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In a unifying way, the doorway mechanism explains spectral properties in a rich variety of open
mesoscopic quantum systems, ranging from atoms to nuclei. A distinct state and a background of other
states couple to each other which sensitively affects the strength function. The recently measured
superscars in the barrier billiard provide an ideal model for an in-depth investigation of this mechanism.
We introduce two new statistical observables: the full distribution of the maximum coupling coefficient to
the doorway and directed spatial correlators. Using random matrix theory and random plane waves, we
obtain a consistent understanding of the experimental data.
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Strength function phenomena [1] in open mesoscopic
quantum systems are a central object of study in atomic
and molecular physics as well as in atomic clusters, quan-
tum dots, and in nuclear physics. Often there is a somehow
‘‘distinct’’ and ‘‘simple’’ excitation whose amplitude is
spread over many ‘‘complicated’’ states. The distinct state
thus acts as a ‘‘doorway’’ to the (usually chaotic) back-
ground of the complicated states [1,2]. Prime examples are
isobaric analog states and multipole giant resonances (GR)
in nuclear physics. The strength function is typically of
Breit-Wigner (BW) shape with a characteristic spreading
width [3–6]. For examples from molecules and metal
clusters, see [7–9].

Quantum billiards can be realized experimentally by flat
microwave resonators [10]. To study the doorway mecha-
nism in detail, we use a microwave billiard of rectangular
shape with a thin barrier inside; see Fig. 1. The electric
field strength distribution corresponding to the quantum
wave function is reconstructed from the measured inten-
sities. Certain wave functions of this pseudointegrable
billiard possess unique structures called ‘‘superscars’’
[11,12]. These are scarring wave functions related to fam-
ilies of neutrally stable classical periodic orbits. Four
examples of measured superscars are shown in Fig. 1.
Unlike ordinary scars [13], which are localized around a
single unstable periodic orbit, they do not disappear at
large quantum numbers. They are embedded into, but
clearly distinct from, a large number of nonscarred wave
functions. We will demonstrate that the superscars act as
doorways to the background of the nonscarred wave func-
tions. Our perfect control over the experimental observ-
ables allows us an in-depth study of the doorway
mechanism which can presently not be accomplished in
traditional quantum systems.

First, we briefly compile the necessary information on
measured superscars in the barrier billiard. Second, we
introduce the maximal coupling coefficient as a new ob-
servable and use random matrix theory (RMT) [14] to

model its distribution. Third, we introduce directed spatial
correlators as another new observable and model them by
extending Berry’s random wave ansatz [15].

As Fig. 1 shows, the superscars with a clear wave
function structure relate to particular classical periodic
orbits. The superscars form a family which lives within
an infinitely long periodic orbit channel (POC). Because of
diffraction on the tip of the barrier, the amplitude of the
scarred wave function tends to zero along the POC bound-
ary. Thus, the superscarred wave function can be approxi-
mated by a constructed superscar state, defined as an
eigenfunction ��F�m;n� ~r� in the infinitely long POC [11,12].
Here F 2 fBB;V;D;Wg stands for the superscar families
(BB: bouncing ball; V: inverted; D: diamond; W), see
Fig. 1, and (m, n) are the numbers of wave maxima along
and perpendicular to the POC. A measured state �~f� ~r� at

(rescaled) frequency ~f in the barrier billiard has an overlap,

 cm;n � h�
�F�
m;nj�~fi; (1)
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FIG. 1. Examples for measured superscars induced by the
barrier and concentrated along the indicated classical periodic
orbits (dashed lines). They are members of four different fam-
ilies. Top row: horizontal bouncing ball BB and inverted V
superscars; bottom row: diamond D and W superscars. The
gray level indicates the value of the wave function (black:
highest positive, white: most negative value; see [12]).
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with the constructed superscars [11,12]. As an example,
the distribution of the overlaps with a constructed V super-
scar state with quantum numbers �m; n� � �45; 1� is de-
picted in Fig. 2. The superscar strength spreads into
neighboring nonscarring background states following a
BW shape with the main strength concentrated in a few
states. This nicely confirms our doorway interpretation.
For comparison, a nuclear GR doorway is also plotted in
Fig. 2. Here, the number of background states—reflected
in the fluctuations around its BW shape—is much larger
than in the barrier billiard. According to the Brink-Axel
hypothesis [16,17] a GR excitation builds upon every
nuclear state. Similarly, a superscar doorway state exists
for each value of F, m, and n.

We now set up a random matrix model in the spirit of
models in nuclear physics [1,14]. The total Hamiltonian
reads Ĥ � Ĥs � Ĥb � V̂. Here, Ĥs and Ĥb describe door-
way states and background states, respectively, and V̂
couples the two classes of states. The eigenequations for
the uncoupled Hamiltonians are Ĥsjsi � esjsi and
Ĥbjbi � ebjbi. For the matrix elements of the interaction,
we make the assumptions hsjV̂js0i � hbjV̂jb0i � 0 and
hbjV̂jsi � vbs for any s; s0; b; b0. We interpret the con-
structed superscars, ��F�m;n�~r� for a given family F but with
different �m; n� as the doorway states s. Because of the
interaction V̂ the doorway state is not an eigenstate of the
Hamiltonian Ĥ. We assume that the interaction matrix
elements, vbs � vsb, are Gaussian distributed random var-
iables with zero mean and variance v2. Importantly, the
parameter governing the physics is v=d, where d is the
mean level spacing of the background states [1,14]. Since
only a few states carry superscar strength with given values
of �m; n�, and superscar states with different �m; n� are
assumed to not mix, it is sufficient to consider only one
superscar state s coupled to N background states b, where

N is large. To resemble the experiment, we include N �
294 background states. As the barrier billiard is pseudoin-
tegrable, the spacings between the eigenstates are semi-
Poisson distributed [18]. We thus generate such an en-
semble of N � 1 states. The doorway state is chosen as
the middle state and interacts with the surrounding N
states. For each realization, energies and wave functions
are numerically obtained, and the mixture of the superscar
with the surrounding states is calculated. We then extract
v=d for each superscar family. The full problem Ĥjni �
Enjni is solved by the exact implicit equation

 En � es �
XN
b�1

v2
bs

eb � En
; (2)

and the wave functions are given by

 jni � cs

�
jsi �

XN
b�1

vbs
eb � En

jbi
�
: (3)
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FIG. 3. Left: c2
max distributions of measured superscars (histo-

gram), and the fit of the RMT model predictions (solid line).
Right: Normalized distributions of superscar strength spread
over all states on a logarithmic scale. Experimental distributions
(dots) are compared with the RMT model predictions.

f

FIG. 2. Doorway strength functions. Left: Overlap between
constructed superscar state of the V family with m � 45, n �
1 and the measured wave functions versus rescaled frequency.
The solid curve is a BW function. The inset shows the overlap
on a logarithmic scale over a large frequency interval.
Right: Spectrum of the �p; p0� reaction at 200 MeV on 120Sn in
the region of the isoscalar giant quadrupole resonance (ISGQR)
as an example for a nuclear doorway state [6]. The solid curve is
a BW function fitted to the data.
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The superscar coupling of each eigenstate is therefore

 cs�n� �
�
1�

XN
b�1

v2
bs

�eb � En�2

�
�1=2

: (4)

The superscar strength c2
s over the different eigenstates jni

is BW distributed [1] with spreading width �# � 2�v2=d,
i.e., �#=d � 2��v=d�2.

As the superscar strength is distributed over a small
number of states only (see Fig. 2), v=d is smaller than or
of the order of unity. The fit with a BW distribution shows a
rather large variation of the fitted shape as well as the width
of the distribution over the ensemble of observed super-
scars in a superscar family F. Hence, the width �# is not a
well-suited measure to determine v=d. We thus consider
the state with the largest coupling

 c2
max � max�c2

m;n� (5)

for a given superscar which is directly obtained from
experiment. Since a rather small number of states carry
strength from the doorway state (i.e., the constructed
superscar), the peak of the fitted BW-shaped strength func-
tion usually deviates from the measured largest superscar
strength: The discretely measured state does not appear
exactly at the peak. We may, however, directly compare the
maximal measured value to the corresponding calculated
value, max�c2

s�n��, where cs is obtained from Eq. (4). Not
only the average value of c2

max can be studied but also its
higher moments. We study the full distribution of these
maximal couplings for a superscar family F, which, as far
as we know, has never been considered before. In Ref. [19]
the first two moments of the c2

max distribution were studied,
but with assumptions not valid in our context. The shape of
the c2

max distribution strongly depends on the interaction
strength, v=d, and it is a particularly sensitive measure for
small values of v=d, i.e., of the order of 1 or smaller.

In Fig. 3 we show measured distributions of c2
max with

the best fit curves of the RMT model for each superscar
family F. The fit gives the following values for the inter-
action strength: for the BB superscar v=d � 0:45, for the V
superscar v=d � 0:35, for the D superscar v=d � 0:3, and
for the W superscar v=d � 0:55. The coupling strengths
are small and thus our ansatz for a BW shape for the
doorway strength function (Fig. 2) is in accordance with
earlier findings [20]. The V, D, W superscar families con-
tain 16, 25, and 22 measured members, respectively, while
the BB superscar family contains only 9. The fit in this
latter case has thus higher uncertainty. The average mea-
sured and calculated c2

max values are listed in Table I.
Another observable is the distribution of the superscar

couplings over all eigenstates. The strength of each con-
structed superscar is measured (and calculated) over all
294 states, where the major part of the strength is concen-
trated in a few states only. Figure 3 shows measured
distributions compared to calculations for different inter-
action strengths obtained from the fit to the c2

max distribu-

tions. Once more, we clearly see that the model reproduces
the experimental distributions for all superscar families
well except in the case of the BB superscar family because
of the small number of superscars.

We now turn to the spatial correlations of the wave
functions. Berry [15] introduced the correlator

 C�kr� �
h k� ~R� ~r=2� �k� ~R� ~r=2�i

hj k� ~R�j
2i

(6)

of the wave functions  k�~r�where the average is performed
isotropically over all vectors ~R and, for fixed moduli of
wave vector ~k and r, over all directions of the vector ~r. In
our context, all wave functions are real and no complex
conjugation is needed in the definition (6). Berry argued
that the spatial correlations of a wave function in an
ergodic system should be indistinguishable from those of
superimposed plane waves. In two dimensions this yields
the universal prediction C�kr� � J0�kr�, if possible bound-
ary effects are ignored. Here J0 is the Bessel function of

TABLE I. Experimental (Expt) results with standard errors of
the mean versus results from RMT model and directed correla-
tors (Corr) for averaged c2

max values and spreading width �#.

hc2
maxi �#

F Expt RMT Corr Expt RMT

BB 0:58� 0:05 0.58 0.81 0:9� 0:1 1.3
V 0:63� 0:05 0.68 0.69 0:8� 0:1 0.8
D 0:74� 0:03 0.72 0.69 0:9� 0:1 0.6
W 0:54� 0:03 0.51 0.49 1:0� 0:1 1.9
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FIG. 4. The wave function correlators. The J0�kr� prediction is
always given as dashed line. The top row shows the correlation
function of the constructed V superscar state as solid lines: the
isotropic C�kr� as well as the directed C?�kr� and Cjj�kr�. In the
middle row, the same observables are depicted as solid lines for
the averages over all experimental wave functions in the barrier
billiard. In the bottom row, the correlators averaged over all
observed V superscars are displayed as solid lines and the
correlators resulting from Eq. (7) with c2

max � 0:69 are shown
as filled circles.
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order zero. Indeed, this behavior was confirmed in numer-
ous systems [10,14,21,22].

The superscars, however, clearly have nonergodic fea-
tures. To analyze their correlations we define new, espe-
cially tailored observables which we refer to as directed
correlators. Instead of averaging isotropically as for C�kr�,
we now carry out the averages either only across or only
along the channel in which the superscar exists similar to
[23]. We thereby obtain the correlators C?�kr� and Cjj�kr�,
respectively. In the top row of Fig. 4 the three correlators of
a constructed V superscar ��V�m;n� ~r� are depicted. While the
isotropic correlator C�kr� follows the J0�kr� prediction up
to a certain scale, the directed correlators strongly deviate
from it. The results for C?�kr� and Cjj�kr� show that the
constructed superscar fills the channel and moves through
it as a sine wave; see also Fig. 1. This information about the
form of the waves, however, is washed out when averaging
over all wave functions in the billiard. As the middle row of
Fig. 4 shows, each of the three correlators worked out for
all measured wave functions coincides with the J0�kr�
prediction for chaotic systems. Hence, we may use
Berry’s random wave approach even though our billiard
system is pseudointegrable. Importantly, we only use the
two-point correlations and only go up to kr � 8.

We now use these observations to extract information
about the superscar couplings from the measured correla-
tors. Correlators averaged over all experimentally observed
V superscars are displayed in the bottom row of Fig. 4.
They are similar to, but slightly different from, those for
the constructed V superscars in the top row. The difference
is due to the leaking of the superscar out of the channel or,
in the language of the doorway description, due to the
coupling of the background states to the superscar. We
thus model the measured superscars ��F�~f

� ~r� for family F

as a linear combination of a constructed superscar ��F�m;n�~r�,
which only contributes in the channel, and a state ~�k�~r�
which is ergodically distributed everywhere in the billiard,

 ��F�~f
�~r� � cmax��F�m;n� ~r� �

������������������
1� c2

max

q
~�k� ~r�: (7)

This ansatz is fully consistent with the RMT model set up
above and extends it by also modeling the spatial depen-
dence. The states describing the background should, first,
have J0�kr� correlations and, second, be orthogonal to
��F�m;n�~r�. Thus, we choose the ‘‘scarless’’ plane waves

 ~� k�~r� �
�k� ~r� � h�

�F�
m;nj�ki�

�F�
m;n� ~r���������������������������������

1� h��F�m;nj�ki2
q ; (8)

with standard plane waves �k�~r�. The superscar contribu-
tion in the plane waves is small (but not negligible); the
distribution of the overlaps h��F�m;nj�ki has a standard de-
viation of 0.13. We convinced ourselves that the correlator

of the ~�k� ~r� follows the J0�kr� prediction very closely. We
work out the three correlators for the model (7). They
depend on cmax which is, just as in the RMT model above,
the coupling to the superscar doorway. By fitting to the
measured superscar families we determine the couplings
cmax. The fits for the V superscar are shown in Fig. 4. The
resulting hc2

maxi values in Table I are close to those obtained
from the RMT model. This is a nice mutual confirmation.
For comparison, we also give the resulting �# values in
Table I. Obviously, our new observables are more appro-
priate. This is borne out in the large standard deviation of
the �# distribution which is, e.g., for the W superscar
family, 0.8.

We conclude that our doorway interpretation yields a
thorough understanding of the experimental findings. Our
two new observables give deeper insight into the statistical
features of the doorway mechanism as such, and it is
encouraging to see how well the two analyses agree.
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