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We simulate a total internal reflection tomography experiment in which an unknown object is illuminated by
evanescent waves and the scattered field is detected along several directions. We propose a full-vectorial three-
dimensional nonlinear inversion scheme to retrieve the map of the permittivity of the object from the scattered
far-field data. We study the role of the solid angle of illumination, the incident polarization, and the position of
the prism interface on the resolution of the images. We compare our algorithm with a linear inversion scheme
based on the renormalized Born approximation and stress the importance of multiple scattering in this par-
ticular configuration. We analyze the sensitivity to noise and point out that using incident propagative waves
together with evanescent waves improves the robustness of the reconstruction. © 2005 Optical Society of

America
OCIS codes: 180.6900, 110.6960, 290.3200.

1. INTRODUCTION

There is considerable interest in developing optical micro-
scopes presenting a lateral resolution below the usual
Rayleigh criterion \/(2NA), where \ is the wavelength of
the illumination and NA is the numerical aperture of the
imaging system, while retaining the convenience of far-
field illumination and collection. Among the various ways
to ameliorate the resolution, it has been proposed to illu-
minate the sample with many structured illuminations,
namely standing waves, and to mix the different images
through simple arithmetic.! This technique is very close
to optical diffraction tomography, in which the sample is
illuminated under various angles of incidence, the phase
and intensity of the diffracted far field is detected along
several directions of observation,”* and a numerical pro-
cedure is used to retrieve the map of the permittivity dis-
tribution of the object from the far-field data.? Experimen-
tal and theoretical studies have shown that using several
illuminations permits one to exceed the classical diffrac-
tion limit by a factor of 2.3

Recently, the diffraction tomography approach has
been applied to total internal reflection microscopy. S In
total internal reflection tomography (TIRT), the sample is
illuminated with different evanescent waves through a
prism in total internal reflection. The use of incident eva-
nescent waves permits circumvention of the diffraction
limit, as in near-field microscopy, without the inconve-
nience of bringing a probe close to the sample.” A resolu-
tion of \/7 has been observed in standing-wave total in-
ternal reflection fluorescent microscopy.8 Note that
superresolution in the TIRT is obtained only if the objects
under test are close to the surface of the prism or even de-
posited on it.?

In all microscopy techniques using several successive
illuminations, one needs a numerical procedure to com-
bine the different images and extract the map of the rela-

1084-7529/05/091889-9/$15.00

tive permittivity distribution of the object from the scat-
tered far field. In general, one assumes that the object is a
weak scatterer so that there is a linear relationship be-
tween the scattered field and the relative permittivity of
the object, that is, one assumes that the Born approxima-
tion is valid.>!° In this case, the transverse resolution
limit can be inferred from simple considerations on the
portion of the Ewald sphere that is covered by the
experiment.® It is limited by N\/2(n;+n,) for configurations
in which the incident waves propagate in a medium of re-
fractive index n; while the diffracted waves propagate in a
medium of refractive index ny.?

However, the Born approximation restricts the field of
application of these imaging techniques to weakly scatter-
ing objects whose dielectric contrast with the surrounding
medium does not exceed 0.1, typically immersed biologi-
cal samples. In particular, it cannot be used for imaging
manufactured nanostructures or integrated circuits,
where the dielectric contrast can reach several unities.
Developing reconstruction procedures that account for
multiple scattering, in the framework of TIRT, is thus
mandatory for a wide domain of applications. It is all the
more interesting in that it has been shown recently, in a
classical optical tomography configuration, that the pres-
ence of multiple scattering permits one to improve the
resolution limit beyond that classically foreseen with the
study of the Ewald sphere.'"1?

In this paper, we simulate accurately a TIRT experi-
ment, and we stress the role of the interface and of the
multiple scattering. We propose a full-vectorial nonlinear
inversion method, and we investigate its power of resolu-
tion with respect to the nature—propagative, evanescent,
s-polarized (TE  polarization), p-polarized (TM
polarization)—of the illuminations. We compare our re-
construction procedure with a linear inversion technique
based on the renormalized Born approximation. Last, we
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show that the robustness of the reconstruction with re-
spect to noise can be significantly increased by using both
propagative and evanescent wave illumination beams.

2. FORMULATION OF THE FORWARD
SCATTERING PROBLEM

The coupled dipole method (CDM) was introduced by Pur-
cell and Pennypacker in 1973 to study the scattering of
light by nonspherical dielectric grains in free space.13 In
the configuration presented in this article, the objects are
deposited on a flat dielectric substrate, but the principle
stays the same. The objects under study are represented
by a cubic array of N polarizable subunits, and the local
field at each subunit of discretization is expressed with
the following self-consistent equation:

N
E(r,) =E™(r;) + E T(ri,rj)a’(rj)E(rj)

J=1j#i
N -
+ >, S(r;,r)a(r)E(r)), (1)
Jj=1

where E™(r;) denotes the incident field at the position r;.
The quantity a(r;) represents the polarizability of the
subunit j. According to the Clausius—Mossotti expression,
the polarizability distribution « can be written as

alr) = ——2—— @)

where d is the spacing of the lattice discretization and
&(r;) is the relative permittivity of the object. In Eq. (2),
the radiative reaction term is not taken into account in
the expression of the polarizability,'* the weak form of the

CDM being accurate enough for the present study.15 T is
the field linear response to a dipole in free space, also
called the free-space field susceptibility (see Appendix A).
S is the field linear response to a dipole in the presence of
a substrate, also called the surface field susceptibility.16
The elements of this tensor are reported in Appendix B.
Once the linear system represented by Eq. (1) is solved,
the scattered field in the far-field zone, Ed(r), can be com-
puted at an arbitrary position r with

N
Ed(r) = > [Tr,r) + S4(r,r)]a(r)E(r). (3)

J=1

Td is the field linear response of a dipole in the far field,
and hence it corresponds to the term that decays as 1/|r

—rj| in the expression of T. The surface field susceptibility

S is the field linear response to a dipole in the presence
of a substrate when the observation is in the far field
zone. In that case, the tensor can be written in a simple
analytical form that can be computed rapidly. The expres-
sion of S¢ is given in Appendix C.

The self-consistent equation (1) can be rewritten in a
more condensed form as
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E=E"+Ap, ()

where A is a square matrix of size 3N X 3N and contains
all the tensors G(r;,r;)=S(r;,r;)+T(r;,r;). We have

E= [Ex(rl)yEy(rl)yEz(rl)y oo ’Ez(rN)]y
Einc = [chnc(rl)’E;nc(rl)yEiznc(rl)’ cee ’E,iznc(rN)]5

pP= [px(rl)’py(rl)apz(rl)’ s 7pz(rN)]’

where E and E™® denote the local field and the incident
field, respectively. The dipole moment p is related to the
local electric field through p(r;)=a(r;)E(r;). Calculating
rigorously the local field (4) is time-consuming, especially
for a large number of subunits. Hence it is advantageous
to first check the validity of the renormalized Born ap-
proximation

E = Einc, (5)

In a TIRT experiment, the scattered field is collected at M
observation points for L successive illuminations. Let E{
be the scattered field corresponding to the /th illumina-
tion; then we can rewrite the far-field equation (3) in the
following condensed form:

E{=Bp, (6)

where [=1,...,L and B is a matrix of size 3M X 3N. The
matrix B contains the tensors ad(rk,rj)zi‘d(rk,rj)
+§d(rk,rj), where r;, j=1,...,N, denotes a point in the
discretized object and ry, k=1,...,M, is an observation

point. Note that B does not depend on the angle of
incidence.

3. FORMULATION OF THE INVERSE
SCATTERING PROBLEM

Most reconstruction procedures proposed in the frame-
work of three-dimensional optical tomography have been
developed under the Rytov or the Born approximation. In
this case, the amplitude of the plane wave with wave vec-
tor kg, diffracted by an object illuminated by a plane wave
with wave vector k;,, is proportional to the Fourier trans-
form of the dielectric contrast e(r)-1 taken at kq—Kkj,.
Thus, if the Fourier space is accurately described by tak-
ing a sufficient number of incident and observation
angles, it is possible to obtain the map of permittivity of
the object by performing a three-dimensional inverse Fou-
rier transform of the diffracted field.>'° However, in gen-
eral, the set of measurements and illuminations is dis-
crete and limited, and there are missing cones in the
Fourier space representation. When the Born approxima-
tion is assumed, Eq. (6) is linear with respect to the po-
larizability distribution «. In this case, the incomplete lin-
ear system linking the permittivity to the measured far
field can be solved in the least-mean-squares sense by us-
ing backpropagation algorithms,4 conjugate gradient
techniques,17 or singular value decomposi‘cion.5’9’18 Note
that these techniques require the assumption that the un-
known object is entirely confined in a bounded box (test
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domain or domain of investigation). This a priori informa-
tion can be used to increase the resolution of the inver-
sion.

To avoid the Born approximation, several nonlinear re-
construction procedures such as the conjugate gradient,
modified gradient, and hybrid methods'® 2! have been de-
veloped, especially in the microwave domain. In these it-
erative methods, the field in the scattering domain Q) is no
longer assumed to be the incident field. The modified gra-
dient method consists in updating simultaneously the
contrast of permittivity as well as the total field inside the
investigating domain ) by minimizing a cost functional
involving the residual errors of both Eqgs. (4) and (6). In
the conjugate gradient method, the total field inside () is
considered at each iteration step as a fixed solution of Eq.
(4) for the best available estimation of the contrast per-
mittivity, and the contrast permittivity is determined by
minimizing a cost functional involving the sole residual
error of Eq. (6). The hybrid method combines ideas of the
two approaches mentioned above. Due to their computa-
tional cost, very few have been extended to the vectorial
three-dimensional case. Recently, it has been proposed to
reconstruct the induced dipoles, p(r)=a(r)E(r) in the test
domain, by minimizing a cost functional involving the lin-
ear far-field equation (6), then calculating the field inside
the box with Eq. (4), and deducing the permittivity
through the polarizability. With adequate postprocessing,
this technique led to satisfactory results for objects with a
moderate dielectric constant.”> In a more advanced
method, namely the contrast source inversion
method,?®?* the induced dipoles are reconstructed itera-
tively by minimizing at each iteration step a cost func-
tional involving both the far-field equation (6) and the
near-field equation (4). In the present algorithm, the po-
larizability in the test domain, a(r), is modified so as to
minimize a cost functional involving Eq. (6). At each step
of the iterative procedure, the local field is obtained by
solving Eq. (4) for the available estimation of the polariz-
ability. In the present section, we briefly present this non-
linear reconstruction procedure, extended to the stratified
case.

The geometry of the problem is depicted in Fig. 1. The
object under test is assumed to be confined in an investi-
gating domain QCR3 and illuminated successively by [
=1,...,L electromagnetic excitations E;2{ ;. For each
excitation /, the scattered field f; is measured on a surface
I' at M points and located outside the investigating do-
main (). The inverse scattering problem is stated as find-
ing the permittivity distribution ¢ inside the investigating
area () such that the associated scattered field matches
the measured field f;_; 1.

The sequence {a,} is built up according to the following
recursive relation:

ap = ap_1 + andna (7)

where the updated polarizability «, is deduced from the
previous one, «,_1, by adding a correction a,d,,. This cor-
rection is composed of two terms: a scalar weight a,, and
an updating direction d,. Once the updating direction d,,
is found (this step will be specified later in the paper), the
scalar weight a,, is determined by minimizing the cost
functional 7, («,) involving the residual error h;, on the
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N

esub = 2.25 (Glass)

Fig. 1. TIllumination and detection configuration of the TIRT ex-
periment. The observation points are regularly placed on the
half-sphere I' (with a radius of 400\). The illumination is as rep-
resented by the arrows, corresponding to a plane wave propagat-
ing toward the positive values of z. For the TIRT experiments,
the authors took as illumination 16 plane waves in both the
planes (x,2z) and (y,z), either in p or s polarization. The angle be-
tween the incident wave vector and the z axis ranges over
—80 to 80 deg.

scattered field computed from observation equation (6):
hl,n = fl - Ea/n]?‘l,n’ (8)

with E;, being the total electric field that would be
present in () if the polarizability distribution were «,,_;,
i.e., solution of the forward problem with «,_;. This field
can be written symbolically from Eq. (4) as

E,,=[I-Aaq, ] 'EP, 9)

with I being the identity matrix.
The cost functional F,(a,) mentioned above that is
minimized at each iteration step reads as

L
> [l L
=1
fn(an) =77 = WFE ”hl,n”l%a (10)
2 =1
> I
1=1

where the subscript I is included in the norm ||| and later
the inner product (/) in L? to indicate the domain of
integration.

Note that substituting the expression of the polarizabil-
ity «,, derived from Eq. (7) into Eq. (10) leads to a polyno-
mial expression with respect to the scalar coefficient a,,.
Thus the minimization of the cost functional F,(«,) is re-
duced to the minimization of a simple cost function
Fn(a,). Moreover, for the particular case of a dielectric
material, i.e., the polarizability « is real, the cost function
Fr(a,) takes the following form:

L

Fulan) = Wr (b, + a?|Bd,Ey |2
=1

—2a, Re(hy,,_,[Bd,E, ). (11)

In this case, the unique minimum of F,(a,) is reached for
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L
> Re¢h, , 1|Bd,E;,)r

=1
a, =

. (12)

I=1
As updating direction d,, the authors take the Polak—
Ribiere conjugate gradient direction

dn =gn;a + yndn—la (13)

where g, is the gradient of the cost functional F,, with re-
spect to the polarizability assuming that the total fields
E; do not change.

L

8na="— WFE Ezn . 1=3-}th,n—ly (14)
=1

in which u” denotes the complex conjugate of u and BY
represents the transpose complex conjugate matrix of the
matrix B.

The scalar coefficient vy, is defined as in the Polak-—
Ribiére conjugate gradient method?’:

<gn;a|gn;a - gn—l;a>F
'y =
" |@n—1;a“%‘

To complete the inverse scheme, we need to specify the
initial guess. As initial estimate for «(, the authors take
the estimate obtained by the backpropagation procedure.
This technique is described in detail for the two-
dimensional problem in Refs. 26-28. The extension to the
three-dimensional problem is described in Appendix D.

(15)

4. NUMERICAL EXPERIMENTS

We check the performance of the inverse procedure on
synthetic data by simulating a TIRT experiment with the
CDM. We consider two cubes of side a=\/4, of relative
permittivity 2.25, separated by a distance ¢c=\/10, depos-
ited on a semi-infinite medium of relative permittivity
es=2.25 (as depicted in Fig. 1). The superstrate is
vacuum, while the substrate is made of glass. The object
is illuminated by 16 plane waves coming from the sub-
strate: eight plane waves in the (x,z) plane and eight
plane waves in the (y,z) plane. The plane waves can be p
or s polarized. Let 6;"° be the angle of incidence with re-
spect to the z axis corresponding to the /th illumination.
The amplitude and phase of the scattered fields are de-
tected at M=65 points regularly distributed on a half-
sphere I' (see Fig. 1). The radius of the sphere is 400\, so
that only far-field component data are considered. The

0.2 0.5
< <
02 0.1
-05 0.5 03 x(/)x 9

0

x/A
Fig. 2. Left side: map of the relative permittivity in the plane
(x,y) just above the substrate, i.e., z=\/40. Right side: map of the
relative permittivity in the plane (x,z) for y=0. We have a=\/4,
c=\10, £,=2.25, 6" [-80,80] deg, and p-polarized incident
waves.
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azimuthal angle of observation, 6, defined as the angle be-
tween the diffracted wave vector and the z axis, ranges
from —-80 to 80 deg. In all examples, the synthetic data
are computed with a mesh size of d=\/40, which differs
from the one used in the inversion, d=\/20. In all re-
ported results, the investigation domain is a box of size
1.25A X 0.75\ X 0.6\ surrounding the cubes, except in Fig.
5, where the size of the box is 1.25\ X 0.75\ X 1.2\. We dis-
play the map of the reconstructed relative permittivity
distribution after enough iterations for the cost function
to reach a plateau. During the minimization process, the
value of the relative permittivity was enforced not to ex-
ceed 2.25; thus the convergence was obtained within 100
iterations.

In Fig. 2, we plot the map of relative permittivity ob-
tained with the nonlinear inversion procedure scheme.
The left side corresponds to the map of the relative per-
mittivity in the plane (x,y) just above the substrate, i.e.,
at z=\/40, and the right side corresponds to the map of
the relative permittivity in the plane (x,z) for y=0. The
incident field is p polarized, and the objects are illumi-
nated with both propagative and evanescent waves: ¢
€[-80,-80] deg. Note that, except for Fig. 6, we consider
only p-polarized illuminations. One can see that the two
objects are perfectly resolved and that the permittivity
level saturates at 2.25 inside the cubes. The map of per-
mittivity displayed in Fig. 2, obtained with the nonlinear
algorithm, without any noise on the synthetic data and in
a “complete” configuration, with evanescent and propaga-
tive illuminations, can be considered a reference for all
the following reconstructions.

A. Influence of the Substrate

In many numerical simulations of TIRT,>® the object is
assumed to be immersed in a homogeneous medium and
illuminated by evanescent waves. Yet, the generation of
an evanescent wave necessitates the presence of an inter-
face close to the object. Hence this approach amounts to
neglecting the influence of the interface on the field scat-
tered by the object. The main advantage of this assump-
tion is that, the free-space susceptibility tensor being a
convolution operator with a simple analytical formulation
in the direct space, the calculations are greatly simplified
in the inversion procedure. Thus it is worth comparing
the reconstructed maps of permittivity obtained by first
neglecting and then taking into account the interface in
the inversion procedure. In Fig. 3(a), we neglect the inter-
face in both the near- and far-field equations (4) and (6),
respectively, that are solved at each iteration of the recon-
struction algorithm. This is done by suppressing the sus-

ceptibility tensor of the interface, i.e., S4=S=0. We ob-
serve that the image is strongly deteriorated as compared
with Fig. 2, and the two cubes are not resolved anymore.
In Fig. 3(b), we neglect the susceptibility tensor of the in-
terface in the near-field calculations only (§=0). The re-
construction appears better than that in Fig. 3(a) but still
less accurate than that obtained in Fig. 2. These numeri-
cal simulations show that accounting for the interface is
mandatory, especially for the far-field calculations. This
can be explained rather easily by comparing the field ra-
diated by a dipole in free space with that radiated by a
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Fig. 3. Influence of the interface in the inverse scattering prob-
lem: (a) map of the relative permittivity when the interaction be-
tween the objects and the substrate is not taken into account

(§d=§=0), (b) map of the relative permittivity when the sub-
strate is taken into account only in the far-field zone (§=0).
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-0.5 0 0.5 05 x‘,)x 0
x/A
(2)
02 0.5
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Fig. 4. Influence of the illuminations: (a) map of the relative
permittivity with only propagative wave illuminations
(6"¢ =[-40,40] deg), (b) same as (a) but with evanescent wave il-
luminations (6" e [-80,-43]U[80,43] deg).

dipole placed in the vicinity of a plane interface. In the
first case, the scattered far field radiated in the plane nor-
mal to the polarization of the dipole is constant whatever
the direction of observation. In the second case, it tends to
zero at grazing angles. Thus, accounting for the interface
is most important for accurate modeling of the scattered
far field. On the other hand, the error caused by neglect-
ing the multiple scattering between the object and the in-
terface in the evaluation of the field inside the object can
be overlooked, in a first approximation, when both the di-
opter and the sample are dielectric with moderate permit-
tivities. The advantage of this approximation is that solv-
ing the near-field equation (4) with the free-space
susceptibility tensor yields an important time gain due to
the convolution properties of the 0perator.29

B. Influence of Evanescent Illumination

We show in Figs. 4(a) and 4(b) the reconstructed maps of
permittivity obtained when the incident angles belong to
[-40,40] and [-80,43]U[43,80] deg, respectively. When
the objects are illuminated by propagative waves only, it
is impossible to distinguish the two cubes. On the con-
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trary, if evanescent waves are used, one obtains an accu-
rate reconstruction of the target, with sharp edges. In-
deed, the transverse resolution is better the higher the
spatial frequencies in the (x,y) plane of the incident plane
waves.” When propagative waves are solely used, the
horizontal components of the incident wave vectors are
bounded by %(, while they reach nk,, where n is the re-
fractive index of the prism, in the evanescent illumination
configuration.

Figure 5 checks the influence of the position of the ob-
jects with respect to the interface in a complete illumina-
tion configuration 6;,.<[-80,80] deg. The cube centers
are placed 0.6\ above the prism. We observe that the re-
constructed map of permittivity is close to that obtained
when only propagative waves are used. Indeed, due to the
exponential decay of the incident evanescent waves along
the z axis, the far field scattered by the object when it is
illuminated by an evanescent wave is negligible as com-
pared with that scattered by the object when it is illumi-
nated by a propagative wave. As a result, the weight of
the evanescent illuminations in the cost functional is in-
sufficient to elicit new information as compared with that
given by propagative waves alone.

C. Influence of the Polarization

In Fig. 6, we plot the map of permittivity obtained under
the complete illumination configuration but with
s-polarized plane waves. The reconstructed image is close
to that obtained with p-polarized waves (Fig. 2), although
we observe that the edges are less accurately defined and
the permittivity levels inside the cubes do not saturate in
the same way. The p-polarized illuminations yield more
accurate reconstructions than the s-polarized ones. This
conclusion is not surprising inasmuch as the modulus of
the incident evanescent waves at the surface of the prism
is greater in p polarization than in s polarization. The
weight of the evanescent illuminations in the cost func-
tional being smaller in s polarization than in p polariza-
tion, the high-frequency features of the object are less de-
fined.

0.2
S o
L [ |
-0.2
-0.5 0 0.5
XA

0.5 0 0.5

Fig. 5. Influence of the position of the sample with respect to
the interface. This figure is the same as Fig. 2, except that the
centers of the cubes are located at z=0.6\ from the interface.

02 0.5
< <
-0.5 0 0.5 03 x?x s
XA

Fig. 6. Reconstruction of the permittivity using s-polarized
wave illumination. The parameters are the same as those for
Fig. 2.
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Fig. 7. Map of the relative permittivity in using the renormal-
ized Born approximation: (a) with only propagative waves
(6¢ =[-40,40] deg), (b) with both propagative and evanescent
waves (6™ e[-80,80] deg), (c) with only evanescent waves (6™
e[-80,-43]U[80,43] deg).

It is worth noting that one could enhance the high-
frequency information by increasing artificially the
weight of the far-field data stemming from the evanescent
illuminations in the cost function. This remark holds also
for the experiment depicted in Fig. 5. However, this tech-
nique can be applied only if the signal-to-noise ratio is
high enough for the data obtained with evanescent illumi-
nations to be meaningful.

D. Using the Renormalized Born Approximation

In this subsection, we present reconstructions obtained
with a linear inversion technique based on the renormal-
ized Born approximation. The latter consists in replacing
the local near field given by Eq. (4) by the incident one. It
is more accurate than the classical Born approximation,
since it accounts for the static depolarization that occurs
inside any dielectric, as shown in Appendix A. Under this
approximation, one does not need to solve Eq. (4), and the
computation time is greatly reduced. Note that, bearing
in mind the remarks made in Subsection 4.A, the far-field
equation (3) is calculated with the tensor of susceptibility
that accounts for the interface. We observe in Fig. 7 that,
whatever the incident illuminations (propagative, evanes-
cent, or both), the reconstructed maps of permittivity do
not permit the resolution of the two cubes, and the per-
mittivity is overestimated close to the interface. This last
point can be explained by noting that the local field inside
a small sphere increases when the distance between the
sphere and the interface decreases.’’ The renormalized
Born approximation thus underestimates the field inside
the objects, especially close to the interface. The inversion
procedure compensates this error by overestimating the
polarizability of the dipoles close to the interface.
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E. Robustness with Respect to Noise

In this subsection, we analyze the robustness of our inver-
sion scheme when an uncorrelated noise is added to the
scattered field. This noise can be related to the detector
background noise or to uncontrolled dust scattering. We
corrupt each component of the scattered field as

Re[f,,(r;)] = Relf,, (r))] + uA, &, (16)

Imm;v(rk)] = Im[fl;v(rk)] + uAinl;va (17)

where v stands for the component along x, y, or z. &, and
7y, are random numbers with uniform probability density
in [-1,1], and u is a real number smaller than unity that
monitors the noise level. A,=max[Re(f;,,)]-min[Re(f;,)],
and A;=max[Im(f;,,)]-min[Im(f;,,)]. Figure 8 shows the
effect of the noise on the reconstructed maps of relative
permittivity when the noise level u is equal to 20% for dif-
ferent configurations of illumination. Figure 8(a) shows
the reconstruction when only evanescent waves are used,
ie., 6" [-80,-43]U[80,43] deg. We observe that the re-
construction is relatively deteriorated by the presence of
noise. This can be due to the fact that, in this configura-
tion, the scattered far field obtained for the most evanes-
cent incident waves, 6;,.=80 deg, is totally blurred by the
noise, whose level is related to the most important far-
field intensity, i.e., that obtained for 6,,.=43 deg. Thus, al-
though these data do not reveal any information, their in-
tensity becomes comparable with that obtained with
moderate evanescent incident waves and they strongly
perturb the reconstruction. In Fig. 8(b), we plot the map
of permittivity obtained from noisy data in a complete
configuration, containing both evanescent and propaga-
tive waves. Through the propagative waves, we have
added low-spatial-frequency data that are less deterio-
rated by the noise and have suppressed several incident
evanescent waves. We observe that the reconstruction be-
comes less sensitive to the noise and that, most impor-
tant, the superresolution stemming from the use of eva-
nescent illumination is still present. Hence it seems that
using propagative together with evanescent wave illumi-
nations permits one to increase the robustness to noise of

0.2 0.5
< <
-0.2 0.1
-0.5 0 0.5
-0.5 0 0.5
"y x/A
(a)
0.2 0.5
<
02 or [N
S . o -0.5 0 0.5
-0.5 0 0.5
A x/A
(b)

Fig. 8. Robustness of the inverse scattering algorithm with re-
spect to uncorrelated noise: (a) map of the relative permittivity
using only evanescent wave illuminations (6"°e[-80,
-43]U[80,43] deg), (b) same as (a) but with both evanescent and
propagative wave illuminations (6™ e [-80,80] deg).
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the inversion procedure while retaining the superresolu-
tion.

5. CONCLUSION

We have simulated a realistic total internal reflection to-
mography (TIRT) experiment. We have proposed a full-
vectorial nonlinear inversion scheme to retrieve the map
of permittivity of the objects from the scattered far field.
We have shown that it is possible to resolve two cubes of
width \/4 separated by A/10 deposited on a prism made
of glass (¢=2.25). We have investigated the power of reso-
lution of our reconstructions with respect to the incident
solid angle, the polarization, and the distance between
the objects and the interface. We have presented a linear
inversion method based on the renormalized Born ap-
proximation and pointed out that the presence of the in-
terface restricts considerably the field of application of
such a technique. Last, we have checked the influence of
noise on the reconstructions. We have shown that adding
propagative incident waves, together with evanescent
ones, increases the robustness of our inversion procedure.
To ameliorate the spatial resolution of the TIRT, it is nec-
essary to generate evanescent waves with a large tangen-
tial wave vector. Unfortunately, in optics, the highest re-
fractive index of the prism is about 2. Thus the resolution
of the TIRT will be two times better than that of a stan-
dard tomography technique. To go further, one can modify
the substrate so as to support high-frequency evanescent
waves such as thin-film surface plasmons. Work in this
direction is in progress.

APPENDIX A: BORN APPROXIMATION AND
RENORMALIZED BORN APPROXIMATION

For the sake of simplicity, we explain the difference be-
tween the Born approximation and the renormalized
Born approximation for an object in free space. Adding an
interface does not change the explanation. The self-
consistent electric field inside the object can be obtained
from the following integral equation:

Em(r)innC(r)+f T(r,r’)x(r’)Em(r’)dr’, (A1)
v

where E™(r) denotes the macroscopic field inside the ob-
ject and x(r')=[e(r’)-1]/(4m) is the linear susceptibility
of the object. T is the free-space susceptibility tensor,!

given by

= RoR _\[1 ik
. e

R?
(i’ © )k—g —47TT6R A2
+ - - ’
R2 JR| 3 (&) (A2)

where R=r-r’, R=|R|, % is the free-space wave number,

and T is the unit tensor. To solve Eq. (Al), we discretize
the object into N subunits, arranged on a cubic lattice.
The size d of the elementary cell is small enough that the
macroscopic field can be considered constant over it (typi-
cally, the cell side is one tenth of the wavelength in the
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object). The discretized Eq. (A1) reads as

N
E™(r)=E™@x)+ >, i‘(ri,rj) x(x)d°E™(r;))
Jelji
8(1',;) -1
S E™(r,). (A3)

If we factorize the terms corresponding to index i, we get
an equation for the local field,

N
E(r)=E™x)+ > T@,r)ar)Er), (Ad)

j=lj#i

where the macroscopic field and the local field are linked
by the relation

e+2

E"(r;) =E(r;). (A5)

Equation (A4) is the usual form of the CDM introduced by
Purcell and Pennypacker.13

The so-called Born approximation consists in the hy-
pothesis that the macroscopic field inside the object is
close to the incident field, i.e., Eq. (Al) is reduced to
E™(r;)=E™(r;)). The renormalized Born approximation
amounts to assimilating the local field inside the object to
the incident field; hence Eq. (A4) is reduced to E(r;)
~E™(r;). In this case, the relation between the macro-
scopic field and the incident field reads as

E"(r;) = E™(r;). (A6)

c+2

This approximation is thus different from the classical
Born approximation. It is more accurate than the latter,
especially when the dielectric contrast between the object
and the surrounding medium is high.32

APPENDIX B: EXPRESSION OF THE
SURFACE FIELD SUSCEPTIBILITY

In this appendix, we express the elements of the tensor of

the surface field susceptibility S.In general, the tensor in
the presence of an interface normal to the z axis is given,
in Cartesian coordinates, under the Weyl development.18
It requires the numerical calculation of a two-dimensional
Fourier transform over the conjugate variables of x and y.
Here we propose an alternative expression of the surface
field susceptibility, in cylindrical coordinates, that neces-
sitates a single numerical integration.

The dyadic tensor has nine components, but the sym-
metry of the surface suggests some relations between the
elements of the tensor. Hence only four integrals are
needed to derive all the elements. Let the angle ¢ be de-
fined by
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a=[(x-x0)?+(y-y0)*"%,
sin ¢ = (x — x¢)/a,

cos ¢ =(y —yo)la, (B1)

where (x,y,2) is the position of the observation point and
(x0,¥0,20) the location of the dipole. Let us also define the
Fresnel reflection coefficients A; and A, for s- and
p-polarized plane or evanescent waves:

W1 —&Wo w1 —Wo

, (B2)

o — ’ s —
w1+ ey wi+wy

with w?=ek2-u? and wi=kZ-u?. u is the modulus of the

wave vector parallel to the surface. S can be written as®
I, + cos(2¢)l, —sin(2¢)], sin ¢l
§(r,r0) =| —-sin(2¢)ly I;-cos(2¢)l, cos ¢l3 |,
—sin ¢l3 —cos ¢l3 1,
(B3)
with
i kg i
I=—|- f + f dwodo(auw)expliwy(z +2q)]
2 0 0
X (R§A; — wEA,), (B4)
i ko i
Iy=—\- f + f dwody(au)expliwy(z +zo)]
2 0 0
X (= kgAs —wiA,), (B5)

ko i
I3= (— f + J )dwOJl(au)exp[iwo(z +20) A wou,
0 0

(B6)

ko oo
I4=i<—f +f )dwOJO(au)eXp[in(z +zo)]Apu2.
0 0
(B7)

The functions J,, J;, and J, are Bessel functions of the
first kind and are zero, first, and second order, respec-
tively. Equations (B4)—(B7) correspond to the sum of two
integrals: One is evaluated over the propagative waves,
and the second over the evanescent waves. When a=0, S
becomes diagonal.

APPENDIX C: EXPRESSION IN THE
FAR-FIELD ZONE OF THE SURFACE
FIELD SUSCEPTIBILITY

When the observation point is in the far field, one can use
the method of stationary phase34 for computing the sur-

face field susceptibility tensor Sd;
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. k2
Si(r,ro) = 7° expliko[xc(x — xo) +y(y = yo) +2(z +20) Vr}

xz \2 2 xy 2 Z
(;) St E(F*Aé) 2
. _(_A Ar) (y_z)i\'_fx =,
2 7‘2 p s rp p 278 2P ’
Sy I
rZ p r2 P 7‘2 P
) (C1)

with r=(x2+y2+22)V2 and p=(x%2+y2)2. The Fresnel re-

flection coefficients are given by

, (asr2 _ p2)1/2 —ez , (8572 _ p2)1/2 e (Cz)
D~ (85r2—p2)1/2+ SSZ’ s (857‘2 _p2)1/2+z'
If x=y=0, then
k% A, 00
Sd(z,2) = — expliko(z +2)]| O A; 0]. (C3)
z
0 0 0

The analytigal form of S4 permits a quick computation of
the matrix B.

APPENDIX D: BACKPROPAGATION
PROCEDURE TO GENERATE AN INITIAL
GUESS TO THE ITERATIVE INVERSE
SCATTERING ALGORITHM

We present here the derivation of an initial guess that is
used to start the iterative scheme described in Section 3.
First, we determine, for each illumination /, an estima-
tion of the dipole distribution p;™* lying in the investigat-
ing domain Q by backpropagating the measured fields f;
into Q:

piit= 3 B'f, (D1)

where BT denotes the transpose complex conjugate matrix

of the matrix B. The scalar weight v, is determined by
minimizing the cost function M(y,) describing the dis-
crepancy between the data f; and those that would be ob-

init,

tained with p;™":
M(y) = |, - Bp{"{ =[If, - yBBf|}. (D2)

Writing down the necessary condition dM/dy,=0 for M to
be a minimum leads to an analytical expression of v;:

(BB'f)|f;);
N (D3)
[BB'f[;

Once the estimation of the dipoles is determined, an esti-
mation of the total field E[™® in the investigating domain
Q can be derived either by assuming the Born approxima-
tion or by applying Eq. (4):
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E}nit — E}nc + Ap}nit. (D4)

Finally, the initial guess for the polarizability distribution
a™t at a position r inside Q is deduced from p}™* and E;™*
as follows:

K. Belkebir’s

L .. Lk
El=1 p;mt(r) . E;mt (I‘)

L ini
2, B )2

ainit(r) =Re

(D5)

e-mail address is kamal.belkebir

@fresnel.fr.
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