from the superresolution
images, is clearly superior to that of Fig. 6a, created from
interpolated low-resolution data. We have no absolute in-
formation about the true fiber tract orientation, but have
found no unexpected results in the reconstructed data.
Data from interpolated images are inaccurate in areas with
sudden changes in fiber tract direction, which are quite
common in the brain.

DISCUSSION

We have presented a robust method for improving the
spatial resolution in MRI, applicable in particular to cases
where k-space segmentation is difficult to achieve. We
have shown results for diffusion tensor imaging fiber tract
mapping. Increased resolution in DTI enables us to answer
questions about the connectivity of the human brain in

FIG. 4. a: One of the acquired diffusion-
weighted images; b: reconstructed su-
perresolution image.

FIG. 5. a: Anisotropy map calculated from interpolated low-resolution (128 3 64) images; b: anisotropy map calculated from reconstructed
superresolution images; c: anatomical T1 for reference. The anisotropy maps are displayed with equal windowing of [0 0.8].
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vivo, giving a valuable tool for both neurosurgical plan-
ning and neuroscience research.

Patient motion can in some cases be incorporated into
the superresolution algorithm, whereas multishot imaging
is practically impossible in the presence of motion. (Su-
perresolution methods were initially developed in the
field of computer vision to handle data from moving cam-
eras or moving objects.) The extent of movement can be
assessed using image registration techniques, and the true
shift of the image, including the subject’s motion, can be
used in the superresolution algorithm. Three-dimensional
superresolution methods with extra image sampling could
be implemented to ensure sufficient coverage of sub-pixel
areas. There is still much space for optimization of the
choice of superresolution algorithm, of the image acquisi-
tion strategy, and for the adaptation of one to the other.
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