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Superresolving masks for incoherent scanning microscopy
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An approach to achieve superresolution in confocal scanning microscopy by using the singular-system approach
to the inverse problem was recently proposed. It consists of using a specially designed mask that performs the
task of data inversion by means of all-optical processing. We discuss an approximate binary form of such a
mask that permits its practical manufacture for use in incoherent confocal microscopy. The performance char-
acteristics of such an approximate mask are compared with those of an exact mask and with those of a conven-
tional confocal scanning microscope. Although the resolution of the approximate microscope is slightly inferior
to the exact one, they are both still advances over the conventional confocal one (the improvement of resolution
being 65% and 70%, respectively).

1. INTRODUCTION

A method of achieving superresolution in scanning mi-
croscopy by using specially designed optical masks was
suggested recently'-' and discussed in detail. This pro-
posal is a refinement of an earlier attempt4-6 to apply the
singular-system theory to the problem of data inversion in
optical microscopy. In place of the single pinhole and de-
tector of a confocal arrangement, the earlier design in-
volved an array of detectors in the image plane. At each
step of the scanning process their readouts were treated
by a special inversion algorithm that was derived from
singular-system analysis and that recovered the image at
the point on axis. By means of scanning, a whole image
would be formed. This image would be superresolving,
i.e., the resolving power of such a microscope would be sig-
nificantly improved compared with the standard confocal
one. In Ref. 1 it was shown that the detector array and
subsequent computer data processing can be replaced by a
suitable optical mask located at the image plane that
would perform the task of recovering the axial point by
all-optical means. The design of the mask is also based
on singular-system theory (it implements essentially the
same inversion algorithm as before), and the resultant
image is strictly equivalent to the previous one, i.e., it is
also superresolving. For the case of a coherent confocal
microscope, this has been verified experimentally3 (in
both one and two dimensions).

In the case of a microscope that uses incoherent light,
the practical realization of the theoretically calculated
mask with a continuously changing profile proves to be
prohibitively difficult. Hence the need arises for a modi-
fied mask design that not only preserves as much of the
resolving power of the microscope as possible but also is
easy to manufacture. In this paper we present such a de-
sign, developed for the sake of practical utilization in ex-
periment (such an experiment is currently under way).
We focus here on the case of two circular pupils and, to
facilitate numerical computation, a small numerical aper-

ture. The method itself, however, is general and can be
applied equally well for any numerical aperture.

The paper is organized as follows. In Section 2 we re-
view briefly the singular-system approach to data inver-
sion with particular emphasis on the concept of the optical
mask. In Section 3 we describe the new method of prac-
tical mask implementation to be used in the superresolving
incoherent microscope. Finally, in Section 4 we analyze
the imaging characteristics of the true mask, i.e., the mask
that was theoretically calculated, with the new approxi-
mate one. Although the resolving power of a microscope
that uses the new mask deteriorates slightly, it still proves
to be far superior to that of a conventional confocal
microscope.

2. SINGULAR-SYSTEM THEORY OF THE
OPTICAL MASK

In the singular-system approach to data inversion in scan-
ning microscopy, one solves the Fredholm equation of the
first kind, which describes the imaging system, by finding
its singular-value spectrum and its object and image
singular functions. These functions provide the complete
orthonormal basis sets for the object and image. One
then performs the inversion by finding the coefficients of
the singular-function expansion up to a point (the trunca-
tion index K) that is determined by the level of noise in
the image and the singular-value spectrum.

The imaging relationship between the object f and the
image g for a given scanning position can be written as

g(x) = (Af)(x) = fS 2 ( - y)S1(y)f(y)dy, (2.1)

where S and 2 represent the point-spread functions
(PSF's) of the illuminating and imaging lenses, respec-
tively. x and y are the two-dimensional variables in the
image and object planes, respectively. In the incoherent
case both f and g are intensity distributions.
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The inverse problem is that, having measured g(x), we
seek to recover f (y) or, because scanning is involved, only
f (0), the object value at the axial point. Complete recon-
struction of f is then achieved after we solve this problem
at each scanning position. Our approach here is based
on the singular-system analysis. The singular system
{ak; Uk,Vk}, where k = 1, 2,... associated with the operator
A [cf. Eq. (2.1)], is defined by

Auk = akVk, A*vk = akUk, (2.2)

with A* denoting the adjoint operator of A:

(A*g)(y) = Si(y) f S2 (x - y)g(x)dx. (2.3)

The singular functions Uk and Vk are basis functions for
representing object and image, respectively, whereas ak

denotes the kth singular value of the system. In these
terms we can express the best approximation of f(0) as

f(o) E (9, V) (0 ) (2.4)
k-i ak

As is mentioned above, the truncation index K is controlled
by the level of noise that affects the data.4 The parenthe-
ses above denote the standard function space scalar prod-
uct, i.e.,

(gVk) = g(x)vk(x)dx. (2.5)

If we now write
K

k=1 ak

we obtain the previous expression for
ent form:

f(0) in a di.ffer-

f(0) = f g(x)M(x)dx = (g, M) . (2.7)

Thus the implementation of the inversion algorithm in-
volves only the operation of multiplying the image g(x) by
the known function M(x) and then the spatial integration
of the product. Both these operations can be implemented
optically to enable implementation of the data inversion
before detection. One can achieve this by placing in the
image plane an optical mask with a transmission profile
given by M(x) and then using a spatially integrating detec-
tor, or detectors, which measures directly the recovered
axial object point f(O). The details of possible optical ar-
rangements are discussed in Ref. 1.

In this type of arrangement the spatial distribution g(x)
is not being measured; therefore detection noise cannot
affect the inversion. However, the optical mask itself will
never be perfect, i.e., described exactly by the function
M(x), because of both fabrication and implementation dif-
ficulties. Therefore the mask imperfections will assume
the role of the noise in the system. If we note that g and
M enter the inversion formula [Eq. (2.7)] in precisely the
same manner, it becomes evident that the argument re-
garding the truncation of the singular-function expansion
holds here unchanged. In place of noise affecting the

image, we must now consider the deviation of the actual
mask from the ideal one, as defined by the analytical ex-
pression [Eq. (2.6)], with K . This means that if our
mask-fabrication technique or the mask-alignment proce-
dure is to a certain degree inaccurate, using a mask in
which the truncation index K is too large will actually
propagate this error to the readouts. For this reason the
difficult task of manufacturing the complicated masks
that correspond to some large values of K makes little
sense because they are much more fragile than the low-K
masks and more sensitive to the practical inaccuracies.
In fact, it seems much better to use a mask with K that is
too low, although in this case the resolving power will
inevitably deteriorate. In Section 3 we use a value of
K = 5.

3. NOVEL MASK DESIGN

In the present paper we are interested in the special case
of a scanning microscope that has circular pupils, is of low
numerical aperture, and is illuminated by incoherent light.
For this case the PSF's Si and S2 are equal:

S1(X) = S2(X) = [- X = {X.7TP ~ p~~II (3.1)

The singular system for this case can only be determined
numerically. This is done by discretizing the operator A
by using sampling theory7 and then by performing nu-
merical computation of the singular system. With the use
of these components one can evaluate the mask function.
Figure 1 shows the form of the mask function for K = 5.
It has a continuous profile and changes sign. These fea-
tures unfortunately make it rather difficult to implement
the mask for the case of incoherent light because it is not
possible to have a negative light intensity. However, if
two detectors are used (with separate light processing)
and the final readout is formed by subtraction of their
signals, one can obtain easily the negative result.' The
practical difficulty, however, of how to implement the con-
tinuous profile accurately remains.

The solution we propose here is to use a partially ref lect-
ing and partially transparent plate inserted at 45° into the
light beam in the image plane (see Fig. 2). The light that
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Fig. 1. Arbitrarily normalized image-plane mask M(p) for inco-
herent imaging that we constructed from the first five singular
functions.
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4. PERFORMANCE ANALYSIS

To estimate the performance characteristics of the new
optical processor by using the approximate mask Ma(x),
we calculate its instrumental impulse-response function
or effective PSE By modifying the inversion formula
[Eq. (2.7)] with the general mask m(x) and remembering
that g = A we have

f(O) = (m, g) = (m, Af) = (A*m, f),

or, equivalently, if we let T = A*m, we obtain

() = fTyfydy.

(4.1)

(4.2)

Fig. 2. Incoherent confocal microscope setup with the elliptical
annular mask that we inserted at 450 in the image plane: s,
lenses; M, masks.

passes through the uncoated parts of such a mask (and
measured by one detector) corresponds to the positive
components of the mask profile, whereas the light that is
reflected at 90° (and measured by a separate detector)
corresponds to the negative components. The mirror de-
sign consists of a set of prolate elliptical annuli (forming
circles when orthoprojected onto the image plane). Their
positions and widths are chosen to emulate as closely as
possible the action of the actual mask. The basic limita-
tion is to have no annuli that are too thin.

The precise algorithm we chose is as follows. First, for
the case of K = 5, we take the first five zeros of M(x) and
supplement them with one additional point between the
fourth and the fifth zeros (because this interval is approxi-
mately two times longer than the rest), as may be seen in
Fig. 1. Each of the six intervals formed by these points is
then divided into three equal subintervals, and the radial
weight covered by the profile of M(x) over each of these 18
subintervals is calculated. Next each subinterval is re-
placed with a centrosymmetric step pattern (+1, -1, +1),
where M(x) is positive valued, or (-1, +1, -1), where it is
negative, with the step positions chosen so that the radial
weight is equal to the radial weight of M(x) within that
subinterval.

For the first three subintervals the algorithm is slightly
modified. The first subinterval defines the actual scal-
ing; hence a constant value is used throughout this sub-
interval. Using the (+1, -1, +1) pattern for the next two
subintervals results in extremely thin annuli (the -1
parts). Thus in these subintervals we used a (+1, -1)
pattern in the second subinterval and a (-1, +1) in the
third to overcome this difficulty.

As a result of the above prescription the radial weight is
reproduced within each subinterval, and the original zero
crossings of the continuous profile M(x) are also preserved.
The mask that we constructed according to the above pre-
scription Ma(x) is shown in Fig. 3.

In mathematical terms, an attempt is being made to re-
place the continuous profile M(x) by a multiple-step func-
tion (with two values +1 and -1), which is, in a sense,
close to the original in the function space. Obviously our
choice of a function-space measure is quite arbitrary, the
only justification being that satisfactory performance is
achieved, as shown in Section 4 below.

After we include the effect of the scanning translations,
Eq. (4.2) yields an expression for the recovered image:

f(z) = fT(y)f(z - y)dy = (T * f)(z). (4.3)

The function T(y) thus describes the impulse-response
function that is required. In explicit terms,

T(y) = Si(y) S2(x - y)m(x)dx. (4.4)

The Fourier transform T(c) describes the frequency re-
sponse or transfer function of the microscope.

To investigate the actual performance of the microscope,
we evaluate both these characteristics for the two calcu-
lated masks, the continuous M(x) and the binary Ma(x).
We also compare them with the corresponding characteris-
tics of a conventional incoherent confocal scanning micro-
scope for which the PSF t(y) is given by Ref. 8:

t(y) = [ p ]J, = x4 (4.5)

All relevant calculations are performed numerically
by means of a novel precise algorithm for the Hankel
transform (the axially symmetrical Fourier transform).
The resulting PSF's T(y) (corresponding to the continuous
mask) and Ta(y) (corresponding to the binary mask) are
compared with t(y) in Fig. 4. It may be seen that both
the mask microscope PSF's are considerably sharper than
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Fig. 3. Approximate binary mask design Ma(p) corresponding to
the exact mask that is shown in Fig. 1.
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Fig. 4. PSF's of the exact mask T(p) (circles) and approximate
binary mask Ta(p) (triangles) compared with the conventional
confocal microscope t(p) (solid curve). Both masks show super-
resolution inasmuch as their profiles are significantly narrower
than that of the confocal microscope.
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Fig. 5. Transfer functions of the exact mask T(w) (circles) and
approximate mask Ta(cw) (triangles) compared with the confocal
microscope t(w) (solid curve). Both masks display considerably
stronger frequency response in the upper half of the spectrum.

that of the confocal design and could be described as su-
perresolving. As one might reasonably expect, the PSF
for the binary mask is slightly broader than that for a
continuous mask. If we adopt, according to Ref. 8, the
width of the central peak at its half-maximum as a mea-
sure of the resolution, the continuous mask achieves a
70% increase in resolution over a conventional confocal
scanning microscope (ratio of half-height widths is 1.7).

The approximate binary mask design achieves an increase
of 65%.

The corresponding volume-normalized transfer func-
tions are displayed in Fig. 5. The PSF's T(y) and Ta(y)
are band limited with the same band as the conventional
confocal microscope. The improvement in resolution can
be seen in the behavior of T(cw) and Ta(o) in the high-
frequency region of the spectrum. The frequency re-
sponses of both the superresolving microscopes are consid-
erably stronger in this region and are more similar to the
ideal flat profile.

The above results confirm the superresolving character-
istics of an approximate binary mask design and indirectly
sustain the heuristically adopted mask-design method.
An experimental mask has been fabricated according to
this prescription and is currently being tested.
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