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Superresolution Mapping Using a Hopfield
Neural Network With Fused Images

Minh Q. Nguyen, Peter M. Atkinson, and Hugh G. Lewis

Abstract—Superresolution mapping is a set of techniques to in-
crease the spatial resolution of a land cover map obtained by soft-
classification methods. In addition to the information from the land
cover proportion images, supplementary information at the sub-
pixel level can be used to produce more detailed and accurate land
cover maps. The proposed method in this research aims to use
fused imagery as an additional source of information for superres-
olution mapping using the Hopfield neural network (HNN). For-
ward and inverse models were incorporated in the HNN to sup-
port a new reflectance constraint added to the energy function.
The value of the function was calculated based on a linear mixture
model. In addition, a new model was used to calculate the local end-
member spectra for the reflectance constraint. A set of simulated
images was used to test the new technique. The results suggest that
fine spatial resolution fused imagery can be used as supplementary
data for superresolution mapping from a coarser spatial resolution
land cover proportion imagery.

Index Terms—Fused images, Hopfield neural network (HNN)
optimization, soft classification, superresolution mapping.

I. INTRODUCTION

T
HERE has been an increasing requirement for high spatial

and spectral resolution remotely sensed imagery in a

wide range of fields such as agriculture, urban planning, habitat

management, and especially land cover mapping. To satisfy this

requirement, several sensors launched recently provide images

with a very high spatial resolution, such as IKONOS with

4-m multispectral (MS) and 1-m panchromatic (Pan) imagery

and QuickBird with 2.6-m MS and 0.6-m Pan imagery [1].

However, the spatial detail in such imagery is still limited by

the pixel, which represents the smallest element in a remotely

sensed image. Conventionally, hard-classification approaches

provide thematic maps at the pixel level, in which each pixel

is assigned to just one class in the thematic map [2]. In most

cases, the nature of the real landscape and the data acquisition

process cause many “mixed pixels” in remotely sensed images

[3]. If these mixed pixels are assigned to just one class as in

hard classification, some information is lost.

Soft-classification approaches predict the proportional cover

of each land cover class within each pixel. Several soft-classifi-

cation approaches exist such as spectral mixture modeling [4],
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fuzzy -means classifiers [5], artificial neural networks [6], [7],

-nearest neighbor classifiers [8], and support vector machines

[9]. Soft classification produces a set of proportion images, and

each of these images contains subpixel information on a given

class. These images are more informative and appropriate depic-

tions of land cover than those produced by the conventional hard

classification. However, the location of the land cover classes in

the mixed pixels is still unknown. In other words, the spatial

resolution of the thematic map produced by soft classification

is not increased relative to that of hard classification.

Superresolution mapping is a set of techniques for predicting

the location of land cover classes within a pixel based on the

proportion images produced by soft classification. Hence, su-

perresolution mapping increases the spatial resolution of the re-

sulting land cover maps. Since the concept of superresolution

mapping was introduced by Atkinson [10], there have been sev-

eral techniques proposed for superresolution mapping: spatial

dependence maximization [10], subpixel per-field classification

[11], linear optimization techniques [12], Hopfield neural net-

work (HNN) optimization [13]–[17], two-point histrogram op-

timization [18], genetic algorithms [19], and feedforward neural

networks [20]. These techniques are based on the concept of

spatial dependence, which refers to the tendency of proximate

subpixels to be more alike than those located far apart. In all

these approaches, the detail and accuracy of the superresolution

map were greater than the corresponding hard-classified images.

However, these superresolution mapping methods have a limit

to the detail and accuracy of the resulting thematic map since

they were based only on the soft-classified proportion data at the

pixel level and the spatial dependence assumption. It is, there-

fore, suggested that additional information could be useful.

An example of the inaccuracy of the above-mentioned super-

resolution mapping methods can be seen in Fig. 1. From the land

cover proportion of a single class in Fig. 1(a), three possible re-

sulting thematic maps at subpixel resolution can be obtained as

in Fig. 1(b)–(d). All these maps satisfy the assumption of spa-

tial dependence but the location of the subpixels in the central

pixel is different. If some information can be provided at the

subpixel level, then more accurate subpixel mapping results can

be achieved.

The spatial resolution of thematic maps can be increased

using raw remote sensing images without soft-classified data.

Schneider and Steinwender [21] combined an image segmenta-

tion technique and spatial subpixel analysis based on the spatial

pattern of pixels in a certain neighborhood to produce higher

spatial resolution images. Further, Pinilla Ruiz and Ariza Lopez

[22] used point spread function-derived deconvolution filters to

increase the spatial resolution of multispectral images.
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Fig. 1. (a) Land cover proportion image and (b), (c), (d) three possible result-
ing superresolution mapping images based on maximizing spatial dependence.

Image fusion is another approach to increase the spatial reso-

lution of raw remotely sensed images by combining high spatial

but low spectral resolution images with high spectral but low

spatial resolution images to produce a high spectral and spatial

resolution image. Amongst the approaches for fusing different

data sources, the most common involves combining Pan and MS

images to obtain a MS image at the spatial resolution of the Pan

image. There have been several image fusion techniques such as

intensity–hue–saturation (IHS) method [23], filter-based fusion

[24], wavelets method [25], and Gram–Schmidt spectral sharp-

ening [26]. For land cover classification, the fused MS image

should preserve the spectral properties of the MS image at the

spatial resolution of the Pan image. However, quality assess-

ment for the fusion approaches proposed by Munechika et al.

[27] and Wald et al. [28] showed that there is always spectral

distortion in the fused image compared to the spectral proper-

ties of the original MS data.

There are two approaches for using a fused MS image for land

cover classification. The fusion-then-classification approach

uses the fused MS image directly for land cover classification.

An example of the fusion-then-classification approach is given

by Shackelford and Davis who used a 1-m fused MS image

for urban mapping [29]. The classification-then-sharpening

approach uses the fused MS image to sharpen a land cover

proportion image obtained from the original MS image. The

classification-then-sharpening approach was used by Foody to

sharpen a fuzzy classification output [30] and by Gross and

Schott to sharpen a proportion image obtained by spectral mix-

ture analysis [31]. According to the results of both approaches,

the accuracy of the thematic map using the fused MS image

increased slightly in comparison with that of the original MS

image. Evaluation of the two approaches by Robinson et al.

[32] based on a linear mixing model indicated that the classi-

fication-then-sharpening approach was preferable in terms of

Fig. 2. HNN superresolution mapping using the fused multispectral mages.

accuracy. The fusion-then-classification approach produced a

thematic map with lower accuracy due to the spectral distortion

in the fused MS image.

II. HOPFIELD NEURAL NETWORK

This research aims to use a fused image as additional informa-

tion for superresolution mapping. Theoretically, the fused MS

image can provide useful information at an intermediate spatial

resolution for predicting land cover at a finer spatial resolution.

However, the spectral distortion of the fused images may cause

some errors. To reduce the effect of spectral distortion, the clas-

sification-then-sharpening approach was incorporated into the

HNN for superresolution mapping.

Fig. 2 is a graphical depiction of the proposed method to use a

fused image for superresolution mapping by the HNN. From the

MS images at the original spatial resolution the land cover area

proportion images are produced by a soft-classification proce-

dure. The area proportion images are then used to constrain the

HNN to produce the superresolution land cover map in the first

iteration of the optimization process. From the superresolution

map at the first iteration, an estimated MS image is then pro-

duced using a forward model. The estimated MS image is then

compared with the fused image and a reflectance error image is

determined. For all neurons covered by the same pixel in the

fused image, a value based on the reflectance error image is

produced to adjust the estimated MS image. Thus, the HNN is

constrained by the reflectance values of the fused image. The

adjustment value, or reflectance constraint, along with the goal

and constraint values in the HNN structure proposed by Tatem

et al. [13], can be used in the optimization process for super-

resolution mapping by minimizing the energy function. After

the optimization process, the estimated MS image produced by

subpixels in the superresolution map should resemble the fused

image.

The method presented is based on the structure of the HNN

proposed by Tatem et al. [14], [15]. The structure of the HNN

for superresolution mapping of two land cover classes can be

seen in Fig. 3. A pixel at the original spatial resolution is di-

vided into two interconnected matrices of neurons in the HNN.
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Fig. 3. Reflectance constraint for subpixels covered by pixel (m;n) at the
fused level. A pixel at the original level contains four pixels at the fusion level.
m;n are the coordinates of the fused pixel. R(m;n) is the reflectance value of
the fused pixel (m;n), and S and S are the endmember spectra of classes
1 and 2. P and P are average output values of the neurons of classes 1 and
2 that are covered by the fused pixel (m;n): f is the fusion factor.

Each neuron represents a subpixel at position in

the land cover class and each matrix of neurons represents a

land cover class. The HNN is a recurrent neural network and it

reaches a stable state when the energy function is minimized.

For superresolution mapping, the HNN is initialized using the

soft-classified land cover proportions and runs until it converges

to a monotonic stable state [13]. At the stable state, the output

values of the neurons are binary values. If the output value of

the neuron is 1, the subpixel is assigned to the

land cover class . Otherwise, if the output value is 0, the sub-

pixel does not belong to the class . The energy function

can be expressed as

(1)

where and are weighting constants. Values of the

weighting constants define the effects of the conresponding goal

functions, proportion constraint and multiclass constraint to the

energy function. For each neuron and are

the values of the spatial clustering or goal functions. The values

of and can be determined by

(2)

(3)

where is the gain or the steepness of the tanh function (usually

assigned a value 100 [14]). , where is the number

of pixels in the neighborhood used in the goal function, 0.5 is

the threshold, is the ouput value of the neuron . The

first goal function (2) is used to increase the output value of

the neuron if the average output value of the eight surrounding

neurons is greater than 0.5. In contrast, the second goal function

(3) decreases if the average output value of the eight sur-

rounding neurons is less than 0.5.

The value in (1) is the proportion constraint. This value

retains the land cover proportion for each original pixel and is

defined as

(4)

where is

the estimated proportion and is the input proportion of the

land cover of the pixel which is obtained by soft classi-

fication. The pixel is the corresponding pixel at the orig-

inal spatial resolution to which the subpixel or neuron

belongs. is the zoom factor, which determines the increase

in spatial resolution from the original image to the superreso-

lution mapping image. The proportion constraint function con-

tributes a positive value if the estimated proportion of the class

is greater than the input proportion. As a result, the network

reduces the output values of neurons within the pixel in

the class layer . Conversely, if the estimated proportion is less

than the input proportion, the proportion constraint produces a

negative value to increase the output values of the neurons in the

class .

The multiclass value is used to reduce the output of the

neurons if the sum of outputs of classes at the position is

greater than 1. If the sum of outputs of classes is less than 1,

the function increases the output of the neurons at the position

. The value of the multiclass constraint is calculated as

(5)

To use the fused image for superresolution mapping by the

HNN, the energy function in (1) is modified by adding a re-

flectance constraint. In this experiment, a function based on the

reflectance of the fused image is added to the goal functions

and proportion constraint that comprise the energy function.

The new energy function for each band of the fused image can

be expressed in an equation as follows:

(6)

where is the reflectance constraint value for each neuron

.

The structure of the modified HNN can be seen in Fig. 3.

Each neuron in the HNN represents a subpixel point in the orig-

inal spatial resolution image. The fusion factor determines the

increase in spatial resolution of the new superresolution image

in comparison with the fused image. Apart from the proportion

constraint for each original pixel, subpixels covered by

pixel of the fused image are constrained by a reflectance

constraint. The reflectance constraint is based on the principle
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that the average predicted reflectance from all subpixels located

within a pixel of the fused image should be equal to the observed

reflectance (or target reflectance) of that pixel.

For each band of the fused image, there is an additional con-

straint for the energy function. The energy function is mini-

mized if the derivatives of variables in (6) converge to zero for

each neuron

(7)

The derivative values of , and with respect to

are computed using (2)–(5), respectively.

To derive the value , the estimated reflectance

of the neurons representing the fused pixel can

be defined by a forward model using a linear mixture model [4]

as

(8)

where the estimated proportion value

and is the

endmember spectra of the land cover class for a spectral

band .

Similarly, the observed reflectance for pixel can be

expressed using the same forward model as

(9)

where is the observed reflectance of pixel in a

fused image band, is the total number of land cover classes,

are the proportions of a given land cover

class covered by a pixel of the fused images , and

are endmember spectra of the land

cover classes in a MS fused band .

From (8) and (9), the difference between the observed and

estimated reflectance of the neurons representing the fused pixel

is defined by

(10)

The value of the reflectance constraint requires that the re-

flectance difference in (10) should be zero for every spectral

band. Accordingly, the estimated proportion value is ex-

pected to converge to the land cover proportion within each

pixel of the fused image. Therefore, the value of the reflectance

constraint for the fused pixel can be produced based on

an inverse model using the linear mixture model equation

(11)

where is the vector of

reflectance values of the fused spectral bands

and

(12)

is the matrix of endmember spectra values for fused spectral

bands and is the vector of land cover proportion values.

Using the least squares linear mixture model, land cover class

proportions of the fused pixel can be predicted by

with

(13)

From the (13), the values for reflectance constraints for all

fused spectral bands are calculated from the difference between

observed and estimated reflectance of fused multispectral

bands as

(14)

If the number of fused image spectral bands is less than the

number of land cover classes, the value of the reflectance con-

straint cannot be known.

III. EXAMPLE 1: SIMULATED IKONOS IMAGE

A. Data

In this experiment, a set of data based on IKONOS imagery

was used. The set of data is a simulated 32-m MS image and an

8-m fused spectral image created by degrading a real IKONOS

image. The ratio between the spatial resolution of the simulated

MS and fused images is similar to the ratio between the real 4-m

MS and 1-m panchromatic (PAN) IKONOS images. Thus, the

algorithm should be applicable to the real imagery (i.e., 4-m MS

and 1-m fused image) if it performs successfully on the simu-

lated imagery. There are two reasons for using simulated im-

agery. Firstly, it was possible to evaluate the quality of the fused

imagery. Secondly, the simulation ensured that there were no

errors in image registration between the reference image and

the land cover image obtained by superresolution mapping. For

the simulated IKONOS image, the experiment was implemented

in four steps as follows: (A) Raw data analysis, (B) Data sim-

ulation, (C) Preprocessing, and (D) Superresolution mapping

(Fig. 4).

1) Raw Data Analysis:

Raw Data: An IKONOS MS image was acquired over

Eastleigh and Chandler Ford, Southampton, U.K. The IKONOS

image consisted of four 4-m MS bands in the following wave-

bands: red (632-698 nm), near-infrared (NIR: 757-853 nm),

green (506-595 nm), and blue (445-516 nm) and a 1-m PAN

band (450-900 nm). Based on image fusion, the MS and PAN

bands can be used to produce four fused MS image bands at

1-m spatial resolution.

Reference Data and Statistical Information: The experi-

ment was implemented in an area of 64 64 pixels (at 4-m spa-

tial resolution) that consisted of three land cover classes: cereal,

grass, and trees [Fig. 5(a)–(d)]. These three land cover classes

were produced using maximum-likelihood classification of the

real IKONOS image. Statistical information such as the means
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Fig. 4. Four steps in experiment: (A) Raw data analysis, (B) Data simulation,
(C) Preprocessing, and (D) Superresolution mapping.

Fig. 5. (a) Land cover map at 4-m spatial resolution used for simulating data,
(b) 4-m cereal class map, (c) 4-m grass class map, and (d) 4-m trees class map.

and standard deviations of the three land cover classes in the area

was obtained (Table I and Fig. 6). The three land cover classes

were used as a reference for the subpixel map obtained by the

proposed algorithm.

2) Data Simulation:

Multispectral Imagery (8 m): From the land cover map

[Fig. 5(b)–(d)] at 4-m spatial resolution, a set of multispectral

images at 4-m spatial resolution was simulated based on the

random normal distribution and the mean and variance of each

land cover class shown in Table I. The simulated MS image,

therefore, is similar spectrally to a multispectral IKONOS image

at 4-m spatial resolution. A MS image at 8-m spatial resolution

was generated by degrading the 4-m simulated MS image by a

TABLE I
STATISTICAL INFORMATION FOR THE CEREAL, GRASS,

AND TREES CLASSES IN THE IKONOS IMAGE

factor of two to produce [Fig. 7(a)–(d)]. These images were used

as reference to evaluate the quality of the fused image produced

below.

Panchromatic Imagery (8 m): The 8-m simulated MS

image was then used to create a simulated PAN image [Fig. 7(e)]

based on a simple spectral convolution of the blue, green, red,

and NIR bands of the 8-m simulated MS image (the wavelength

of the PAN band of the IKONOS image covers these four

bands) as

(15)

Multispectral Imagery (32 m): The 32-m MS image

[Fig. 7(f)–(i)] was produced by degrading the 4-m MS image

by a factor of eight. The 32-m MS image was then used for soft

classification and image fusion to produce a 32-m land cover

proportion image and an 8-m fused image.

3) Preprocessing:

Fused Imagery (8 m): Amongst the four fused spectral

bands, three were used in the experiment (blue, green, and red).

The NIR band of the fused image was not used because of the

scattered distribution and the spectral (Fig. 6) overlap of all three

land cover classes over this band. From the simulated 8-m PAN

and 32-m MS images, the 8-m fused image [Fig. 7(k)–(m)] was

predicted using the Gram–Schmidt Spectral Sharpening method

[26]. The fused image was evaluated based on the root mean

square (RMS) error for each band [27]. The RMS errors of the

red, green, and blue bands were 15.74 digital number (DN), 8.27

DN and 5.44 DN, respectively. Comparing with the RMS errors

of the fused image obtained in Munechika et al. [27], the fused

image produced was similar to that of real data.

Simulated Land Cover Proportion Imagery (8 m): To

provide a realistic test, a set of proportion images was produced

using soft classification of the simulated 32-m MS image. The

simulated MS image was used because in the simulated case the
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Fig. 6. Histrogram of three classes in four bands of IKONOS MS image.
(Dotted line) Band 1. (Dashed line) Band 2. (Dotted and dashed line) Band 3.
(Solid line) Band 4.

three land cover classes at the subpixel (4 m) level are known,

facilitating direct evaluation of the technique. A -nearest

neighbor classifier ( -NN) [8] was used for soft classification

with . The land cover proportion image was produced

with overall area error proportion of 0.5552% and overall RMS

error of 0.083 775 pixels [13]. Statistics for the resulting land

cover map from soft classification show that the land cover

proportion images contained an amount of error similar to that

of a soft-classified real MS image. In this sense, the simulated

land cover proportion image was similar to that which might

be obtained from real data.

Fig. 7. Four bands (a) red, (b) NIR, (c) green, and (d) blue 8 m of simulated
MS IKONOS image. (e) Eight-meter simulated PAN image. Four bands (f) red,
(g) NIR, (h) green, and (i) blue of 32-m simulated image. Three bands (k) red,
(l) green, and (m) blue of 8-m simulation of the fused MS image.

4) Global Endmember Spectra: The endmember spectra

values in (7) can be acquired from laboratory measurements

or can be estimated from training data [4]. Since the simulated

MS image was created from statistics on the cereal, grass, and

trees classes, the endmember spectra of these classes should be

the means of the spectral distributions in the blue, green, and

red bands.

5) Local Endmember Spectra: Three land cover classes ex-

hibited a large variance over all four spectral bands (Table I and

Fig. 6). Thus, the single set of endmember spectra values used in

(2) was not appropriate for every pixel in the image. Investiga-

tion of the real IKONOS image indicated that the digital num-

bers of adjacent pixels of the same class were similar. Hence,

it was suggested that using locally defined endmember spectra

would be more appropriate for determining the local reflectance

constraint value than using a single value for the whole image.

Local endmember spectra were produced from the land

cover proportion image and the original MS image (e.g., 32-m

land cover proportion image and 32-m MS image). Fig. 8

describes the local endmember spectra estimation process. The

endmember spectra of the pixel of a given 8-m fused

spectral band can be defined based on the class proportions and
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Fig. 8. Local endmember spectra calculation. (m;n) are coordinates of the
fused image pixel. and (x; y) are coordinates of the pixel in the original image
that corresponds to the fused pixel (m;n). From land cover proportion and
digital number of pixel (x; y) and its eight surrounding pixels, the local spectra
of the pixel (m;n) can be calculated.

the reflectance value of the corresponding pixel and its

eight surrounding pixels of the same spectral band of the 32-m

MS image. For each spectral band and each pixel , an

equation exists as follows:

(16)

where is the digital number of pixel in spec-

tral band are class proportions and

are the local endmember spectra of

the pixel in spectral band .

With eight surrounding pixels, there are eight equations

which can be rewritten in matrix form as

(17)

where

, and

Using the least squares method, the local endmember spectra

can be resolved as

(18)

Amongst the pixels that are used to determine the local end-

member spectra, the pixel should be the most important

since it covers the fused pixel . To emphasize the con-

tribution of the corresponding pixel to the endmember

spectra, a weight mechanism was used such that (19) becomes

(19)

where was the diagonal matrix

(21)

and are weight values

for each corresponding pixel. The assumption was tested using

the weight value of 1 up to 20 and the other weight values

of 1. The optimal weight value was determined based on

the Kappa index of agreement (KIA) of results of the super-

resolution mapping using the fused image.

B. Results

Two sources of data were used in superresolution mapping

using fused imagery. The first data source was the land cover

proportion image obtained by soft classification. The second

data source was the fused image. In the experiment using the

simulated land cover proportion image, both data sources con-

tained an amount of error similar to that of real data.

From the predicted soft-classified land cover proportion

image [Fig. 9(a)–(c)], the 4-m subpixel land cover maps

were obtained using the traditional HNN [Fig. 9(g)–(i)], the

HNN using the fused image with global endmember spectra

[Fig. 9(j)–(l)] and the HNN using the fused image with local

endmember spectra [Fig. 9(m)–(o)]. The greatest accuracy

land cover map was obtained with the weighting coefficients

of , and after

6000 iterations and the optimal weight value of 14 to determine

the local spectra. The 32-m hard-classified land cover image

[Fig. 9(d)–(f)] was produced from the 32-m multispectral image

[Fig. 9(g)–(j)] using a neural network. Accuracy statistics for

each class based on KIA, overall accuracy, and per-class omis-

sion and commission errors are presented in Table II to evaluate

the predicted subpixel map.

The map produced by the new HNN superresolution tech-

nique with real proportion image data was more accurate than

the hard classification and traditional HNN in retaining small

and linear objects. Despite the effect caused by the error in

the class proportion image, the linear features in the trees class

were recreated by both the new HNN with global and local end-

member spectra. However, the errors from soft classification

caused some artefacts in the trees class when the new HNN with

global endmembers was used. These artefacts can be seen when

comparing Figs. 7(d) and 9(l). The artefacts occurred mostly

for pixels where the soft classification predicted some erroneous

land cover proportions [the erroneous proportions can be seen

clearly in Fig. 9(b)]. The artefacts did not occur in the resulting

land cover map produced by the HNN with local endmembers.

This can be explained as follows: the use of global endmembers

led to an inability to reduce the effects of the erroneous propor-

tions locally in some cases.

The statistics in Table II showed considerable increase in

all accuracy values for the new HNN technique in comparison

with the hard-classification and traditional HNN. The overall

accuracy increased from 86.52% for the hard classification and

88.53% for the traditional HNN to 87.92% for the new HNN
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Fig. 9. (a) Four-meter Cereal, (b) Grass, and (c) Trees land cover proportion
image. (d) Four-meter Cereal, (e) Grass, and (f) Trees hard-classified land
cover image. (g) Four-meter Cereal, (h) Grass, (i) Trees HNN superresolution
mapping image. (j) Four-meter Cereal, (k) Grass, and (l) Trees HNN
superresolution mapping using the fused image with the global endmember
spectra resulting image. (m) Four-meter Cereal, (n) Grass, and (o) Trees HNN
superresolution mapping using the fused image with the local endmember
spectra resulting image.

with global endmembers and 91.19% for the new HNN with

local endmembers. The visual and statistical improvement of

the resulting subpixel maps when using a real proportion image

showed that the new algorithm can increase the accuracy of the

thematic mapping with the real image data if the image regis-

tration error is not taken in to account.

Similar to the visual comparison, the statistics highlighted

a problem with the new HNN with global endmembers. This

problem resulted in an increase in the commission error for the

trees class from 20.69% for the traditional HNN to 30.02% for

the new HNN with global endmembers. Similarly, the omission

TABLE II
ACCURACY STATISTICS OF SIMULATED IKONOS RESULTS

error obtained for the trees class by the traditional HNN super-

resolution mapping increased from 36.82% to 39.44% for the

new HNN with global endmembers. Due to the problem with

the erroneous proportion, the overall accuracy of the new HNN

with global endmembers decreased just slightly in comparison

with the map obtained with the HNN superresolution mapping,

with the overall accuracy decreasing from 88.52% to 87.92%.

With local endmembers, the HNN using the fused image can

resolve the problem that occurred when using a single set of

global endmembers. The overall accuracy of the resulting map

produced by the new HNN with the local endmembers increased

greatly by approximately 3% to 91.19%.

IV. EXAMPLE 2: DEGRADED QUICKBIRD IMAGE

A. Data

Although simulated imagery provides greater control than

real imagery for evaluating new algorithms, a common criticism

is that simulated imagery may not provide a realistic test, pri-

marily because image registration error is not included in the

data. Therefore, to provide a more realistic test, and to address

such concerns, a second set of proportion images was produced

using a degraded QuickBird MS and PAN image. A degraded

(rather than real) image was used because in the degraded case

the three land cover classes at the subpixel level are known, fa-

cilitating direct evaluation of the impact of image registration

error on the technique.
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Fig. 10. Four steps in experiment. (A) Raw data analysis. (B) Data simulation.
(C) Preprocessing. (D) Superresolution mapping (Fig. 4).

Fig. 11. (a) The 0.7-m PAN image (360� 300 pixel), (b) blue, (c) green,
(d) red, and (e) NIR bands of 2.8-m MS image (90� 75).

1) Training and Reference Data:

Raw Data: A QuickBird MS image was acquired over

an area of ChristChurch, UK on June 1, 2002. A subarea of

PAN (360 300 pixel) [Fig. 11(a)] and MS (90 75 pixel)

Fig. 12. Three land cover classes image for reference: (a) 0.7-m grass, (b)
0.7-m white surface, and (c) 0.7-m dark surface. Three land cover classes image
for training: (d) 8.4-m grass, (e) 8.4-m white surface, and (f) 8.4-m dark surface.

[Fig. 11(b)–(e)] images was extracted from an area in the

airport. Three land cover classes in the area were: grass, white

surface and dark surface of the runway. The MS image was

coregistered to the PAN image with a root mean square error

of 0.25 pixels.

Training and Reference Data: Three land cover classes

at 0.7-m spatial resolution were obtained by manual digitising

from the panchromatic image [Fig. 12(a)–(c)]. These land cover

image were used as the reference data for the results of super-

resolution mapping. Thus, there was no image registration error

of the PAN image against the reference data.

Superresolution methods use land cover proportions ob-

tained by soft classification as input. To implement the soft

classification, training data are required. In this paper, the soft

classification was implemented at 8.4-m spatial resolution. The

training data, therefore, could be produced by degrading the

land cover image at 0.7-m spatial resolution by 12 times as in

Fig. 12(d)–(f).

2) Data Degradation:

Multispectral Imagery (8.4 m): The QuickBird MS image

at 2.8-m spatial resolution was degraded by three times to pro-

duce a MS image at 8.4-m spatial resolution [Fig. 13(a)–(d)].

This MS image was then used to produce the land cover propor-

tions at 8.4-m spatial resolution using soft classification with
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Fig. 13. Four bands (a) blue, (b) green, (c) red, and (d) NIR 8.4-m of
simulated MS image. (e) The 2.1-m degraded PAN image. (f) The 0.5-pixel
image registration error PAN image at 2.1-m spatial resolution. (g) The 1-pixel
image registration error PAN image at 2.1-m spatial resolution and 1.5-pixel
image registration error PAN image at 2.1-m spatial resolution.

training data in Fig. 12. The land cover proportions were then

used to produce a 0.7-m land cover image using superresolution

mapping and the results were compared with the reference data

in Fig. 12.

Panchromatic Imagery (2.1 m): The 2.1-m PAN image

was produced by degrading the 0.7-m PAN image by three times

[Fig. 13(e)]. The PAN image in Fig. 13(e) contained no image

registration error. To evaluate the effect of the image registra-

tion error on the accuracy of the resulting land cover map, the

PAN image was geocoded with root mean square errors (RMS)

of 0.5 pixels [Fig. 13(f)], 1 pixel [Fig. 13(g)], and 1.5 pixels

[Fig. 13(h)]. The proposed algorithm was then tested using the

fused images obtained from these geocoded PAN images and

the results were compared with the fused images without image

registration error.

3) Preprocessing:

Fused Imagery (2.1 m): Amongst the four fused spectral

bands, three were used in the experiment (blue, green, and red).

From the 2.1-m degraded PAN image [Fig. 13(e)] and 8.4-m

MS image [Fig. 13(a)–(d)], the 2.1-m fused image was obtained

using the Gram–Schmidt Spectral Sharpening method. To in-

clude the image registration error in the fused image, the PAN

images with image registration RMS error in the range from

0.5 pixels to 1.5 pixels [Fig. 13(f)–(h)] were fused with the MS

image to evaluate the effect of the image registration error on

the algorithms.

Land Cover Proportion Imagery (8.4 m): Proportion im-

ages at 8.4-m spatial resolution were produced from the 8.4-m

MS image in Fig. 12 using the training data in Fig. 10. Obvi-

ously, this set of proportion images contains a certain amount of

error including the MS image registration error. The predicted

land cover proportions were then used for hard-classification,

traditional superresolution mapping and the new method for su-

perresolution mapping using the fused image. The error of the

proportion predicting process has an impact on the results of

all these methods. That means that the PAN image registration

error is the only source of image registration error affecting the

accuracy of superresolution mapping.

A -nearest neighbor classifier ( -NN) [8] was used for soft

classification with . The land cover proportion image

was produced with overall area error proportion of 0.0242% and

overall RMS error of 0.018 159 pixels [13]. The proportions of

three land cover classes can be seen in Fig. 14(a)–(c).

B. Results

In the experiment using degraded QuickBird imagery, the

results produced by the three approaches were compared, as

in the simulated data case. The 8.4-m hard-classified land

cover map was obtained from the land cover proportion image

[Fig. 14(a)–(c)] by assigning each 8.4-m pixel to the class of the

largest proportion [Fig. 14(d)–(f)]. The HNN superresolution

mapping by Tatem et al. [14] was based on the clustering goal

functions, proportion constraint and multiclass constraint. Ap-

plying this HNN superresolution mapping approach, a 0.7-m

spatial resolution land cover map of three land cover classes was

produced using the 8.4-m predicted land cover proportion image

as input to the HNN superresolution mapping technique, with

a zoom factor of 12. After 6000 iterations with the weighting

constants of , and , three

land cover images were superresolved as in Fig. 14(g)–(i). Ac-

curacy statistics for each class based on KIA, overall accuracy,

and per-class omission and commission errors were presented to

evaluate the predicted subpixel spatial resolution map (Table III).

The new HNN superresolution mapping technique was con-

strained by the 8.4-m land cover class proportion image and the

2.1-m fused images. To estimate the local endmember spectra of

three land cover classes, the 8.4-m land cover proportion image

was used in combination with the 8.4-m MS images which were

degraded from the 2.1-m fused images. Based on the results

of the simulated IKONOS data case, the weight value of 14

was used to determine the local endmember spectra. A zoom
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Fig. 14. (a) Grass, (b) White surface, and (c) Dark surface 8.4-m land cover proportion image. (d) Grass, (e) White surface, and (f) Dark surface 8.4-m
hard-classified land cover image. (g) Grass, (h) White surface, and (i) Dark surface 0.7-m HNN superresolution mapping image. (j) Grass, (k) White surface, and
(i) Dark surface 0.7-m HNN superresolution mapping using the fused image without image registration error. (m) Grass, (n) White surface, and (o) Dark surface
0.7-m HNN superresolution mapping using the fused image with RMS image registration error of 1 pixel.
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TABLE III
ACCURACY STATISTICS OF DEGRADED QUICKBIRD RESULTS

factor of 12 was used to produce a 0.7-m spatial resolution map.

With 6000 iterations and weighting constants of

and , the HNN network using

the fused MS image without PAN image registration error and

the local endmember spectra produced the land cover images

in Fig. 14(j)–(l). Using the same weighting constants with the

fused image obtained from the PAN image with image registra-

tion RMS error of one pixel (the accuracy can be obtained nor-

mally in the geometric correction process) the HNN produced

the land cover maps as in Fig. 14(m)–(o). Accuracy statistics of

the predicted land cover map are given in Table III.

In comparison with the hard classification and the traditional

HNN superresolution mapping, the resulting land cover map

produced by the HNN using the fused image is visually more

accurate. Similar to the simulated IKONOS dataset, the greatest

improvement can be seen in the white surface class, where al-

most all subpixels belong to small objects. Without information

from the fused image, the white surface subpixels of the linear

objects in Fig. 12(b) were clustered into larger objects to satisfy

the HNN goal functions as in Fig. 14(h). Although the fused

image contains error due to the image registration error of the

PAN image, the small and linear white surface objects can still

be mapped and their shapes look similar to those in the reference

image. This fact suggests that the new technique can be used for

applications such as target identification.

The accuracy statistics showed a considerable increase in ac-

curacy with the new technique. Overall accuracy of the land

Fig. 15. Effect of the image registration on KIA value of resulted subpixel map
using the HNN superresolution mapping using the fused image.

cover map increased by around 3% from 94.21% for the hard

classification to 97.18% for the superresolution mapping using

the fused image without image registration error. With the fused

image produced by the PAN image with image registration error

of 1 pixel, the accuracy of the resulting 0.7-m land cover map

increased around 2% and 0.5% in comparison with the results of

hard classification and the HNN superresolution mapping tech-

nique, respectively. The KIA value increased from 0.8685 for

the hard-classified map and 0.9166 for the traditional HNN sub-

pixel map to 0.9365 for the superresolution mapping using fused

image without PAN image registration error and 0.9166 for the

superresolution mapping using fused image with PAN image

registration error of 1 pixel. Comparing with the resulting sub-

pixel map produced by the HNN when the fused image was not

used, the accuracy of the thematic map produced by the new

technique (without PAN image registration error) increased ap-

proximately 1% in terms of overall accuracy.

Similar to the experiment involving simulated IKONOS

imagery, amongst the three land cover classes, the accuracy of

the white surface class increased most with the omission error

reduced from 85.31% for the hard-classified image and 65.28%

for the traditional HNN superresolution mapping to approx-

imately 54% and 57.85% for the new HNN superresolution

mapping technique with and without PAN image registration

error, respectively. The commission error reduced from 30.79%

and 39.88% to 18.20% and 27.96%, respectively after using the

fused image. The increase in accuracy of the other two classes

was not as great as that of the white surface class since most

subpixels in these classes were grouped into larger objects.

To determine the effect of the image registration error on the

results of the new technique, a series of PAN images with image

registration error ranging from 0.5 pixels to 1.5 pixels were used
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to produce the fused images. Accuracy evaluation of the re-

sulting land cover maps using these fused images based on the

KIA value was implemented and presented in the plot in Fig. 15.

Obviously, the plot shows that the KIA value reduced as the

RMS image registration error increased. When the RMS image

registration error increased to 1.5 pixels, the resulting subpixel

map predicted by the new technique was less accurate than the

results of the HNN without using the fused image. However,

with the fused image produced from a PAN image with RMS

error of one pixel (the accuracy of image registration that can

be usually obtained in geometric correction of remotely sensed

images) the accuracy of the subpixel map produced by the HNN

superresolution mapping using the fused image was greater than

that produced by the HNN superresolution mapping technique

without using the fused image. It is recommended that the new

technique should be used only if the PAN image is registered

with an RMS error equal or smaller than one pixel.

V. CONCLUSION

This paper introduces the use of fused images for superreso-

lution mapping. Data from the fused images were incorporated

into the HNN optimization using forward and inverse models

in the form of the reflectance constraint. The value of the con-

straint was calculated based on a linear mixture model, which

used both global and local endmember spectra. The effective-

ness of the technique was examined using both: 1) simulated

IKONOS dataset and 2) a degraded QuickBird image (with

and without image registration error). In both cases, the pro-

portions images were supplemented by a simulated fused image

and original MS image. The accuracy evaluation was imple-

mented based on the KIA, overall accuracy, and omission and

commission errors.

The results demonstrated that fused images can be used as

a source of supplementary information for the HNN to pre-

dict land cover accurately at subpixel spatial resolution from

simulated and real land cover proportion images. The analysis

demonstrated a considerable increase in accuracy with the new

technique, particularly for land cover features at the subpixel

scale. For larger features, the technique increased the accuracy

slightly. In addition, visual inspection of the resulting image

showed pleasing improvements. The analysis also suggests that

the new technique can be applied only if the RMS image reg-

istrion error of the PAN image is equal to or smaller than 1 pixel.

The result of the experiments suggest the potential for com-

bining image fusion and superresolution mapping processes for

real data. Thus, future research will develop a HNN to incorpo-

rate directly real panchromatic imagery as supplementary data

to increase the accuracy and detail of the predicted subpixel land

cover map.
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