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We show that superselection rules do not enhance the information-theoretic security of quantum crypto-
graphic protocols. Our analysis employs two quite different methods. The first method uses the concept of a
reference systemin a world subject to a superselection rule, unrestricted operations can be simulated by
parties who share access to a reference system with suitable properties. By this method, we prove that if an
n-party protocol is secure in a world subject to a superselection rule, then the security is maintained even if the
superselection rule is relaxed. However, the proof applies only to a limited class of superselection rules, those
in which the superselection sectors are labeled by unitary irreducible representations of a compact symmetry
group. The second method uses the concept ofdtmeatof a message sent between parties—by verifying the
format, the recipient of a message can check whether the message could have been sent by a party who
performed charge-conserving operations. By this method, we prove that protocols subject to general superse-
lection rules(including those pertaining to non-Abelian anyons in two dimengians no more secure than
protocols in the unrestricted world. However, the proof applies only to two-party protocols. Our results show
in particular that, if no assumptions are made about the computational power of the cheater, then secure
qguantum bit commitment and strong quantum coin flipping with arbitrarily small bias are impossible in a world
subject to superselection rules.
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I. INTRODUCTION The purpose of this paper is to answer Popescu'’s intrigu-

The central aim of modern cryptography is to formulateNd question. Sadl_y, our conclusion is tha_t superselection
rules can never foil a cheater who has unlimited quantum-

protocols that achieve cryptographic tasks witbhmputa- ional
tional security meaning that a dishonest party would need tocoMputational power. . .
In the case of quantum bit commitment, and other two-

perform a prohibitively difficult computation to break the X o
protocol. A major goal of quantum cryptography is to formu- Pty protocols, our argument hinges on a quite simple ob-

late protocols, involving the exchange of quantum states, thaﬁervatilonf. '”Ia tvx;o—party protogolﬁ onehparticip.emice) hgs
achieveinformation-theoretic securitymeaning that even an control of a local systen#, and the other participanBob)

adversary with unlimited computational power would be un-rr;]aessggngzl g{eamrcithh;[rtg%cal ;gztgncl(nai%d;gﬂﬂ' Itrr:%r:cﬁ sa}[e
able to defeat the protoc{l]. Information-theoretic security ge sy yp : P

(sometimes called “unconditional securifyfias been estab- of the protocol, one party performs a joint quantum operation

. A . on her/his local system and the message system, and then
lished for quantum key distribution protocg-7] but it has sends the message system to the other party. Suppose that in

also been shown that, even in the quantum worldescp step, any part of the full systeABM that is beyond
information-theoretic security is not attainable for certainajice’s control is under Bob’s control and vice versa—no

tasks. For example, unconditionally secure quantum bit compart of the full system is inaccessible or in the possession of
mitment is impossibl¢8,9], as is(strong quantum coin flip- 3 third party. Suppose further that the full syst&®M has
ping with arbitrarily small biag10,11. trivial total charge(belongs to the trivial superselection sec-
Superselection rules are limitations on the physically retor). Then at any stage of the protocol, the algebra of opera-
alizable quantum operations that can be carried out by a locaions that Alice can perform is theommutanbf the algebra
agent. For example, it is impossible to create or destroy anf operations that Bob can perform; that is, Alice’s algebra
isolated particle that carries locally conserved charges, suatontainsall operations that commute with Bob’s algebra.
as an electrically charged particle, a fermion,(ior a two-  Likewise, Bob’s algebra is the commutant of Alice’s. By a
dimensional mediuman anyon. Recently, Popesfl?] has  minor extension of the standard argument, it then follows
suggested that superselection rules might have interestirthat unconditionally secure quantum bit commitment is im-
implications for the security of quantum cryptographic pro- possibleif the total charge shared by the parties is trivial.
tocols. The intuitive idea behind this suggestion is that su- Now, if the total charge imontrivial, then Alice’s algebra
perselection rules could place inviolable limits on the cheatis surely a subalgebra of the commutant of Bob’s, but it may
ing strategies available to the dishonest parties, thube aproper subalgebra; similarly, Bob's algebra may be a
enhancing security. Might, say, unconditionally secure bitproper subalgebra of Alice’s. This unusual property of the
commitment be possible in worldgerhaps including the local operations seems to open new possibilities for the de-
physical world that we inhabitgoverned by suitable super- sign of quantum protocols. Regrettably, though, there is no
selection rules? An affirmative answer could shake the founway for an honest party to ensure that the total charge is
dations of cryptography. really nontrivial when the other party is dishonest. Though
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the honest protocol may call for the parties to start out withrity), then if charge is conserved, Alice and Bob hold conju-
nontrivial charges, we may always imagine that there argjate charges at each stage of the protocol. Therefore, Bob
actually compensating charges beyond the grasp of Alice anglways knows what charge Alice is supposed to have, which
Bob, so that the total charge of the world is really trivial. constrains the type of message that Alice can send to Bob if
Furthermore, a cheater might seize control of the compensaty,« is honest. When Bob receives a message he can verify its

ing charge, while for an honest party it makes no difference ., ‘checking whether the message could have been sent
whether the compensating charge is present or not. It follow: . .
y a party who performed a charge-conserving operation,

that a protocol that calls for the total charge to be nontrivial . Y .
P 9 d he can abort the protocol if the verification fails. There-

can be no more secure than one in which the total charge it th L end v, Alice has b f d
actually trivial; we conclude again that unconditionally se-Ore. if the protocol ends normally, Alice has been forced to

cure quantum bit commitment is impossible, irrespective of@SPect charge conservation—her power to flout the superse-
the value of the total charge shared by the parties in thgacnon_rule does not enhance her z_ablhty to fool Bob. This
honest protocol. reasoning shows that superselection rules cannot thwart
Aside from quantum bit commitment, we will also study cheating, but because the argument relies on the property that
the impact of superselection rules on the information-Alice and Bob hold perfectly correlated charges, it works
theoretic security of a broad class of other quantum protoonly for two-party protocols.
cols, using two different methods. We analyze in detail the For cryptographic protocols with more than two parties,
important special case in which the superselection sectosnd for general superselection rules, new subtleties arise. In
can be identified with the unitary irreducible representationswo spatial dimensions, general charges are not merely lo-
of a compact symmetry group. In that case, we argue that i¢ally conserved, they may also have nontriviaiaiding
is possible in principle to prepareraference stat¢hat es-  properties—the exchange of two charges may induce a non-
tablishes a preferred orientation in the symmetry group. Ayrivial transformation on their joint Hilbert space. This means
party with access to the reference state can use it to perforfaat the effect of sending a message from one party to an-
operations that are ostensibly forbidden by the superselectioftner can depend on the path along which the message trav-
rule. In particular, consider am-party quantum protocol g|g |t is an interesting problem to specify appropriate defi-
where up tok<n of the parties are dishonest, and SUPPOS&,jsinns of security for protocols in this setting, but we will

that in a world with no superselection rules the dishones,q aiemnt to address this issue here. For the special case of
parties have a cheating strategy that breaks the protoco&.narges labeled by unitary representations of compact

Then, even in a world with superselection rules, the dishon- . ) o ;
est parties, by sharing a suitable reference state, can simuIagézlép\?v’etgznbﬁg:ngeprﬁ?lﬁrt:rts arreogé'(\:/(')?;’ vtvr;tehrglj?rsOIr?fr:)hnT
this cheating strategy faithfully. We conclude that if a quan-. y party p

- : ; : h questions.
tum protocol is information-theoretically secure in a world "9 SUC . . .
with a superselection rule, the security will be maintained Verstraete and Cirafl3] recently discussed a data-hiding

even if the superselection rule is relaxed, at least in the caddotocol whose security is premised on a superselection rule.
where the superselection rule arises from a compact symmé&lowever, as the authors recognized, the protocol is not un-
try group. conditionally secure; it can be broken if the parties establish
Superselection rules arising from compact symmetrny@ suitable shared reference state via quantum communica-
groups are not the most general possible ones. In particuldion. The notion that the naive implications of a superselec-
an especially rich variety of superselection rules are potention rule can be evaded through the use of a suitable refer-
tially realizable in two-dimensional systems such as thosence system was emphasized long ago by Aharonov and
that admit non-Abelian anyons. However, even superselecsusskind14]; see[15] for a recent discussion. A special case
tion rules of this more general kind cannot foil a cheater. Weof our main result was reported earlier [it6].
find that for any two-party protocol that is secure in a world  The rest of this paper is organized as follows: We develop
subject to a superselection rule, the security is maintainethe concept of a reference system in Sec. Il, first for Abelian,
when the superselection rule is relaxed. then for non-Abelian symmetries, and we explain how a ref-
Our analysis of these more general superselection rulesrence system can be used to simulate unrestricted operations
does not rely on the concept of a reference system; rather it is a world subject to superselection rules arising from a sym-
founded on a completely different idea, the concept of thanetry group; this observation is applied in Sec. Ill to the
format of a message. A superselection rule can always banalysis of the security of quantum protocols. In Sec. IV we
characterized by saying that there are charges that must lexplore the distinction between &merantreference system
conserved by all local operations, and when we relax théhat is passed from party to party as needed during a proto-
superselection rule, in effect we are permitting a cheater teol, and adistributedreference system that can be prepared
violate these conservation laws. For the purpose of assessiagd passed out to the parties before the protocol begins. Su-
the security of a two-party protocol, we are interested in howperselection rules arising from non-Abelian symmetries are
the actions of the cheating partylice) affect the outcomes further characterized in Sec. V, and we comment in Sec. VI
of measurements performed by the honest péBigb). Po- on the data-hiding protocol of Verstraete and Cirac. Our
tentially, if Alice is granted the power to violate conservation analysis of the impact of superselection rules on the security
of “charge,” her ability to influence Bob’s measurements will of quantum bit commitment is in Sec. VII; we also show
be strengthened. there that for the analysis of security of afparty protocol,
However, if the total charge shared by Alice and Bob isit suffices to consider the case in which the total charge held
trivial (as we are entitled to assume in an analysis of secuby the parties is trivial. Two-party protocols subject to
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general superselection rules are investigated in Sec. VIII, andn uncertainty large compared %o so that conservation of

Sec. IX contains some concluding comments. angular momentum need not prevent the magnet from coher-
ently exchangingl,=# with the spin. But this explanation
Il. SUPERSELECTION RULES AND REFERENCE does not fully address how the existence of the classical
SYSTEMS magnet is itself compatible with the superselection rule.

Such issues were cogently discussed many years ago by
A superselection rule is a decomposition of Hilbert spaceaharonov and Susskinfll4]. They emphasized that even if
into sectors that are preserved by local operations. The difthe total angular momentum has a definite valile zero),
ferent sectors can be distinguished by attaching to each sefre can still speak sensibly of threlative orientation of two
tor a label, which we refer to as the sector’s “charge.” Theresubsystems. Whenever an experimentalist observes the pre-
fore, an equivalent way to characterize a superselection rulgession of a spin, it is implicit that a reference state has been
is to say that the charge is locally conserved. In the contexéstablished that in effect breaks the rotational symmetry, and
of a cryptographic protocol, this means that when one of thehat the precession is measured relative to this reference stan-
parties(Alice, say performs an operation, the charge in Al- dard. Furthermore, Aharonov and Susskjfid] emphasized
ice’s laboratory is preserved. that just as conservation of angular momentum need not pre-
An important special case arises if the Hilbert spdte vent us from measuring the relative angular orientation of
transforms as a unitary representation of a compact g&up two objects, so the charge superselection rule need not pre-
and the sectors are labeled by the irreducible representationgnt us from measuring relative phases in superpositions of
of G. An equivalent way to describe the superselection rulestates of different charge.
in that case is to say that the allowed operations must com-
mute with the action oG onH. In fact, it has been shown by
Doplicher and Robertgl 7] that such superselection rules are A. Abelian case
almost the most general ones allowed under rather weak con- Before we discuss the more general case in which the

ditions that apply in particular to quantum field theoriessymmetry may be non-Abelian, it will be useful to consider
(without gravity) in three or more spatial dimensions. We saythe symmetry grougs=U(1). Then the charge operat@
“almost” because there is an additional freedom to assign tithe generator ofs) has eigenvalueg € Z, and we denote
a localized state an even or odd fermion number. This ferthe Corresponding orthonormal eigenstates“py Formal

mion number is more than just a conserved charge, becauggates of definite phagevith continuum normalizationcan
of the property that the wave function changes sign wheipe constructed as

two fermions are exchanged.
In two spatial dimensions, there is a richer classification 1 _iqo
of superselection rules, reflecting the exotic quantum num- 0)=—— 2 €% (0=<6<2m), (1)
. . . . . \‘277q:—oc
bers carried by pointlike non-Abelian anyons that occur in
topological quantum field theorigd8-20. We will post-  where
pone further discussion of non-Abelian anyons until Sec.

VIII, concentrating for now on the superselection rules asso- a1 % Liq(6-6') — o
ciated with compact symmetry grougand ignoring fermi- (0'lo)= ZTq__x € =46 - 0) (2)
ons. :

An important example is the group(l) associated with and
conservation of the electric char@ An agent acting locally 1 (2
can create or annihilate pairs of particles that carry equal and lgp=—=—| doeg). (3)
opposite charges, but cannot change the total charge in her V2mJo

vicinity. In particular, this agent is unable to transform any
eigenstate of) into a coherent superposition of states with
different charges, as emphasized by Wick, Wightman, an

The phase statPy) is the improper eigenstate with eigen-
aaluee"" of the unitary operator

Wigner [21,22. w
While we might readily accept that local creation of elec- U,= > g+ 1Xq| (4)
tric charge is physically impossible, other conservation laws g=—c

impose superselection rules that do more violence to OUhat increments the value of the charge by one unit. While

intuition. Suppose, for exampl@n nonrelativistic quantum the phasef is physically unobservable due to the charge
mechanicy that our ag§nt’s actions are required to conserveSuperselection rule, the relative phase @t 6 of the two
the angular momenturd locally. Are we to conclude that if states#’) and|6) commutes with the charge operarand
the agent is presented with a sgirebject polarized spin-up  so is measurable in principle. Indeed, the state

along thez axis, it is impossible for him to transform it to a
coherent superposition of the spin-up and spin-down states?
How are we to describe what happens when a magnetic field
is turned on pointing in th& direction and the spin begins to
precess? A partial resolution of this puzzle is attained byhas a definite value of the relative phage-# and total
noting that the angular momentum of a classical magnet hasharge zero. That is, it is gannormalizablgeigenstate with

2 *
do'lo' + @) @ |0+ 0)= >, e -gyo|q) (5)
q:—:x:
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eigenvaluee‘(‘"o') of the charge-conserving operattr_ breaks theG symmetry, then in effect there is no operative

®U,, whereU_=U!. symmetry at all, and the superselection rules place no restric-
Similarly, the phasesy, appearing in the expansion of the tions on the allowed operations.
state|y), of a systemA, Formally, if the symmetry is completely broken, then the
possible orientations of the condensate are in one-to-one cor-
A= > zpqe‘iq¢q|q>A (6)  respondence with the elements of the symmetry gi@um
q a particular “fixed gauge,” the states of the condensate are

denoted|¢), where¢ € G, and these states transform as the
(%eft regular representation @. That is, a symmetry trans-
ormationg e G acting on the condensate is represented by
the unitaryU(g) where

(where theyy's are real and positiye are themselves unob-
servable, but they can be meaningfully compared to th
phases appearing in the stafi; of a charge reservoR. For
example, by projecting)g® |5 onto the sector with total
charge zero, we obtain the state

U(g)|¢) — [ge). (8)
1 g
l¥)ra= oo f do'[0+ 6')r® €7 [h)p These states can be expanded in the basis of irreducible rep-
vem resentations o6 as
=> 'J/qe_IQ(¢q_0)|_ DR ® [Pa (7) .
’ 6= \*Di(&)ai.a), (9)
which has measurable relative phases. A state|lilke of a gia ' No

charge reservoiR that provides a phase standard with which ) ] ) ]
other states can be compared will be called a “referencé/heren, denotes the dimension of the irreducible represen-
state” or a “condensate.” tation DY(¢) andng is the order ofG. Inverting the Fourier

In the statey)ra the charge of the systemis compen-  transform we obtain
sated(“screenedj by the charge of the reservdi. There-
fore, the system and reservoir are entangled, and tracing out o\ g o
the reservoir destroys the coherence of the superposition of joi.2) = (E‘G Ng D& (4)l4). (10
charge states for the system. While formally correct, this
sf[atement'can be misle.ading if the reservoir remains accesiote that in Eqs(9) and(10) we have used notation appro-
sible and is allqwed to interact with the system durln_g sub-priate for a finite group; in the case of a compact Lie group,
sequent operations. For example, the operdiqi, that in-  the sum overgp e G would be replaced by an integral with
creases the charge of the system by one unit is disallowed ¢spect to an invariant measure on the group. The states
the superselection rule, but it can be accurately simulated by, i,a) transform undeG as
the allowed charge-conserving operafor)gr® (U,) acting
on |¢>RA_—this operator increases the cha_rgef-\djy _borrow- U(g)|a.i,ay= >, |q,j,a>D?i(g), (11)
ing a unit of charge fronR. If the reservoir remains acces- j
sible at all times, then an arbitrafmot necessarily charge-
conserving operation acting o’ can be perfectly simulated ) . . . b i
by a charge-conserving operation actingrkof Thus, at least refer" to tg? 'Tﬁex_tl.’z’é' :qu 'nf|8" ,)a) astht_hel golor In-
as a matter of principle, the charge superselection rule place: X,” and to ¢ € ac_|on” '?’h ) 'od (g_ 102 IS 1N ?j)'( as a
no inescapable restrictions on the allowed operations. This i$2349€ transformation. e inder=1,2,... ng distin-
the main point stressed by Aharonov and Susskir. guishing then, copies of the representati@f that occur in

The phase reference state can be interpreted physically 4% decomposition of the regular representation, will be
a static piece of superconducting material with a definitec@lled the “flavor” index. The physicalG-invariant” opera-
value of the superconducting phase. While the phase itself {{0NS are ~those that commute with all ~gauge
not gauge-invariant, the relative phase of the system and refansformations—these presergeand act nontrivially only

ervoir has observable consequendike the Josephson ef- on the flavor, not the color. Therefore, by including the color
fect) when the two are brought into contact. Similar issuesVe Nave chosen a redundant description of the physical Hil-

discussed i23-27, arise when considering the physical Pert SPace. This redundancy, while not absolutely necessary,
content of relative phases in optical systems. is quite convenient, and in particular will be useful for our

discussion in Sec. Il of the security of quantum protocols.
In addition to theG gauge symmetry, there is also a group

G of “global” transformations that commute with(g), un-
Our discussion of the Abelian case has suggested that sder which the stategp) transform as the right regular repre-

perselection rules are nullified if suitable reference systemsentation ofG; the elemenh of the global group is repre-

are available. Now we consider the more general case, whegented by(h), where

the symmetry group i§&, which may be either a finite group

or a compact Lie group. The superselection rule dictates that V(h)|#) = |ph™) (12

allowed local operations must commute wih But we may

anticipate that if a condensate is accessible that completebnd

In keeping with standard physics terminology, we will

B. Non-Abelian case
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I

Thus the global transformations act on the flavor indef ~ acting on the color degree of freedom can be simulated by
the states in thd|q,i,a)} basis—unlike the gauge transfor- the invariant operation
mations, they act nontrivially on the physical states. inv _ A PP

In more geometric terms, a condensate may be interpreted RA™ EG (X P)r® <ij2ab |q">Dia(¢)MabDbj(¢ )<q*1|> :
as an asymmetric classical rigid body that can be rotated o A
either “actively” or “passively.” What we have called the (2
color (gaugg rotation is a passive rotation that acts on theyinv has an invariant meaning because it transforms the color
space-fixed axes—it does not change the actual orientatiogy A rejative to the color of the reference syst&nin effect,
of the body but only changes our mathematical description ofhe color rotation is simulated by converting the color index
the orientation. In contrast, what we have called the flavointg 4 flavor index(depending ong), on whichM may act

(globa)) rotation is an active rotation that acts on the body-yith impunity. For fixeds, the simulation is achieved via the
fixed axes and alters the physical orientation. A flavor rotajsomorphism

tion is G-invariant in the sense that it commutes with color
rotations, and so is a physical operation, allowed by the su- |g,a0a — |0, A)ra= | PR © > |0.))ADS (), (22
perselection rule. j

In contrast to the flavor orientation, the color orientation
of an isolated system\ has no invariant meaning, as it is
modified by a color rotation. However, the orientation/of inv -
relative to the condensate @®es have meaning, and an op- MRald, & 2ra % 19 )M e @3

erator that rotates the relative orientation admits an invariant o _
description. Suppose, for example, that syst&ris itself a  Furthermore, this isomorphism can be extended to operators
condensate in the stai,, while the state oR is ¢g. The M that change the value ofas well as rotating the color for

such that

relative orientation fixed g; the operator
drn = drlda (14) Maslaida— 2 a',)aM§ (24)
q'.j
is invariant if a common color rotation is simulated by
U(h)gaipa— pp,  ¢r— her (15 MY a, ¢,a)ra= >, |9, &, b)RAMg'aq, (25)
is applied to both objects. The transformatibiig)ii that a'b
changes the relative orientation according to which generalizes the result
U(Q)Rk bra — Gébra (16) MRA( 6 ® €"¥|a)) = |O)r® 2 €™ ld)MTY (26)

!

q
has an invariant meaning and commutes with the color rOtafhat we found in the case @=U(1)

tion U(h)ra. We may interpret the invariant rotation as one
that rotatesA while R is “held fixed,” acting as
C. Properties of the simulation
U(@RrA|¢R @ |da) = ¢r) © |hrgdr'da),  (17) We will refer to the world in which all operations are
required to commute with the action of the symmetry group
G as the “invariant world” or I' world,” and we refer to the
v _ 1 world in which arbitrary operations are allowed as the “un-
U@ra= 2 (#XdDr® U(¢geHa. (18)  restricted world” or U world.” What we have observed in
=G Egs.(22) and(25) is that the physics of the) world can be
If systemA is not a reference system but rather an objecfaithfully reproduced in thd world, as long as a suitable
transforming as the irreducible representatipof G, then  reference system is at our disposal.

or equivalently

U(4ge™) can be expanded as Let us restate the main conclusion in a more succinct
notation: Supposa4 is an arbitrary system that transforms as
U(g)iF'Q,‘;: > (X some representation of the groGpand letR be a “reference

$<G system” that transforms as the left regular representation of

g q Q¢ =t i G. Let M be an arbitrary transformation acting én Then

®(.E |0,1)Dik(¢)D(9)Dgi(¢ )<Q-J|) : there is a corresponding transformatidif¥ acting onR and

hjab A A defined as
(19)

M™= 3 ()P @ [U(HMU(H a0 (27

More generally, any transformation $eG
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MI"V is an invariant operator whose action B\ simulates
the action ofM on A.

That is, the operatoms!™ have the following easily veri-
fied properties:

(i) M"V is G-invariant Proof: From the transformation

properties ofR and A we have
[U(g) ® U(@IM™[U(g)™" ® U(9)™]
=2 (lgp)Xge)) ® [U(geMU(ge) =M™,

»eG
(28)

PHYSICAL REVIEW A 69, 052326(2004)

Loosely speaking, the reference system is needed so that
when a noninvariant operation acts Anthe change in the
charge ofA can be balanced by a compensating change in the
charge ofR. But if the statep of A is invariant, then only the
charge-conserving part dfl contributes to the expectation
value t{Mp) anyway. In the simulation of this charge-
conserving part oM, the reference system is superfluous
and its state irrelevant.

Note that if G is a Lie group rather than a finite group,
then the regular representation is infinite-dimensional, and
our formal arguments requie to be an infinite-dimensional
system. How is the fidelity of the simulation affectedRifis
truncated to a finite-dimensional system? In fact, the fidelity

where in the last step we have reparametrized the sum Ry il be perfect if the charge remains bounded in the

replacinge¢ — g 1¢.

process to be simulated. Consider, for example, the Gase

(il) Invariant operators on RA provide a representation °f=U(1), for which Eq.(27) becomes, e.g.,

operators on AProof: We have
> (¢ il bo)ba)
$1,42€G

®[U(d)M;U(¢)U(hIM5U(3Y)]
=2 (o)) ® [U(GMMU(¢) Y]

$eCG
=(M;Mp)". (29
(i) If M is G-invariant, then MV=Ig®M,. Proof: If
U(¢) commutes withM for eachdg, then

invp pinv _
Ml MZ -

M= > (|eXd) @ M=18® M. (30)

$eG
(iv) If pis invariant andtr(pg)=1, then
tr MW (pg ® p) = tr Mp. (31

Proof: If U(¢) commutes withp for eache, then

tr M™(pg ® p)= 2 (Plprl KM U(h)"pU(¢)]

$eG
=tr(pp)tr(Mp) = tr(Mp). (32
The propertiegi) and(iv) mean that as long as the state

(Ja-rXa)™ =2 (o’ +rXa'Dr® (Ja-r)d)a (33)
®

in the | world, a process in which units of charge are
removed fromA is simulated by adding the units to R.
Suppose we are assured that the total charge added to or
removed fromA will never exceedr units. Then we may
choose the initial state d® to carry charge zero, and we can
limit R to the (2r+1)-dimensional space spanned by the
states|qr), gr=-t,-r+1,... r—1,r. This truncated refer-
ence system suffices because states Ygith>r will never

be accessed in the simulation anyway. A similar remark ap-
plies if G is an arbitrary compact Lie group.

Ill. REFERENCE SYSTEMS AND QUANTUM PROTOCOLS

We have concluded that in the presence of a suitable ref-
erence system, superselection rules place no inescapable re-
strictions on the allowed operations. We may anticipate,
therefore, that a cryptographic protocol is secure in the in-
variant ‘1 world” (governed by the superselection ruileand
only if it is secure in the unrestrictedJ*world.” If we faith-
fully adhere to the usual stringent principles of quantum
cryptology and place no restrictions on the resources avail-
able to our adversaries, then we must admit the possibility

of A is G-invariant, then by making use of a reference sys-that the dishonest parties could share access to a reference

tem, measurements in thé world can be faithfully simu-
lated by measurements in thevorld. That is, given an ar-
bitrary measurement performed oA (with operation
elements that are not necessar@®yinvariany, there is an
invariant measurement performed &A (with G-invariant

operation elementghat has the same probability distribution

of outcomes. Furthermore, it follows from propefti) that

system during the execution of the protocol. For the case of
superselection rules arising from compact symmetry groups,
this observation suffices to answer Popescu’s question about
the impact of superselection rules on the security of quantum
protocols.

Let us now discuss this point in greater detail. To be ex-
plicit, consider at first a protocol involving two parties, Alice

the physics of théJ world can be faithfully reproduced in and Bob. Alice holds a private local systehthat is beyond
the | world even if the measurement is preceded by a serieBob’s control, and Bob holds a private local systBrthat is

of unitary transformations—applying™ in the | world has
the same effect as applyingin the U world. Property(iii)
tells us that, as expected, the reference syfRdamsuperflu-
ous if the U-world transformation acting o is already
G-invariant.

beyond Alice’s control. In addition, there is a message sys-
temM that they can pass back and forth. At the beginning of
the protocol, they share a product staieo pg® py. In each
round of the protocol, one of the parties performs a joint
guantum operation on her/his local system and the message,

To derive these properties, we require that the referencand then sends the message system to the other party. Finally,

system transform as the regular representatiofs,obut no

after all quantum communication is completed, both parties

condition is needed on th&tate pg of the reference system. perform local measurementSee Fig. 1).
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A g: Aout G-invariant. In effect, then, Bob measures the invariant op-
A

—— A

o erator
B1 - B3
B | B out Fep= VTEB,bV (36)

FIG. 1. A two-player quantum game. Alice and Bob have pri- in the invariant stat@,® pg® py.
vate systems, and a message system that they pass back and forth.Of course, a protocol in theworld can be regarded as a
At the end of the game, Alice and Bob measure their privatespecial case of a protocol in thé world, where the initial
systems. state is a product state, and Kitaev's result applies to this

U-world protocol. Therefore, one of the partieslice, say)

For example, the goal of the protocol might be to flip ancan force one of the outcome6, say with probability at
unbiased coin. In that case, the final measurement performdéast 1A2. However, Alice’s cheating strategy that achieves
by each party has two possible outcomes, 0 or 1. If botihis result might employ operations that are @invariant.
parties follow the protocol, then both obtain the same out-To show that Kitaev's result also applies to the original
come. Furthermore, the two outcomes are equiprobable. Aworld protocol, we must show that Alice’s cheating strat-
coin-flipping protocol issecureif neither party, by departing €gy in theU world can be faithfully simulated in thieworld
from the protocol, can bias significantly the outcome of theby making use of a suitable reference system. For this pur-

il
l
l

other party’s measurement. pose, we apply the properties of the invariant operéV
We say that astrong coin-flipping protocol has bias if ~ that were discussed in Sec. Il C.
neither party by cheating can foreither outcome to occur When Alice cheats in th&) world, she replaces the op-

with probability greater thar%+e. In a weak coin-flipping ~ eratorV called for in the honest protocol with an arbitrary
protocol, Alice wins if the outcome is 0 and Bob wins if the operatorj\/,;_ applied toAM, where V/&j is not necessarily
outcome is 1, and we say that the biasei$f neither can  G-invariant. Then Bob’s measurement yields the outcdme
force awin with probability greater thar§+e. (Thus, in a  with probability

weak protocol with biag, a cheater might be able toseon

purpose with a probability exceeding+e.) Note that the Pg(b) =tr[Fg 1(pa ® pg © pw)], (37)
protocol might abort if cheating is detected; by “the probabil-

ity of outcome 0" we mean the joint probability that the Where

protocol does not abort and the outcome is 0. KitfEy;,11] , 't )

has shown that, if no superselection rules are imposed, then Fep=V' EgpV (38)
strong quantum coin flipping is impossible with bias

e<(1/\s’2)—%:0.207. Ambainig28] has shown that a weak and
coin-flipping protocol with bias ¢ requires at least
Q[log log(1/e)] rounds of communication.

We are interested in whether these conclusions about This cheating strategy in tHe world can be simulated in
coin-flipping in theU world remain valid in thd world. For  the | world if Alice has a reference systeR—instead of
a coin-flipping protocol in thé world, we may assume that applying the noninvariant operatwf, to the systenAM, she
the initial state shared by Alice and Bob is a tensor produc(tjpp”es the invariant operath\i”" to RAM. Note that since

of invariant stateg, ® pg® py. In the honest protocol, Alice j . .
and Bob take turns applyinG-invariant operations to the Bob follows the honest protocol, which requirdg, to be

. . . . . J .
system that they share, then measure invariant observablegé'vnva”am’ applylngVBj to B.M IS equivalent to applying
In fact, without loss of generality, we may assufi that Ve to RBM, by property(iii) in Sec. Il C. Therefore, when
each operation applied by Alice or Bob is an invariant uni-Alice adopts thel-world strategy, Bob obtains outconie
tary transformation, and that the final measurement is an irwith probability
variant projective measurement.

V’ = VBnV/An et VBZVAZVBlVAl. (39)

If Alice and Bob play the game honestly, then the prob- Pi(b) = tr[Eé,b(pR ® pa® ps ® pw)], (40)
ability Pg(b) that Bob’s measurement yields the particular
outcomeb can be expressed as where

Pg(b) =t{Egp V(pa ® pg ® pu)V'], 34 -~ =~ ~
g(b) =tr[Egp V(pa ® pg @ pm)V'] (34) Fé,b:V'TEB,bV’ (41)
where
and
V= VBnVAn ce VBZVAZVBlvAl. (35)

Here theV, are unitary transformations applied AM (we V' =Vg VA" VE VA VE VAT (42)

have assur'ned that Alice makes the first move in the game . . . _ _
the Vg are unitary transformations applied BM, and the But since the invariant operators provide a representation
Esp are the projectors defining Bob’s final measurement[property(ii)], we may writeV’'=V"", and sinceEByb:EQ‘{)
Furthermore, in theé-world protocoI,VAj, VBJ_, andEgy, are  as well, we have
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EL = plinv (43) As we observed in Sec. Il C, the reference system re-
Bb™ 1 Bb - quired by the cheaters in thé world can be finite-
dimensional, as long as the cheaters in thevorld apply

Finally, the initial stata® ps ® py shared by Alice and Bob operations that change the “charge” by a bounded amount.

is G-invariant; therefore, by propertyv),

Pé(b) = Pé(b); (44) IV. DISTRIBUTED REFERENCE SYSTEMS
the measurement outcontein the I-world protocol occurs The key ingredient in our discussion bivorld quantum
with the same probability as the outcornén the U-world ~ protocols is the observation th&-noninvariant operations
protocol. can be faithfully simulated through the use of a reference

Therefore, Alice’s simulated cheating strategy in the System. Suppose, for example, that Alice and Bob take turns
world perfectly reproduces the probability distribution for acting on a systen€ that they pass back and forth. Then
Bob’s measurement outcome that is achieved by her cheatingice and Bob in thel-world can simulate an arbitrary
strategy in theU world. The same is true if Bob makes the U-world protocol in which the initial state ofC is
first move in the game instead of Alice. Similarly, if Bob is G-invariant. They carry out the simulation by passing the
the cheater, Bob has a strategy in theorld that simulates reference systerR back and forth along witlC, each taking
his U world cheating strategy. We conclude that if Alige  turns applying invariant operations RC. Similarly, in our
Bob) can cheat in th&) world, then shehe) can cheat just as analysis of cheating in Sec. Ill, we allowed tkeheaters to
successfully in the world. Thus, Kitaev's proof of the im- pass the reference systefamong themselves as needed
possibility of strong coin flipping with bia$<(1/\f§)—%, during the execution of the prptocol. A refgrence system that
originally formulated in theU world, also applies to thé  travels from place to place might be callgherant
world. Similarly, Ambainis’s lower bound on the number of ~Here we will briefly discuss an alternative scenario, in
rounds of communication needed for weak coin flipping alsoVhich the parties sharedistributedreference system—each
applies to thd world. party holds a fixed portion of this system throughout the

Th|s Conc|usion that Cheating in th_e W0r|d can be suc- execution of the pI’OtOCOL This discussion is not actua”y
Cessfu”y simulated in thé world app”es not just to coin needed fOI’ our ana|ysi8 Of SeCUI’i'Fy, but |t iS he|pfu| nonethe-
flipping protocols, but to any two-party protocol in which the less for understanding the physics of superselection rules.
goal of a cheating Alice is to bias the outcome of a measurelndeed, in many physical situations in which reference sys-
ment performed by an honest Bob. Furthermore, it istems are use(e.g., in optical physigsthe system is distrib-
straightforward to generalize the argument tongparty pro- ~ uted rather than itinerant.
tocol, in whichk cheating parties wish to bias the outcomes L€t A denote Alice’s part of the reference systelinde-
of measurements performed by thek honest parties. For note Bob’s part, and suppose that at the start of the protocol
such a protocol in theé world, where the initial state is a AB is prepared in the state
product of invariant states, any cheating strategy that can be 1
executed in theJ world can be simulated perfectly in the 00ap= 7= 2 [)a® |Ple. (45)
world if the k cheating parties share access to a reference VNG ¢eG
system. Therefore, the protocol can be no more secure in t
I world than in theU world.

To summarize, let us refer to amparty quantum game as
an I-world game if the initial state is a product of invariant 1 . )
states, and if in the honest protocol all operations performed |0)ag = I E o, @A @ [a.i,a)s. (46)
by the parties are invariant operations.kin parties are VG aia
cheaters, we say that their cheating strategy id-aorld  Thus, in principle Alice(say) could preparé0)g in her lab
cheating strategy if the cheaters are required to perform inand then ship half of it to Bol(The statg0),g is unnormal-
variant operations, and we say that their cheating strategy igable and unphysical i6 is a Lie group. For now we will
a U-world cheating strategy if the operations performed bysuppose tha is a finite group, but we will comment on the
the cheaters are unrestricted. Let us say thatl-aorld  case of a Lie group beloyv.
cheating strategy isquivalento aU-world cheating strategy In the statg0),g, Alice’s condensate and Bob’s, have val-
if both strategies produce the same probability distributionsies that are distributed uniformly over the gragpbut these
for the outcomes of the measurements performed bynthe values are locked together. Therefore |ifc is any pure
-k honest parties. We have proved the following. state ofC, thenMy¢ andMEY act on|0)ag® | )¢ in the same

Theorem 1 Suppose that in the world all quantum op-  way,
erations are required to l6&-invariant, wheres is a compact

hﬁﬂs state has trivial total charge; indeed, when expressed in
the Fourier-transformed charge-eigenstate basis, it is

Lie group, and that in th&) world quantum operations are MR|0)as ® [#h)c) = MEA|0)a @ [#)c)
unrestricted. Consider anpartyl-world quantum game, and 1

a U-world cheating strateg’ in which k<n parties cheat. = T D Ba® b

Then there is am-world cheating strategp’ that is equiva- VG ¢G

lent to A" ® [U(AMU(D) e, (47)
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FurthermoreMl¥ and M. act identically on any state of the thel world. The state i&-invariant, but unlikg0),g it is not

form a charge eigenstate; rather it is a mixturginfariany states
with various charges. For example, in the caBeU(1),
W) apc= i_ S Ea® | ® s (48) |0)ag is the (unnormalizablg state
\“’nG »eCG
2 *
where|,)c might depend omp, a form that is maintained as |o>AB:f |0a® 0= > |-a® | (52
successive invariant operations are applied@and toBC. 0 g=—c

Therefore, the outcome of the protocol would be the same if _
each invariant operatioMi% applied toBC were replaced Alice’s charge and Bob's charge are perfectly anticorrelated.

by the corresponding invariant operatibf%. applied toAC. [N contrast,pag is

We conclude that the simulation in which the distributed ref-

erence systenAB is prepared in the initial stat®)sg is ocfde o)A (10)6
equivalent to a simulation that uses an itinerant reference Prs (16X aDa e (|6)EDe

systemA. Since this latter simulation has all of the properties
listed in Sec. Il C, we find that a bipartiteworld protocol % 2 |0a0s)0a=00s+ 7. (53
using the distributed reference system can faithfully simulate a0

an arbitrarylJ-world protocol. Formally, this state appears to be separable, as it is a mixture

3f the product statel) ® |6), but this is deceptive, because
|6) ® | 0) is notG-invariant and is therefore incompatible with
the superselection rule. On the other hand, in the charge-
eigenstate basisppg can be expressed as a mixture of

if there is a fixed offset of Bob’s condensate relative to Al-
ice’s, as long as the offset is known. That is, if Alice and Bob
share the state

_ 1 _ G-invariant pure states, each with a definite total charge;
0,8)a= = 2 |Da® |dd)s however, these pure states are highly entangled, with an in-
VNG ¢<G definite value of Alice’s(and Bob’g local charge. The state

1 _ pag IS Not a mixture of invariant product states, and therefore

=7 > Dan(¢) cannot be prepared without quantum communication be-

VNG qab tween Alice and Bob. Classical communication alone is in-

X(E Qi a)s ® q,i,b)B), (49) ztjafg(éi:rr:jt for Alice and Bob to establish their common phase

| .

_ ~ o Now let us return to the question we postponed earlier:
then the invariant operationd 5. and[U(¢)MU(¢) it act ~ what if G is a Lie group, so that the statf,g and pag are
in the same way. If Bob knows, then he can participate unnormalizable? To be specific, consider again the &se
successfully in the simulation by “twisting” his operations =U(1), and suppose that Alice and Bob are instructed to

appropriately. perform this protocol: Alice is presented with a charge-zero
Similarly, in a protocol withk parties, the distributed ref- state|0). She is instructed to rotate th|§ state to the superpo-
erence state sition of charge eigenstate$0)+|1))/y2 and to send the

resulting state to Bob. Bob is to perform an orthogonal mea-
1 surement in the basi§0)+|1))/y2 and so verify that Alice
0 es—= T ® e ® 50 N .
O parties g EG |¢>R1 |¢>R2 |¢>Rk 50 prepared the correct state. To make sense of this procedure,
_ o Alice and Bob must share a common reference state that
provides a common “phase standard” for all the participantsserves to lock together their phase conventions; for example,
allowing them to simulate aJ-world protocol in thel  this state could be a shared pure stébgg with definite total

world—the{th party simulates the noninvariant operatdn  charge. Alice’s coherent operation on systénacts as
by applyingM"™ to the target system and her p&i of the

reference system. Again, the parties can twist their local op- 1
erations to compensate for known relative offsets of their [¥as® |[O)c — =[[¥)as ® [0)c+ (U )al$has ® [Lcl;
condensates, if necessary. V2

In the statg0),g, there is a quantum correlation between (54)
Alice’s condensate and Bob’s. A common reference standard
can be provided instead by a classically correlated state sudhat is, Alice simulates the charge-nonconserving operator

as (Uy)c by applying the invariant operatqtJ_),® (U,)c to
L AC. When Bob receives syste@) he performs his measure-
ez — S (X B)a® (| HH D). (51) ment by first simulating the transformation
NG ¢eG .
If Alice and Bob are equipped with the staigg, then again 0)c — E(|O>c+ 1De),
Mg and Mg¢ act in the same way, hence they can use this
distributed reference state to simulaté&avorld protocol in (59)
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1 ducible representations of compact groups. For another,
|De— T§(|0>c - Do), while it is possible to formulate a security analysis of quan-
v tum bit commitment within the framework of our argument
and then measuring the charge @f After Bob's first step, in Sec. lll, it is more natural to structure the argument dif-
the state ofABC has become ferently, following more closely the standard analysis of
quantum bit commitment.
l[l ® lg+ (U)a ® (Ul ¥has ® |0) In this section, we will emphasize the essential differences
2" AT B A +BIT/AB ¢ between superselection rules arising from non-Abelian sym-

1 metry groups and those arising from Abelian groups. The
+—[Ia® (U_)g— (U)a® Igllhag ® |1)c. (56)  discussion will pave the way for our analysis of quantum bit
2 commitment in Sec. VIl and of general two-party protocols

When Bob measures the charge, the probability that he oD Sec. VIIL.

tains the outcomél). and fails to verify Alice’s state is A crucial difference between Abelian and non-Abelian
charges is that non-Abelian charges are nonadditive: the

1 charges of two subsystemdsandB do not necessarily deter-
P1= 2[1 ~ Re asyi(U-)a ® (U)gl¥)asl- (57) mine the charge of the composite syst&®B. This feature
can be restated as a property of the algebra of observables of

If, for example, the shared reference state is the bipartite system. Letl denote the algebra of local op-
N-1 erators(an associative algebra, closed under Hermitian con-
1 ) : .
[)as= —_<E |- Qa ® |Q>B), (58  Jugation, that commutes with all locally conserved chayges
VN g=0 acting on subsysterA, and let5 denote the algebra of local

operators acting oB. The commutant of4, denotedA’, is
the algebra of operators acting on the composite sygtBm
that commute with everything itd, and similarly forB’.
1 Now, if all superselection rules are Abelian, thdn=25 and
"N’ (590  B’=A. But if the superselection rules are non-Abelian, the
theory has sectors with nontrivial total charge in which this
Thus, for finiteN, the state received by Bob does not matchrelation does not hold. This unusual structure of the local
perfectly with the state prepared by Alice—the superpositiorpbservables has potential implications for the security of
of charge eigenstates decoheres slightly. But this decoheguantum protocols.
ence becomes negligible in the limil— o, where the To be more explicit, suppose that the superselection rules
“charge fluctuations” of the shared condensate are large. arise from a non-Abelian symmetry gro@ and the opera-
The lesson we learn from this example generalizes to nortions that Alice(or Bob) can perform must commute witA.
Abelian compact Lie groups. We can replace the unnormalA state|y) in Alice’s (or Bob's) Hilbert space can be decom-
izable state posed into irreducible representations@fas

(60) ) =2 yilaia); (61)

gia

a normalizable approximation to the std@@,g, our expres-
sion for P, becomes

P

1 —. :
|0>AB: /__ E |q1|1a>A® |q1|1a>B
VNG qgii,a
by a normalizable state with a truncated sum over the char
g. If Alice and Bob use this truncated distributed referenc
state to simulate B-world protocol, their simulation will not

I%Iereq labels the irreducible representati@r “charge’, i is
gt e “color” index acted upon by the representatiorGofand
a is the “flavor” index that distinguishes among the various

have perfect fidelity. But as long as all operations applied b)popies of the irreducible representatigrappearing in the

Alice and Bob change the charge by a bounded amount, tH ecom.position. Note that since we are no longer assumi_ng
fidelity can be arbitrarily close to 1 if the reference state jsthat Alice’s system transforms as the regular representation
f G, there need be no connection between the number of

chosen appropriately. If Alice and Bob are permitted to use d th ber of col iated witirh
truncatedtinerant reference system rather than a distributed 1avors and the number of colors associated witrine ac-
on of a color gauge rotation representigg G on |¢) is

one, then perfect fidelity can be achieved, as observed in sell¢
Inc. U@y = 2 ¢kla.j.aDi(g). (62)

g.i.j.a

An operatorM allowed by the superselection rule, which
must commute with eacBYqg), preserves the charggand

Our observations in Sec. Il B emphasized the similaritiesacts only on the flavor index according to
between Abelian and non-Abelian superselection rules, en- _ .
abling us to formulate a security analysis in Sec. lll that M[y) = 2 ‘l’ﬁam"’bwga' (63)

. . . g,i,a,b

applies to both Abelian and non-Abelian symmetry groups.
But in several respects the arguments in Sec. Ill are still noSince allowed operations act nontrivially only on the flavor
adequate. For one thing, so far we have treated only thandex, it is convenient to use a notation that suppresses the
special case of superselection sectors labeled by unitary irreolor indexi. We denote by, theinvariantHilbert space in

V. INVARIANT OPERATIONS AND COMMUTANTS
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the chargeg sector, spanned by statfega) that are labeled its conjugate representatiagy, and it occurs only once in
only by the flavora within the sector. The corresponding this product. Therefore, in the case where the total charge is
operator algebra respecting the superselection ruld#s,), g=1, Eq.(68) reduces to
spanned by linear operators acting on this invariant space.
Thus Alice’s invariant Hilbert space is Hi=&Hpaq® Heg (77)

q

Ha= EBHAVQ (64)
q in this case, the factovg~“ is superfluous. Now, the joint
operator algebra contains operations that cannot be executed

and Alice’s local operator algebra is ! : ,
by Alice and Bob locally—these operations change Alice’s

A=®L(Hag)- (65  charge and Bob’s while preserving the total chaigé
d course, this can happen evenGfis Abelian. But any op-
Similarly, Bob’s operator algebra is eration that commutes with Alice’s algehrh must preserve
Alice’s chargeq, and act trivially in each of Alice’s charge
B=&L(Hgg). (66)  sectors; such operations preserve Bob’s chgrae well, and
q thus are in Bob’s algebr&. Therefore, A and53 are commu-
Now consider the composite systekB. Its invariant Hil-  tants of one another.
bert space too can be expressed as a direct sum over chargeHowever, if the total charge is nontrivial, théhneed not
sectors be the commutant ofl. To illustrate this phenomenon, con-
sider the cas&=SU(2), where the irreducible representation
H= ?Hq' (67)  is labeled by the spif. For SU2), VIAJ8 is always onef{or

zeroj dimensional, and Eq68) reduces to
while the full operator algebra i®qL(H,). But we should
consider howt, is related to the invariant Hilbert spaces of Hij= & Haj, ©® Hpjg, (72
the subsystems. The chargeHilbert space of the joint sys- Inle

tem can be expressed as e .
where it is implicit that each product of representations ap-

Hoq= ® Hag, ® Hagq ®VgA*qB' (69) pearing on the right-hand side transforms as gpifio be
dde ° concrete, suppose that Alice’s system has %piBob’s con-

WherengvQB denotes the space of invariant linear maps from_tai?s both a spin-0 and a spin-1 component, and the total spin

the irreducible representatianto the tensor product of irre- 1S 2 then

ducible representatiorgy ® gg. This space can be nontrivial

(of dimension greater than) If the tensor product contains Hiz=Ha12® (Heo® Hp ). (73
the representatiog more than once. ) ) ) )

When expressed in terms of a particular color basis for thél0te that in this case, contrary to the case in which the total
ireducible representatiorgs g,, andgg, the components of charge is trivial, a single value gi can be combined with
Vi gre the Clebsch-Gordon coefficien@ symbolg, of either c_)f two different values c_)fB to obtain thg same t.otal
the groupG. Let{|d,,i)} denote an orthonormal basis for the char.g.ej. Therefore, there are mva_rla,nt operations acting on
representation, {|gs,|)} a basis forgs, and{|q(e),k)} a the joint system that pr,eserve Alice’s charge and the t_otal
basis forq(a), where the index labels the various copies of charge, but change Bob's charge. These operations are in the

. . . commutant ofA but not inB3; henceA’ # B.
the representatioq that may be contained ig,®gg. Then We arrive at another way of looking at this property of
the components 073~ are

Hq» if we imagine that there is a third party Charlie who

[VI%e(a) ]l = ((ga i| ® (Gg,j)|a(a), k). (69) holds a compensating charge, so that the total charge is
q k ’ ' ' trivial. Now
These components compriseGainvariant tensor with the
property Ho=Ha12® (Hgo® Hc12® He1® Hean); (74
V()= > Dﬁ‘,‘(g)Dﬂ%(g)[VgA‘qB(a)]w’Dﬂ,k(g). an operation in4’ can be performed by Bob and Charlie
i K acting together, but not by Bob alone.
(70) In order that A’ # B, it is not necessary for one of the

parties to possess a state with indefinite charge. For example,
Invariant operations act not on the color indices ofin the caseG=SU(3), the tensor product of the irreducible
[Vi®(a) I, but rather on the index that distinguishes the octet representation 8 with itself contains two copies of 8,
flavors ofq contained inga® gg. Furthermore, the invariant one symmetric and one antisymmetric under interchange of
operations can also alter the charggsandgg appearing in  the factors,
Eq. (68), while preserving the total chargp

The notation of Eq(68) and its implications may be clari- 8 ® 85 D 8sym® By (75)

fied by discussing specific examples. The trivial representa-
tion (q=1) is contained only in the tensor productaf with  Thus, in the decomposition
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Hg=Hps® Hgg® V5E, (76)

PHYSICAL REVIEW A 69, 052326(2004)

Up until now, we have explicitly discussed only the case
of superselection sectors arising from a compact symmetry

the joint invariant Hilbert space is two-dimensional, while group, but much of the formalism we have outlined in this
Alice and Bob both have one-dimensional Hilbert spaces angection can be extended to a more general setting. Whatever

trivial invariant operator algebras. Thef! is the full opera-
tor algebra, clearly different frons, and similarly5’ is dif-

the origin of the superselection rule, the allowed operations
act on a suitable invariant space. Sectors can still be classi-

ferent from.A. Again, an alternative description of the invari- fied by conserved charges, but in the general case, the space
ant space is to note that Charlie could hold a compensating BgquB is defined more abstractly, rather than in terms of

charge, in which case the total charge is trivial and
H1=(Hps® Hpg® Hcg) ® V7P (77)

is two-dimensional.
For the purpose of describing-invariant operations, it is

group representations. One important property that continues
to hold in the general settingvhich will play a central role

in our analysis of quantum bit commitment in Sec. VII and
of general two-party games in Sec. Vjllis that for each
value g of the charge, there is a unique conjugate charge

always legitimate to introduce a compensating charge withSUch that the fusion of the charges contains the trivial charge
out incurring any loss of generality. To see this, first note thaf€ctor:

if £is aG-invariant quantum operation, then

E[U(@)pU(g) ™= U(9)&(p)U(g)™ (78
for anyg e G and any state. In particular, then,
EG(p)1=dlEp)], (79
whereg is the map
1
G(p)=— 2 U(@pU@™, (80)

NG geG

VI. DATA HIDING

Verstraete and Cirad 3] described a data-hiding protocol
whose security is founded on the charge superselection rule
for G=U(1). Suppose that a trusted third party Charlie pre-
pares one of the two orthogonal states,

1
|£)=-=(0D £ 10), (86)
V2

which induces decoherence of a superposition of distinct irvhere|0) and |1) denote states of charge 0 and 1, respec-

reducible representations &,
G(q.i,aa’,j,bl) = 5“‘*'(5”(“—1} Iq,l,a><q,l,b|>- (81)
Equation(79) means[26] that the state
=2 yiiai.a) (82

cannot be distinguished by ary-invariant operation from
the state

* 1
Gluxuh = = wﬁwf%(n—z? Iq,j,a><q,j,b|>- (83)
q ]

g.abi

tively, and distributes half to Alice and half to Bob. If Alice
and Bob could each measure the Pauli operdttrat inter-
changed0) and|1), they could distinguishthe statés) and

|-) by performing these measurements and comparing their
outcomes. HowevetX does not commute with the electric
chargeQ; if Alice and Bob are permitted only to perform
local charge-conserving operations and to communicate clas-
sically, then they will be powerless to distinguish the two
possible states.

On the other hand, if Alice and Bob share access to a
common phase reference state, their activities will be unre-
stricted and nothing will prevent them from performing e
measurements that unlock the classical bit stored in the state
prepared by Charligaside from the small loss of fidelity that
arises if the reference state has large but finite charge fluc-

Now, consider a syster whose charge is screened by a tuations, as in E¢58)]. In Bloch sphere language, Alice and
systemC, so that the state of the joint system has trivial totalBob have naa priori means of orienting their measurement

charge,

[Wac= 2 ¥ |ai,aa® [ (84)

gai

Tracing over systen® produces the state

x l
trelldhac= X vdug (n—E |q,j,a><q,j,b|). (85)
q ]

g.a,b

But the state Eq(83) is just a convex combination of states

of the form Eq.(85). Therefore, if onlyG-invariant opera-

tions are to be considered, it is always harmless to replaceommutes withQ, as doesXgg,.

axes in thex-y plane, but a shared phase standard enables
them to lock their axes together and compare their measure-
ments. Since the state prepared by Charlie is invariant under
rotations about the axis, the overall orientation in they
plane is irrelevant; only the relative orientation needs to be
fixed to identify Charlie’s state.

To be more explicit, whileX does not commute with the
charge,

Xpw = (U)a® 0, + (U @ 0 (87)

"V If Alice and Bob share a

systemA by half of a bipartite state that carries trivial total distributed reference stat/),z that is an eigenstate of

charge.

(U)a® (U,)g with eigenvalue 1, then
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[ae @ | £ )arpr (88)  distinguishable quantum states with density operapgrer
. . p1, and then she sends half of the state to Bob. In the unveil-
is an eigenstate of ing stage, Alice sends the other half of the state to Bob, so
XNV o inv (89) that he can verify whether the stateggor p;. The protocol
AN BB is binding if, after commitment, Alice is unable to change the
with eigenvalue +1. Therefore, Alice and Bob can unlock thevalue of the bit. The protocol is concealing if, after commit-
hidden bit by each measuring™ and comparing their re- Ment and before unveiling, Bob is unable to discern the value
sults. The same holds, of course, if the shared reference sts#é the bit. The protocol is secure if it is both binding and
pag iS @ mixture of eigenstates ¢6)_),® (U,)g, each with ~concealing. _ -
eigenvalue 1, as in Eq53). As Verstraete and Cirac ob- In the absence of superselection rules, unconditionally se-

served[13], quantum communication is needed to establistfUr® guantum bit commitment is impossibl8,9]. If we
this shared phase standard. imagine that the states, and p, are pure states shared by

In the absence of a shared phase standard, neither Aliddice and Bob, then if the protocol is concealing, Bob's den-
nor Bob can detect the bit encoded in the statg of Eq. sity operator(qbtamed by tracing over Alice’s systgmust
(86); however, either Alice or Bob can manipulate the bit. P& the same in both casgs;g=py g But then by the HIW
Each can measure the chageand either can apply a phase theorem[29] Alice can apply a unitary transformation to her
to the state conditioned on the charge, flippimg«|-). But  half of the state that transforms to py, so that the protocol
the property tha3’ # A indicates that the situation can be IS ot binding.
more subtle in the non-Abelian caswith nontrivial total
charge. Suppose, for example, th&=SU(2) with total A. Bit commitment with mixed states
chargej :% as in Eq.(73). Two states with the same value of

the total charge and of Alice’s charge, but different values of We reached this conclusion under the assumptionggat
) C1 1. 1 1. andp; are pure states, but we can extend the argument to the
BObS Chargev ar@_EIJA_EijB_O> and|J_§vjA_51JB_1>'

7 ! . 2°°B case were the states are mixed by appealing to the concept of
Charlie might prepare either of the linear combinations a purification of a mixed state. We will describe this exten-
1/ 1. 1 1. 1. sion in detail, as we will follow very similar reasoning in our
|£)= _§< J=5:0a= 51]820 1= 50a=500e= 1 ) discussion in Sec. VII C of bit commitment with nontrivial
v total charge.

(90) Suppose that at the start of the bit commitment protocol,
Alice and Bob share a product state® pg, where the states
wPA and pg are mixed. An equivalent way to describe Alice’s

&nitial state is to introduce the ancilla systethand a pure
tate|)ac (@ purification ofp,), such that the density opera-
I pa is obtained fromy)ac by tracing over systert:

and then distribute th&B system to Alice and Bob. Again,
neither Alice nor Bob can detect the hidden bit, but no
there is a notable asymmetry between Alice’s power an
Bob's. Since Bob has a superposition of two different charg
states, he can tamper with the hidden bit by applying a phas

cc_)r}trqlled _by the charge. Alice, on the other hand, has a pa=trc(|){(¥]) ac- (92)
trivial invariant operator algebra, and has no control over the ) ] )
shared state. Similarly, to describepg we can introduce the ancilla and

We may take this observation a step further. Suppose, fot state|¢)gp that purifiespg. Without loss of generality, we
example, thaG=SU(3) with total chargeg=8 as in Eq(76).  May assume that in each step of the protocol, Alice or Bob

Charlie might prepare either of the linear combinations ~ @Pplies a unitary transformation, so that the state of the full
systemABCD remains pure(A general quantum operation

1 _ _ _ _ _ performed by Alice, say, can be realized as a unitary trans-
[+)= &qq =8ym0da=8,05=8) % |0= 8,10 = 8,05 = 8)), formation applied jointly to Alice’s system and to an appro-
priate ancilla; therefore, the operation is unitary provided
(9D that we include this ancilla as part of the system.particu-

and then distribute thAB system to Alice and Bob. Again, lar, after the bit is committed, the state of the full system is

neither Alice nor Bob can detect the hidden bit, but further-one of the two pure statégo)agco Of |#/1)asco

more, neither one can tamper with the bit's value. If both parties are honest, the ancill@&sand D are off
However, in the non-Abelian case as in the Abelian caselimits—Alice can manipulate onlyA and Bob can manipu-

the hidden bit can be opened via local operations and classiate onlyB—and in that case the mixed state protocol and its

cal communication between Alice and Bob if they are pro-purification are completely equivalent. Furthermore, if one

vided with correlated reference systems that effectively reparty cheats, whether the other party starts out with a mixed

move the restrictions imposed by the superselection rule. State or its purification has no impact on the effectiveness of
the cheating strategy, because the honest party never touches

the purifying ancilla anyway.
Now let us see that in any quantum bit commitment pro-
tocol, one of the players can cheat successfully. First suppose
During the commitment stage of quantum bit commit- that Bob cheats. Though the honest protocol calls for Bob to
ment, Alice encodes a classical bit by preparing one of twestart our with the mixed states, a cheating Bob can throw

VII. QUANTUM BIT COMMITMENT
AND SUPERSELECTION RULES
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this state away, and replace it with the purificatiangp,

whereD is nowan ancilla system that Bob control§here- — (5 .
fore, if the protocol is perfectly concealigven when Bob — \7E v

cheats, then

posp = trac(| o) o)) asco= P1ep = trac(¥){¥a]) ascD: FIG. 2. “Purification” of a two-party game with nontrivial total
(93) charge. At the beginning of the game, the chargeCothidden
behind a brick wall compensates for Alice’s chargg, and the
Bob is unable to collect any information about the committedcharge ofD (also hiddeip compensates for Bob’s chargg. Honest
bit through any joint measurement &b. players never touch the compensating charges, but a cheating Alice
Similarly, a cheating Alice could throw away her initial Might manipulateC and a cheating Bob might manipulee
state and replace it by its purification; then Alice could con-
tbrol both A and the ancﬂla(':. Ap_plylng the HJW theorem as Ug G0 — .5, (98)
efore, we conclude that ify gp=p1 gp, then Alice can apply
a unitary transformation té\C that transformgy)apcp 10 which transformgy) to |4;). Therefore, the protocol is not
|1)asco We conclude that if the protocol is concealing, thenbinding.
it is not binding. Unconditionally secure quantum bit com-  Obviously, the same argument applies, in the Abelian
mitment is impossible, even with mixed states. That quantungase, even if the total charge is nontriviia6]. The key prop-
bit commitment is impossible even when mixed strategiesrty of the states that is used in the argument is that Alice’s
are used was proved i[B] using a slightly different ap- charge is perfectly correlated with Bob's, so tift=A.

proach.
C. Nontrivial total charge

B. Trivial total charge The property that#3’ # A in the non-Abelian caséwith
nontrivial total charge encourages one to hope that a bit

The argument in Sec. VII A shows that for an analysis of . L
ommitment protocol can be formulated whose security is

the security of quantum bit commitment, we may assum ) ;
that Alice and Bob share a pure state. But how is the securitjPinded on a non-Abelian superselection rule. lqdeed_' con-
affected if superselection rules constrain Alice’s and Bob's>der again the cas&=SU2) with total chargej=3; as in
operations? We will first consider the special case in whichEd- (73 When Alice has control of the fulAB system, she

the total charge that Alice and Bob share is trivial. After &N prepare either of the state g shown in Eq(90), and
commitment, then, Alice and Bob share one of the two purdhen she can send tigesystem to Bob. Now Bob is unable to
states|yp) or |i4), each with trivial total charge. Choosing distinguish the two states, because he cannot measure the

the Schmidt basis in each charge sector, the $fgjecan be relative phase in a superposition of two states of different
expanded as charge. Furthermore there is no invariant operation Alice can

apply that changept+) to |-) or vice versa. It seems, then,
AN 2 \EE o [3,0)a ® |g.b)g, (94) that the protocol is both concealing and binding. At any rate,

q b quantum bit commitment in a world with non-Abelian super-
selection rules seems fundamentally different from quantum
where Bob’s density operator is bit commitment in a world in which all superselection rules
are Abelian.
pos = trall X o) = 2 Pgposg (95) But, as always in a discussion of information-theoretic
q

security, we must be sure to consider the most general pos-
sible cheating strategies. And in fact, we can argue that for
the security analysis, there is no loss of generality if we
(96) assume that the charge shared by the parties is trivial, the
case we have already dealt with in Sec. VII B. This reduction
to the case of trivial total charge follows closely our discus-
Bob can measure the probability, that his charge is; sion in Sec. VII A, where we showed that it suffices to as-
therefore if the protocol is concealing, then the distributionsume that the parties share a pure state.
{pg} must be the same fory,) as for |4p). Furthermore, Consider a general two-party quantum bit commitment
Bob’s density operator in the chargesector must not de- protocol in which the initial state shared by Alice and Bob is
pend on whether the state [ig,) or |¢,); therefore|i;) can  a tensor producb, ® pg of invariant states. The statg can
be expanded as be purified if we introduce an ancill€; furthermore, the
- I pure state ofAC can be chosen to have trivial total charge.
ANEDD \s"pq > Vgp [0,0)a ® [, b)g, (97)  Similar, we can purifypg using the ancilleD, in such a way
q b that the pure state @D has trivial total charggSee Fig. 2.

. . Each operation performed by Alice or Bob can be taken to be
where{[q,b)a} is another basis for Alice’s charggsector.  a charge-conserving unitary transformation; therefore, at
But now Alice can apply a unitary transformation condi- each stage of the protocol, the state of the full systBCD
tioned on the charge that rotates one basis to the other: is a pure state with trivial total charge.

and

Pog.q= 2 N [9,bXa,b].
b
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In the honest protocol, the ancill&andD are inacces- state with trivial charge at the start of the protocol.
sible. But if Bob cheats, he can throw away the initial invari-  Note that for the proofs of Theorems 2 and 3, our obser-
ant statep, called for in the protocol, and replace it by a vations from Secs. Il and Ill on the use of reference systems
trivially charged pure state &D, whereD is now an ancilla  are not needed. Rather, to prove Theorems 2 and 3, we use
that Bob controls. Therefore, if the bit commitment prOtOCO|0n|y two properties of thd-world Superse|ecti0n sectors:
is concealing, thepogp=p, gp—Bob cannot learn anything first, that for each charge sectdf, there is a unique conju-
about the com_mitted bit from any invariant joint measure-gate charge sectditg such that the trivial sectak(; is con-
ment onBD. Since the state of the full systeABCDs a  tained in,® Hg; and second, that any invariant state has a
pure state with trivial pharge, the argument of Sec. VI Bpurification with trivial total charge. These properties hold
suffices to show that Alice can transfofi,) to [y) with an not just for the case of superselection rules arising from a

invariant local operation applied #®&C. Hence, the protocol symmetry grouf, but also for the more general superselec-

is not binding. We have proved, then, that, even when the X .
protocol calls for a nontrivial total charge, if Bob is unable to%?]g ;ufpspliﬂﬂst'ﬁiesrﬁjolg gsr?érgll Ils.e;[izzrefore, Theorems 2

cheat then Alice can cheat—unconditionally secure quanturﬁ
bit commitment is impossible. We have the following.

Theorem 2Consider a quantum bit commitment protocol
in the | world, where at the beginning of the protocol Alice VIll. TWO-PARTY PROTOCOLS IN GENERAL
and Bob share a product of invariant states. Then if the pro- A. Overview

tocol is concealing, it is not binding. _ _ .
Our proof, which reduces the case of nontrivial total We will now analyze the impact of superselection rules on

charge to the case of trivial total charge, is really just a minothe security of general two-party protocols. We will show
variant of the argument in Sec. VII A that reduces the case ofhat for any protocoP in the invariant world(I world) sub-

a protocol where Alice and Bob share a mixed state to théect to the superselection rule, there is a corresponding pro-
case where they share a pure state. tocol P in the unrestricted worldU world), whereP simu-

In the case of our bit commitment protocol in which the Jates P in the following sense: First, when performed
1

total charge ofAB is j=7, if Alice is unable to access the ponestly P andP accomplish the same task. And second, for

compensating charge i@, then she cannot cheat success- ; ;
fully. But if Alice controls the wholeAC system, then Alice’s any chegtlng strategy that can be adopted by a dishonest

chargejc=0, 1 is perfectly correlated with Bob’s, and she Party in P, there is a corresponding cheating strategyPin
can rotate the relative phase of the=0 andj,c=1 com- that is just as effective. In particular then,Rfis insecure,
ponents of her state, transformihg) to |-). then so isP. We conclude, therefore, that superselection
This reduction of a protocol with nontrivial total charge to rules cannot enhance tlimformation-theoretig security of
a protocol with trivial total charge can be generalized. In thetwo-party protocols. The methods we will use to establish
| world, consider am-party protocol in which up tk<nof  this result are quite different from those used in Sec. Il to
the parties might cheat, where the initial state is the producfeat the case of superselection rules arising from a symmetry
of invariant state_,p;, and where all operations performed group.
by the parties are required to conserve the local charge. Then gefore going into detail, we will briefly describe the main
we may imagine that each party is issued a compensatingeas used in our argument. First of all, we will restrict out
charge at the beginning of the protocol, so that each partyention to a protocol in which the total charge shared by the

2Ct/ua;”ty Stirttsf\oil:t ertnh tr:’\l/ Ialti(rzlhargrie'rThe EoFesthpar;[;ﬁs W'"r&o parties is trivial(belongs to the trivial superselection
ever touch Ineir compensating charges, but a cheating pa ctoy. We know from Theorem 3 in Sec. VII C that it suf-

cannot be prevented from performing arbitrary joint OP€Ta% 065 1o treat this special case in an analysis of security. A

tions on her system and her compensating charge. This Stragrotocol with trivial total charge has this useful property: if

egy is realizable because the cheater might throw away th lice knows that she holds chargeafter sending a message
invariant state she holds at the beginning of the protocol, an b Bob, then Alice also knows that Bob will hold the conju-

replace it by a charge-zero state that she controls fully. Fur-ate chargel upon receiving the message. Similarly, Bob

thermore, if an attack by the cheaters is successful in thgnows what Alice’s charge will be after she receives a mes-
protocol where the honest players start out with trivial 9 . . .
sage sent by Bob. Our analysis of security relies on the prop-

charge, then it will also be successful if the honest player - il
start out with a product of charged invariant states; sinczegrpe/ ?Pg;;?ebs Zﬁyﬁfimsaﬁga;?gtgcﬁ:fe does, and there-

honest players never make use of the compensating charg 'In thel world, charge is conserved, so that the total charge

their presence can have no impact on the effectiveness of th . S
attack. Therefore, we have the following. Shared by Alice and Bob is trivial at each stage of the pro-

Theorem aLet e amnpary quantum protocol e 9524 rhemore ocal aperatons perormed by e o
world that securely realizes a takk where the initial state P ge. o
in P is a product ofn invariant states. Then there is an charge need not be conserved, but the protéttilat simu-

I-world protocol P’ that also securely realizd$, where the lates thel-world protocolP can be chosen to respect conser-

trivial charge. conserved charge of tHeworld. However, a dishonest party

In other words, in a security analysis, we may assumavho is not bound to follow the protoccﬁ can perform op-
without any loss of generality that each party holds a pureerations that violate “charge” conservation. Our task is to
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ensure that the greater freedom enjoye_d_ by a dishonest party He=@H,® Hp® ngb. (101
in the U world does not enhance her ability to cheat success- ab
fully. abic . . o

For this purpose, our argument relies on the concept of th:el—he space/; ™ is n-dimensional if there ara distinguishable

formatof a message exchanged between the parties. It the "o > that a charge object can arise when objects with
gee gea b P o chargesa andb fuse. Consistency of Eq101) with associa-
world, the format is simply the Hilbert space containing the

~ o tivity of the tensor product requires th’b’s to obey certain
message. In the protocBl the recipient of a message always jgentities, but we will not discuss these further as they will
checks that the format of the message is valid, and aborts théyt he needed for our proof.

protocol if the message is invalid. A valid message corre- There js a trivial-charge sector, denotid, that behaves
sponds to one that could have been sent inl tverld, while 55 the identity under fusion,

a message is invalid only if the sender violated the local

conservation of “charge” before sending it. Thus, a message He ® Hy=He. (102
that upon receipt is found to be in the proper format could ] ) _ .

have been sent by a party who performed a chargeEurthermore, there is a unique chagethe conjugate of,
conserving local operation—in effect the sender is unable téhat can fuse withy to yield the identity

play a charge-nonconserving strategy without being detected. _

Since effective charge conservation is enforced by halting Hy= ?qu@ He: (103
the protocol when a charge nonconservation is detected, it . ) o

will be essential for our argument to consider games that can Now, in thel world, consider a bipartite system shared by
be aborted at any stage by either party. A cheating strateglice and Bob. The Hilbert space decomposes as

for the I-world protocol P and the corresponding cheating

~ H=0H,,
strategy for itdJ-world counterparP will cause the game to q O
halt prematurely with the same probability, as well as pro-
duce the same probability distribution of outcomes in the Hq= ® Hag, ® Hag, ® VgA,qB' (104

event that the game ends normally, without being aborted. aals

whereq is the total chargeg, is the charge of Alice’s sys-
B. Superselection rules and charges tem, andgg is the charge of Bob’'s system. The physical

Before proceeding to our proof, we should recall the pro operations, allowed by the superselection rule, conserve the
b 9 P P ptotal charge, and hence belong to the algebra

erties of superselection rules and charges that will be in-
voked in the argument. These properties have been explored O=aL(H,). (105)
already in Sec. V, for the special case of super-selection sec- q a

tors labeled by irreducible unitary representations of compact . i _ o
groups. Here we wish to emphasize that some of the samE€ Operations Alice can perform, which conserve Alice’s
ideas can be extended to a more general setting, and we wfi'a'ge and act trivially on Bob's system, belong to

indicate how a two-party protocol in which conserved _ qad

charges are exchanged can be simulated using ordinary qu- A= qu?qBE(HA’qA) © ley®, (106
bits.

In general, a superselection rule is a decomposition oWhere I denotes the identity acting of(gq, ® Vgae.
Hilbert space into a direct sum of sectors such that eackimilarly, the algebra of operations that Bob can perform is
sector is preserved by the allowed operations. The charge
is a label that distinguishes the distinct sectors, and we may B= @ I#x®® L(Hgg,), (107)
say that the operations allowed by the superselection rule 49 s
conserve the charge. Thus, the Hilbert space is expressed \ﬂrﬁerelﬁéd% denotes the identity acting OHA,qA® VgAﬂB_ In

contrast, the commuta®’ of B, which conserves the total

H=oH,, (99)  charge and Bob’s charge but need not conserve Alice’s, is
q
_ B'=a c(@HA,q ® ng@8> ® lg ., (108
and the allowed operations belong to the algebra adg \gp ®

®L(H), (100 whereIB,qB is the identity onHp g, and similarly
! A= © Ing,® £ ©Hog @ VEe). (109
where £(H,) denotes linear operators acting ®fy. 4 %

Depending on the particular form of the superselectionThus. A’=8 and5’=A if and only if the charges), andgg
rule, there are specific rules governing how the charge beare perfectly correlate¢there is a uniqueg corresponding
haves when a system splits into two subsystems, or wheto eachg, and vice versp This condition holds, in particu-
two systems fuse to become a single system. These rules céar, if the total charge is trivial, in which case our formulas
be encoded in vector spacVS'b defined by simplify to
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H=H1=0Haq® Hpg P, Alice or Bob might hold a coherent superposition of dif-
q ferent charges, even though the total charge is always guar-

anteed to be trivial. Therefore, the verification stefPimust
A=B"=®L(Hag) @ Isg: be performed coherently; Alice, for example, checks that
g andg, match without learning the value af or g,. If veri-
o fication fails, then the message recipient has detected cheat-
B=A"= eqalAvq ® L(Hgg)- (110 ing by the other party and aborts the protocol. If verification
succeeds, then the message has been projected onto the valid
format, and as far as the recipient is concerned, it is just as
C. Simulating charge exchange though the message had been sent in the right format to

A novelty of a two-party protocol in thé world is that ~ P€gin with. _
when Alice (for examplg sends a message to Bob, she may Whenever Alice cheats in th&J-world protocol P by
choose to split the charge she possesses into two parts—tAe0difying her charge, she risks detection, and if her cheating
charge she retains and the charge of the message that gRelndetected, then her operation is equivalent to a charge-
sends. If the total charge is trivial, then the full Hilbert spaceconserving one. Therefore, Alice has an equivalent strategy
comprising Alice’s systemd, Bob's systenB, and the mes-  in the I-world protocolP, in which she either halts the game

sage systenM can be expressed as herself with some probability before sending her message, or

if the game does not halt, performs an operation allowed by

Hi= & Hpg, ® Mgy ® Hug, @ VIA®BM. the superselection rule. This observation suffices to establish
Ua08:Am

that P simulatesP, and thus that the superselection rule can-

(111 not thwart cheating.
The isomorphisms To summarize, for the purpose of characterizing Alice’s
ability to cheat, we are only interested in how Alice’s activi-
VAdein = Vaqg'q“" = Vaqf'q“" (1120 ties will affect Bob’s measurements. Although in tdevorld

o ) i Alice has the power to violate conservation of “charge,” she
invite us to interpret Eq(111) in complementary ways— s ynable to fool Bob into accepting a message that is not
namely, the charggg of AM is conjugate to the chargg of  isomorphic to one that could have been created in Ithe

B, and the charge, of BM is conjugate to the chargp, of  \yorld. Therefore, Alice’s elevated power in thé world
A. Thus, Eq.(111) describes the splitting of Alice’s initial  gjyes her no advantage.

chargeqg into the chargeg, that she retains and the charge
qu of the message, as well as the fusion of the chaggef
the message with Bob’s initial chargg to yield Bob’s final
chargega. Furthermore, ifVjA9% s of dimension greater Having explained the main ideas, we will now present a
than 1, then a vector iv{#%9 describes the particular more formal proof of our result. To begin, we must define the
manner in which Alice performs the splitting, which in turn general notions of “protocol” and “simulation” in accord
determines the result of Bob’s fusion. with our goals. The definitions are quite natural, but there are
While the information encoded M~%M is an intrinsic  some technicalities that are necessary for the proof to work.
property in thel world, if we are to simulate the process of  We consider quantum games between two parties, Alice
charge exchange in thg world, then this information must and Bob. We assume that Alice sends the first message and
be carried by ordinary qubits. In such a simulation, the Hil-the players alternate. Tharotocol of a game specifies the
bert space of Alice’s system, Bob’s system, and the messagetal number of messages, their format, the strategies for

D. Definitions

is expanded to honest players, and a way to determine the game outcome.
- By “format” in the U world we mean the Hilbert spadg,,
H= ©  Haq, ®Hpg,® Hug, ® v ade of a given message. In theworld, we specify the space
1.2: - Hw g, for each value of the message chacge
(113 To define an honest strategy in thevorld, we specify for

but where now 2% M is to be regarded as an explicit part each. value of Alice’s charqu’her corresponding space

of the message. If the conditiong=q, and q,=qg were  /laq, likewise, we specify Bob's spackg g, for eachge.

imposed, then the “format” of this message would coincide! € game starts with a pure state

perfectly with the information content of a message sent in

the | world. But while in thel world these conditions arise |En) © |ég) € Ha1® Hg, (114

from the intrinsic physics of the superselection rule, intthe where 1 stands for the trivial charge. If one of the players

world they must be imposed by hand through proper desigisay, Alice cheats, she may use a different set of private

of the protocol. B spacesH /’\,qA' but the initial state still must be of the form
Thus, in the U-world protocol P that simulates the |£3)®|&g), Where|y) e Hp ;.

I-world protocol P, we will require the recipient of a mes- Alice’s and Bob’s actions in thkth step are described by

sage to verify its format—Alice checks thai=q, and Bob  operatorsi, ,Wg . The final outcome is determined by a pair

checks that,=gg. Of course, at a given stage of the protocol of measurements that are performed independently on Al-
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(relative to simply quitting the gaméy sending an invalid

I-world |U-world message. More formally, suppose that Alice cheats using
_ some strategﬁ’. In the corresponding strategdy’, Alice
Protocol P —|— p projects her message systéhﬂﬂ onto the subspacHy,, be-
- fore sending each message. Thus if the straﬁefgyalls for

i te ! — A’ . = ,
Alice strategy AT 9 A Alice to apply the operath,;k in the kth round, then in the

strategyA’ Alice applies the contracting maW’Ak:HVvAk,
wherell is the orthogonal projector ontd),. The strategies
A’ andA’ are equivalent: whenever a message sent accord-

Li_ng to A’ causes Bob to abort the game, the stratégy
requires Alice to abort the game herself. Similarly, given any

cheating strategfé’ for Bob in the gamef’, there is an
ice’s and Bob’s subsystems at the end of the game. We akequivalent cheating stratedy’ in P. Thus, conditions(ii)
interested in the joint probability distribution of the measure-anqiii) are satisfied an® simulatesp.
ment results. However, if one of the players cheats, only the - 5, analysis of superselection rules in Sec. VIII E will be
honest player’s subsyste'm IS .measured. , based on a closely related method of simulation.

For the reasons explained in Sec. VIII A, we will assume We also remark that Theorem 1 proved in Sec. Il can be

that the game can be aborted by either player. If the game IS ctated: for a multiparty protocoP in the G-invariant

aborted, we will not need to keep track of who ends the game ] )

game ends normally and if so what is the outcome. For thi§ase, we implicitly adopt a redundant description of the
purpose, the quantum state can be characterized by a vectysical states appearing By admitting fictitious color de-
| such thaty|¢) is the probability that the game has not grees of freedom. TheR is exactly the same protocol &
been aborted. Operations performed by each player may thémit with the color now reinterpreted as a physical variable.
be described by contracting maps, i.e., operafdsuch that ~ Similarly, Theorem 3 in Sec. VII C can be stated: angarty
W'W= 1. We assume that the game is never aborted if bott-world protocol in which the initial state is a product of
players are honest, so that the probabilities of different outinvariant states can be simulated by laworld protocol in
comes add up to 1 in the honest game. If one of the player@hich the initial state is a product ofpure states, each with
cheats, the total probability of all outcomes is generally lesgrivial charge.
than 1.

Now we define what it means for one protocokimulate

Bob strategy | B’ «— B’

FIG. 3. TheU-world protocoll~D simulatesthe I-world protocol
P if the honest protocols realize the same task, and if for any cheal

ing strategy inP there is an equivalent cheating strategyPin

another(see Fig. 3. E. Proof

Definition A protocol P simulatesthe protocolP if the Our goal is to prove the following.
following conditions are fulfilled: Theorem 4 Let P be a two-party game in the world,

(i) The honest strategies R andP give rise to the same such that both parties hold trivial charges at the beginning of
probability distribution of the outcomes. the game. Then there isl&rworld gameP that simulates?.

(ii) For any cheating strateg}’ by Alice compatible In the proof, we construct th&-world protocoll~3 that

with the protocolP, there exists an equivalent stratelyyfor ~ Simulates thé-world protocolP, and explain how the cheat-

the protocolP. (“Equivalent” means that Bob’s measurementing strategyA’ that is equivalent toA’ is formulated. We

result has the same probability distribution in both cgses. achieve this by applying the procedure for simulating charge
(i) For any cheating strated by Bob compatible with exchange in théJ world that was described in Sec. VIII C.

~ . . , Consider thel-world protocol P. If the total charge is
the protocolP there is an equivalent strate@y for the pro- trivial, then the full Hilbert space including Alice’s systefn

tocol P. : ;
Note that when we say that the two cheating strategies arI(3eObs systemB, and the messagd is
equivalent, we mean in particular that the probability that the H= & Hpg, ® Hpg, ® Hyg, ® Virem,
game ends normally is the same for both strategies. dadedy e o
To better understand our concept of simulation, it is very (115

helpful to consider this simple example: Suppose that the

message spadéey of P is embedded in a larger spakg, of Without loss of generality, e asstme that the spacgg,,

~ S~ Hp gy Humg, are the same in each step of the protocol. We
P. Honest _pla)_/e_rs fOII(.)W the same sirategie®ias inP, so may also assume that the message is present at the beginning
that condition(i) is obviously satisfied. However, the players

and at the end of the game and that the initial state has the
in P must be prepared to receive messages that do not obeyrm |£,) ® | &) ®|0), where|0) e Hy.1-

the format ofP, i.e., do not fit into the subspadg,,. In P Each time Alice receives one message and sends another,
such messages are rejected, and the game is aborted. Thlse applies an operator #M that preserves Bob's charge
rule prevents a dishonest player from gaining any advantag@g; this is a contracting map belonging to the algebra
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@ﬁ( ® Hag, ® Hug, vaqu,qm). (116 Hau=Ha® Hu=HA® ( & Hyn gy, ® VIATRM).
B dadm da:ds.Adm
Alice’s honest strategy consists of a sequence of such (121

operators—in thé&th step she applies an operat, . Simi-

. ) In particular, when Alice cheats, her action on the message
larly, Bob's honest strategy is defined by operatds.

- need not respect the conditiog=q,. To prove the theorem,
Now consider theJ-world protocol P that simulates?.  we are to define an equivalent cheating strategy for the game
The Hilbert space oP is P. _ _ _ _
When Alice cheats inP, she uses an arbitrary Hilbert
H = ﬂA ® 7~_(B ® ﬂM, (117 spaceH’A’qA for each value of her chargg, and she applies

operatorsW’Ak that conserve Bob’s chargg to the space
where

B B Hau= @® Hpg ®Huyg, ® VMM (122
Ha= ?HA,ql, Hg = ?HB,qZ- 0a0B:AMm
' : The space$t,,, andH,, seem to be distinct—ift,,, the

~ charge label carried b’gﬂ,g’qA matches the label in one of the

= VAU 11 Lk . .
Hw qA(?;qMHM i © (118 slots of V{49 while in H,,, there is no such correlation.

5 However, in theU world the variableg, would be encoded
Thus the spacé{ of the protocolP can be embedded ik redundantly if it appeared in bol‘HA andVia9% M and it
by requiringg; =g, and g,=0g. In p these constraints are iS not necessary to adopt this redundant encodlng in order to
enforced by checks performed by both parties. A dishonestmulate the physics of thieworld. Instead, let us specify
player’s attempt to break the constraints will be detected im#¢; qA_HA for eachga—thenH and7'—(AM are of the same
mediately by the other party, in which case the game williorm, but where it is understood in E6L21) that the infor-

hallt. ~ mation about the chargg, is carried only byv A%, With
Let us describe Alice’s honest strategyRnWhen Alice  thjs choice Alice’s operatdWj, in P and her operatdi, in

receives a message, she gains control of the sfigge P act on isomorphic spaces; howeve, must conserve
®HM First she verifies thad;=q, (without determining the Bob's chargegg,
value ofq, or g,); if verification fails, she aborts the game.
Thus Alice effectively projects her input state onto the sub-
space

while WAk need not conserve charge.

Therefore, we define the corresponding cheating strategy
in P by specifying

= > g Wi Il 123
Ham= & Hag, ® Hug, ®VquBqMcHA®HM %B: 98" A a8 (123
da.9B:9m
(119 WhereHqB is the projector onto the subspace with the given
value ofgg. That is,HqB projectsﬂM onto the space in which
VA9 has the valuayg in the appropriate slot. The con-
tracting map\N,&k preservesg)g and therefore is admissible in

the protocolP. Applying this W,;k causedAlice to abort the

Then she applies the operatdf, (from the protocolP),
which acts oriH 5, and preservegg. Thus Alice’s strategy is
defined by the contracting maps

\7VA =FW, F', (1200 9ameP in the case whereg would change in the game.

K K But in that case the new value gf would not match Bob’s
where E denotes the embeddinyAM—>7-(A®7-lM. Bob's variableqy; theiefore,BobwouId reject AIice’i message and
honest strategy is defined similarly. abort the gamé. Hence the two game? andP are aborted

If both players play the gam% honestly, then the verifi- with the same erobakliIity; furthermore, the final state that
cation always succeeds and the conditi@gsg, and g, Bob measures i, if P does not abort, is identical to the
=qg are maintained throughout the game. Thus the honedtnal state thqt Bob measuresiif P does not abort. There-
strategies foP and P are clearly equivalent. Note that fore, when Alice cheats, Bob’s measurement outcome has the
some information is encoded redundantly—for example, Al-same probability distribution i? as inP. The same is true
ice can access the value @f by examining either the charge for Alice’s measurement when Bob cheats. Therefd?e,
label of 7 q, or one of the slots of the tensA%M;  simulatesP, which completes the proof of Theorem 4.
similarly gy is encoded both ity q and in Vadeam,

However, this redundancy has no deleterious effect on the IX. CONCLUSIONS

fidelity of the simulation. . .
Recent progress in the theory of quantum computation
Now suppose that Alice cheats in the gaFneThen she  .nd quantum cryptography highlights the importance of
may use an arbitrary Hilbert spadéj and operatorSNA adopting a computational model compatible with fundamen-
acting on tal physics—tasks that would be impossible in a classical
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world may be physically realizable because Nature isAlice, accompanied by a compensating change in the total
quantum-mechanical. Further refinements of the model couldharge held by Bob and Charlie, even though the local
lead to further insights regarding what information- charge in Bob’s lab, and in Charlie’s, is unaltered. Though
processing tasks are achievable. Therefore, as Pop&8tu strictly speaking Alice’'s operation is not “local,” she can
emphasized, the impact of superselection rules on the secaarry it out surreptitiously, without any cooperation from
rity of quantum protocols is of considerable potential inter-Bob and Charlie. Such new possibilities enhance the poten-
est. However, our disappointing conclusion is that supersetial power of cheaters, but may also provide the honest par-
lection rules cannot foil a cheater who has unlimitedties with new methods for detecting cheating. Addressing the
quantum-computational power. security of multiparty quantum protocols subject to general

Contemplating this issue has led us to consider how physsuperselection rules will require different methods from
ics in the invariant world can simulate physics in the unre-those we have used in this paper, and might provide further
stricted world, and vice versa. We feel that the simulationenlightenment concerning the physics of non-Abelian
schemes we have devised offer fruitful insights into theanyons.
physical meaning of superselection rules.
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