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Abstract. We present and prove some results within the framework of Hilbert C∗–
systems {F ,G} with a compact group G. We assume that the fixed point algebra A ⊂
F of G has a nontrivial center Z and its relative commutant w.r.t. F coincides with
Z, i.e. we have A′ ∩F = Z ⊃ C1l . In this context we propose a generalization of the
notion of an irreducible endomorphism and study the behaviour of such irreducibles
w.r.t. Z. Finally, we give several characterizations of the stabilizer of A.

1 Introduction

The Doplicher–Roberts superselection theory [1, 2, 3, 4, 5, 6, 7, 8] starts with a C∗–algebra A with
trivial center, i.e. Z(A) := Z = C1l . A is interpreted as the algebra of quasilocal observables.
The field algebra F ⊃ A, together with the gauge group G is then constructed as a special
C∗–dynamical system {F , G} (cf. [9]), namely as a crossed product [6], also called a Hilbert
C∗–system in [10, Chapter 10]. It satisfies the condition that the relative commutant is trivial,
i.e. A′ ∩ F = C1l .

The paper by Fredenhagen, Rehren and Schroer [12], where conformal theories in 1+1 di-
mensions are studied, suggests that a nontrivial center (containing for example (global) ‘Casimir
operators’) of the universal algebra may also appear in physically relevant examples, and this sit-
uation is related to the superselection theory of the model (see also [13]). Furthermore, there are
good mathematical reasons for considering the center of A to be nontrivial, and indeed this case
has been treated in the past. For example, in the framework of strict symmetric moinidal C∗–
categories with conjugates Doplicher and Roberts [7, Sections 2 and 3] present some results where
(ι, ι) is not necessarily trivial. Further, Longo and Roberts [11, Section 2] also study the notion of
conjugation in the more general setting of strict monoidal C∗–categories without assuming that
(ι, ι) is trivial. They also present a result for the case that (ι, ι) is finite dimensional.

One of the problems of dealing with a nontrivial center of A is mentioned in [7, Introduction]:
“There is, however, no known analogue of Theorem 4.1 of [6] for a C∗-algebra with a non-trivial
center and hence nothing resembling a “duality” in this more general setting.” The theorem
mentioned before guarantees the existence of a C∗–algebra containing an algebraic Hilbert space
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that satisfies the usual nice properties, once A with Z(A) = C1l and a suitable endomorphism are
given. Contrarily, the present paper deals with Hilbert C∗–systems {F ,G} for compact groups
G, where the fixed point algebra A has nontrivial center Z and satisfies the condition

A′ ∩ F = Z ⊃ C1l . (1)

We adopt a pure mathematical point of view and we will use the words field algebra F and
observable algebra A only in a ‘metaphorical’ sense, not claiming any relation to QFT.

We remind that the condition A′ ∩ F = C1l (which implies Z = C1l ) leads to the property
π(A)′′ = U(G)′, where π denotes a so–called regular representation of {F ,G}, i.e. π is the GNS–
representation of the state ω(F ) := ω0(ΠιF ) and the GNS–representation of A w.r.t. ω0 is faithful
(see, for example, [13, p. 18 ff.]). In the general case given by (1) it can be shown that for a
regular representation π the equation

π(A) ∩ U(G)′′ = C1l

holds. In this case we have that the condition π(A)′′ = U(G)′ implies Z = C1l and, therefore, if we
assume Z ⊃ C1l , then the proper inclusion π(A)′′ ⊂ U(G)′ must hold (note that π(A)′′ ⊆ U(G)′ is
always true). Roughly speaking we can say that the group G does not determine the ‘observables’
completely.

We hope that this (mathematical) model will serve to get familiar with certain structures
(e.g. Hilbert Z–modules) that may possibly appear when trying to construct G and F starting
from the Doplicher–Roberts analysis in [7], for example in the special case that the “statistical
dimensions” d(ρ) are scalars. However, at the present we have no convincing argument that this
could be even possible.

The paper is structured in 8 sections: In Section 2 we collect standard results concerning
Hilbert C∗–systems that will be used later on. In Section 3 the notion of a Hilbert Z–module
is introduced. It is a natural generalization of the usual notion of an algebraic Hilbert space
[1, Section 2] when the center of the observable algebra Z is nontrivial and Eq. (1) is satisfied.
In Section 4 the bijection between the set of right Hilbert Z–modules and the set of canonical
endomorphism is extended to a functor between the corresponding categories.

From very general arguments it is easy to see that the original notion of irreducible endomor-
phism ρ, i.e. (ρ, ρ) = C1l , is not meaningful anymore when Z is nontrivial. Section 5 proposes a
generalization of this concept. A first justification of this new notion is given by the observation
that the action of the inverse of an ‘irreducible’ endomorphism restricted to the center can be
described by certain continuous function acting on specZ (cf. with Remark 5.5). Section 6 deals
with the decomposition theory of a general Hilbert Z–module H = HZ, with H a group invariant
algebraic Hilbert space, in terms of HD = HDZ, where D ∈ Ĝ. The main results of the article are
presented in Section 7, where different statements and characterizations concerning the stabilizer
of A, stabA, are proved. For example, stabA is identified as a certain subgroup of the group
of all continuous functions from specZ into G, and the description of this subgroup uses the
functions associated to irreducibles mentioned above.

2 Basic material on Hilbert C∗–system

We start introducing some notation and results concerning Hilbert C∗–systems. General refer-
ences are [10, Chapter 10], [14, 13].

A Hilbert C∗–system is denoted by {F , G}, where G ⊂ autF is a compact group w.r.t. the
pointwise norm topology. ΠD, D ∈ Ĝ (the dual of G), are the spectral projections that satisfy
the orthonormality relation

ΠD1 ◦ ΠD2 = δD1D2 ΠD1 , D1,D2 ∈ Ĝ .
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For the trivial representation class ι ∈ Ĝ, we put

A := Πι F =
{
F ∈ F : g(F ) = F, g ∈ G

}
,

i.e. A is the fixed point algebra in F w.r.t. G. Further, the spectrum of G,

specG := {D ∈ Ĝ: ΠD 	= 0},

can be defined equivalently as the “Arveson spectrum” (cf. [13]). According to the definition of a
Hilbert C∗–system we have specG = Ĝ and to each D ∈ Ĝ there corresponds an algebraic Hilbert
space HD ⊂ ΠD F , dimHD = dim D = d, such that suppHD = 1 and G acts irreducibly on HD.
Further, the unitary representation G HD is an element of of the equivalence class D. Recall
that if {ΦD, i}di=1 is an orthonormal basis in HD, i.e. the basis elements satisfy

Φ∗
D, i ΦD, i′ = δii′ 1l ,

then

suppHD :=
d∑

i=1

ΦD, i Φ∗
D, i = 1l .

In terms of the matrix elements we have

g
(
ΦD, i

)
=

d∑
i′=1

ΦD, i′ UD, i′i(g) , g ∈ G .

We denote by D ∈ Ĝ, the conjugated representation of D ∈ Ĝ. If D is related to the ma-
trix
(
Ui′i(g)

)
i′,i
∈ Matd(C) as above, then D is realized by the complex conjugated matrix(

Ui′i(g)
)

i′,i
∈ Matd(C) w.r.t. the conjugated orthonormal basis {ΦD, i}di=1 of HD.

The following equations will be useful for later on [15, 16], [17, p. 182]:

F = clo‖·‖

(
span
{

ΠD F : D ∈ Ĝ
})

(2)

ΠD F = span{A · HD}, D ∈ Ĝ , (3)

where ‖ · ‖ = ‖ · ‖F is the C∗–norm in F .
By endA we denote the set of all unital endomorphisms of A. Further for λ, μ ∈ endA we

consider, as usual, the intertwiner space

(λ, μ) := {A ∈ A: Aλ(X) = μ(X)A , X ∈ A}.

If H denotes an arbitrary G–invariant algebraic Hilbert space with support 1l in F , then the
canonical endomorphism associated to H is

λH(F ) :=
h∑

i=1

Ψi F Ψ∗
i , F ∈ F , (4)

where {Ψi}hi=1 is an orthonormal basis of H. λH is unital and since G leaves H invariant we have
λH(A) ⊆ A, i.e. λH ∈ endA. If H := HD, then ρHD

is briefly denoted by ρD.
From Eqs. (2) und (3) (see also [10, Subsection 10.1.3]) we obtain the relation

A′ ∩ F = clo‖·‖

⎛⎝∑
D ∈ Ĝ

(ρD, ι) · HD

⎞⎠ . (5)
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This implies that, A′∩F = Z iff (ρD, ι) = {0}, for all D 	= ι and therefore, from our fundamental
assumption,

A′ ∩ F = Z ⊃ C1l , (6)

we get the following disjointness relation between the canonical endomorphisms ρD, D ∈ Ĝ:

(ρD1 , ρD2) = {0} , D1 	= D2 , D1,D2 ∈ Ĝ . (7)

Note that Eq. (7) implies also Eq. (6).
For a general λ ∈ endA and, in particular, for λ := ρH we get

Z ⊆ (λ, λ) . (8)

On the other hand we also obtain the inclusions,

C1l ⊆ λ(Z) ⊆ (λ, λ), (9)

because from the relation, Z A = AZ, A ∈ A, Z ∈ Z, it follows that,

λ(Z)λ(A) = λ(A)λ(Z) ,

and therefore, λ(Z) ∈ (λ, λ). Note that since λ is not surjective in general we can not assure that
λ(Z) ∈ Z for all Z ∈ Z. Therefore a typical feature of the present case is expressed by the fact
that in general,

λ(Z) 	⊂ Z . (10)

Eq. (8) implies that the usual “intrinsic” (i.e. group independent) notion of irreducible endo-
morphism λ, namely (λ, λ) = C1l , is meaningless in our situation (cf. nevertheless with Section 5
and with [10, Subsection 10.1.3] for further details concerning this point).

Next we introduce the *–subalgebra F0 ⊂ F and the A–valued scalar product 〈·, ·〉A on F .
We select first, a family of algebraic Hilbert spaces {HD}D ∈ Ĝ corresponding to {F , G} and,
second, a corresponding family {ΦD, i}di=1, D ∈ Ĝ, of orthonormal basis. Then,

F0 :=

⎧⎪⎪⎨⎪⎪⎩
∑

D
finite sum

⎛⎝ d∑
i=1

AD, i ΦD, i

⎞⎠ : AD, i ∈ A

⎫⎪⎪⎬⎪⎪⎭ ⊂ F . (11)

F0 is a dense *–subalgebra of F . On F we can define the following A–valued scalar product,

〈F1, F2〉A := Πι (F1 F ∗
2 ) , F1, F2 ∈ F .

It satisfies the equations:

〈ΦD1, i1, ΦD2, i2 〉A =
1
d1

δD1D2 δi1i2 1l , D1,D2 ∈ Ĝ , i1 = 1, . . . , d1 , i2 = 1, . . . , d2 .

〈A1F1, A2F2〉A = A1 〈F1, F2〉A A∗
2 , A1, A2 ∈ A, F1, F2 ∈ F .

〈F , F 〉A ≥ 0 and 〈F , F 〉A = 0 iff F = 0 , F ∈ F0 .

From this we obtain for F1 :=
∑
i,D

AD, i ΦD, i ∈ F0 and F2 :=
∑
i,D

BD, i ΦD, i ∈ F0, the equation

〈F1, F2〉A =
∑
i,D

1
d

AD, i B∗
D, i .
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Consider H, ρH and {ΨH, i}hi=1 as specified in (4). Denote by H a conjugated algebraic Hil-
bert space (carrying the conjugated representation) with orthonormal basis given by {ΨH,i}hi=1.
Putting

RH :=
h∑

i=1

ΨH, i ΨH, i ∈ A and (12)

ε(H1,H2) :=
∑
i,j

ΨH2, i ΨH1, j Ψ∗
H2, i Ψ

∗
H1, j , (13)

we get the following relations:

RH ∈ (ι, ρH ◦ ρH). (14)

ε(H1,H2) ∈ (ρH1 ◦ ρH2 , ρH2 ◦ ρH1). (15)

Ψ∗
H, i = R∗

H ΨH, i , i = 1, . . . , h (16)

RH = ε(H,H)RH . (17)

R∗
H RH = R∗

H RH = h1l . (18)

1l = ε(H1,H2) ε(H2,H1). (19)

The so–called standard left inverse is given by

φH(A) :=
1
h

R∗
H ρH(A)RH , A ∈ A . (20)

3 Hilbert Z–modules

The stabilizer, stabA, is a subgroup of autF defined by

stabA := {β ∈ autF : β(A) = A for all A ∈ A}.

The study of stabA in the present situation leads in a natural way to the notion of a right Hilbert
Z–module [18, Chapter 15] (see the following two propositions). Some of the results of this and
the next section may be compared by putting Z = C1l with standard results in e.g. [1]. Note
that we work with finite–dimensional algebraic Hilbert spaces.

Let H be an G–invariant algebraic Hilbert space in F of finite dimension d. Then we define
the free right Z–module H by extension

H := HZ =

⎧⎨⎩
d∑

i=1

Φi Zi: Zi ∈ Z

⎫⎬⎭ ,

where {Φi}di=1 is an orthonormal basis in H. In other words, the set {Φi}di=1 becomes a module
basis of H and dim H = d. For H1,H2 ∈ H put

〈H1, H2〉H := H∗
1H2 ∈ Z .

Then, {H, 〈·, ·〉H} is a Hilbert (right) Z–module or a Hilbert Z–module, for short.
A system of d elements {Ψi}di=1 ⊂ H with

Ψi =
d∑

i′=1

Φi′ Zi′i , Zi′i ∈ Z , i′, i = 1, . . . , d , (21)
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is an orthonormal basis of H, i.e. 〈Ψi, Ψk〉 = δik, if the matrix Z :=
(
Zi′i

)d
i′,i=1

∈ Matd(Z)

satisfies
Z∗Z = 1l d . (22)

Using Gelfand’s Theorem we denote the values of the corresponding matrix–valued function on
specZ by Z(ϕ), ϕ ∈ specZ:

specZ � ϕ �−→ Z(ϕ) :=
(
Zi′i(ϕ)

)
i′,i

.

Then Eq. (22) is equivalent to

Z(ϕ)∗Z(ϕ) = 1l d , ϕ ∈ specZ . (23)

Recall that in the finite–dimensional case, Eq. (23) implies

Z(ϕ)Z(ϕ)∗ = 1l d , ϕ ∈ specZ .

and again by Gelfand’s Theorem we obtain

ZZ∗ = 1l d . (24)

The last equation implies that the canonical endomorphism ρH can now be associated to H = HZ,
because

ρH(A) =
d∑

i=1

Ψi AΨ∗
i , A ∈ A ,

where now {Ψi}di=1 can be any orthonormal basis in H, is independent of the choice of the
orthonormal basis in H:

d∑
i=1

Ψi AΨ∗
i =

∑
i,i′,i′′

Φi′ Zi′i AZ∗
i′′i Φ∗

i′′

=
∑
i′,i′′

Φi′

(∑
i

Zi′i AZ∗
i′′i

)
Φ∗

i′′

=
∑
i′,i′′

Φi′

(∑
i

Zi′i Z
∗
i′′i

)
AΦ∗

i′′

=
d∑

i=1

Φi AΦ∗
i

For this reason we use the notation ρH = ρH , H = HZ.
We emphasize that ρH does not characterize anymore the algebraic Hilbert space H (as in the

case where Z = C1l ). However we have

3.1 Proposition Let H = HZ be a Hilbert Z–module as above and let ρH be the corresponding
canonical endomorphism. Then the relation

H ∈ H iff H A = ρH(A)H , A ∈ A ,

holds. With other words, ρH characterizes the Hilbert Z–module H uniquely.
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Proof: Let H ∈ H. Then we can write H =
d∑

i=1
Φi Zi for certain Zi ∈ Z and {Φi}di=1 an

orthonormal basis of H. We compute directly

HA =
d∑

i=1

Φi Zi A =
d∑

i=1

Φi AZi = ρH(A)
d∑

i=1

Φi Zi = ρH(A)H .

Conversely, suppose that H ∈ F satisfies the equation HA = ρH(A)H, A ∈ A. Then, since
Φi A = ρH(A)Φi, and AΦ∗

i = Φ∗
i ρH(A) for all A ∈ A, i = 1, . . . , d, we have Φ∗

i H A = AΦ∗
i H,

A ∈ A, i.e. we get Φ∗
i H ∈ A′ ∩ F = Z. Putting now Zi := Φ∗

i H ∈ Z, we finally obtain,

H =
d∑

i=1
Φi Zi ∈ H.

3.2 Proposition Let H = HZ be a Hilbert Z–module as above. Then, H is stabA–invariant,
i.e. β(H) ⊂ H for all β ∈ stabA.

Proof: Let β ∈ stabA and Φ,Ψ ∈ H. Since ρH(A) ∈ A for A ∈ A, we have

Φ∗ β(Ψ) A = Φ∗ β(ΨA) = Φ∗ β
(
ρH(A)Ψ

)
= Φ∗ ρH(A)β(Ψ) = A Φ∗ β(Ψ) ,

for all A ∈ A, and therefore Φ∗ β(Ψ) ∈ A′ ∩ F = Z. In particular, putting as in the preceding
proposition Zi := Φ∗

i β(Ψ) ∈ Z, where {Φi}di=1 is an orthonormal basis of H, we obtain β(Ψ) =
d∑

i=1
Φi Zi ∈ H.

Next we ask the question of how to characterize G–invariant algebraic Hilbert spaces that
are contained in a given H = HZ, with H itself a G–invariant algebraic Hilbert space. By
UH(g) ∈ Matd(C), g ∈ G, we denote the unitary matrix representation of G given on H, w.r.t. an
orthonormal basis {Φi}di=1 specified in H. If we choose another orthonormal basis {Ψi}di=1 in H,
related to {Φi}di=1 by means of the unitary matrix Z ∈ Matd(Z) of Eq. (21), then the representa-
tion of G w.r.t. the new basis is given by the matrices V (g) ∈ Matd(Z), defined by

V (g) := Z∗ UH(g)Z , g ∈ G . (25)

In contrast to UH(g), the matrix V (g) cannot in general be associated to a constant matrix–
valued function on specZ. The condition “V (g), g ∈ G, is a constant matrix–valued function on
specZ” reads

Z(ϕ1)∗ UH(g)Z(ϕ1) = Z(ϕ2)∗ UH(g)Z(ϕ2) , ϕ1, ϕ2 ∈ specZ , g ∈ G ,

or
Z(ϕ2)Z(ϕ1)∗ UH(g) = UH(g)Z(ϕ2)Z(ϕ1)∗ , ϕ1, ϕ2 ∈ specZ , g ∈ G , (26)

i.e. Z(ϕ2)Z(ϕ1)∗ is an intertwiner of UH(G).
Now consider the special case that G acts irreducibly on H. Then Eq. (26) is equivalent to

Z(ϕ2) = μ(ϕ1, ϕ2)Z(ϕ1) ,

where |μ(ϕ1, ϕ2)| = 1, ϕ1, ϕ2 ∈ specZ. Let ϕ1 := ϕ0 be a fixed point of specZ and put
W := Z(ϕ0). Then we get the condition

Z(ϕ) = μ(ϕ)W , |μ(ϕ)| = 1 , ϕ ∈ specZ ,

where μ(·) is a continuous scalar function. Let W :=
(
Wi′i

)d
i′,i=1

∈ Matd(C) and U ∈ Z with

U(ϕ) = μ(ϕ). Then U∗U = UU∗ = 1l and

Z =
(
Wi′i U

)d
i′,i=1

.
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In other words, we obtain that V (g), g ∈ G, is a constant matrix–valued function w.r.t. {Ψi}di=1

iff

Ψi =
d∑

i′=1

Φi′ Wi′i U , U ∈ Z unitary.

Putting Φ̃i =
∑
i′

Φi′ Wi′i, then Ψi = Φ̃i U and we obtain from Eq. (25)

V (g) = Z∗ UH(g)Z = diagU∗ · ŨH(g) · diag U =
(

U∗ Ũi′i U

)d

i′,i=1
= ŨH(g) , g ∈ G ,

where the matrix ŨH(g) corresponds to the orthonormal basis {Φ̃i}di=1 of H. We have obtained
from the preceding considerations the following result:

3.3 Lemma If G acts irreducibly on H and if H = HZ, then H′ ⊂ H is a G–invariant algebraic
Hilbert space iff H′ = HZ, where Z ∈ Z is unitary.

3.4 Remark Using the right Hilbert Z–module {H, 〈·, ·〉H} one can construct canonically a con-
tinuous field of Hilbert spaces, a so–called “Dixmier field” [19, Chapter 10]. Recall that according
to Gelfand’s Theorem Z ∼= C(specZ). For ϕ ∈ specZ we put

N (ϕ) :=
{
H ∈ H: 〈H, H 〉

H
(ϕ) = 0

}
.

Denoting by H̃(ϕ) the coset in H/N (ϕ) associated to H ∈ H, we consider for a fixed ϕ ∈ specZ
the space

H̃(ϕ) :=
{

H̃(ϕ) ∈ H/N (ϕ) : H ∈ H

}
,

as a pre Hilbert space with scalar product given by〈
H̃1(ϕ), H̃2(ϕ)

〉
ϕ

:= 〈H1, H2〉H(ϕ) , H1,H2 ∈ H .

Denote by H(ϕ) the completion of H̃(ϕ), i.e. H(ϕ) := clo‖·‖ϕ

(
H̃(ϕ)
)

. Then it can be shown that

the pair

( ∏
ϕ∈specZ

H(ϕ),
∏

ϕ∈specZ
H̃(ϕ)

)
, is a continuous field of Hilbert spaces.

4 The canonical functor

In this section we will show that the bijection between H = HZ, H being G–invariant, and ρH

established in Proposition 3.1 can be extended to a functor from the category of the right Hilbert
Z–modules into the category of unital endomorphisms of A.

The first part of this section is concerned with Hilbert Z–modules, H = HZ, where H is a
finite–dimensional algebraic Hilbert space, but not necessarily G–invariant.

Let H1,H2 be two such modules. By LZ(H1→H2) we denote the set of all Z–module mor-
phisms form H1 into H2, i.e. if T ∈ LZ(H1→H2), then T is linear and satisfies

T (H1Z) = T (H1)Z , H1 ∈ H1 , Z ∈ Z .

For T ∈ LZ(H1→H2) there is always an adjoint T ∗ ∈ LZ(H2→H1) such that

〈H2, TH1〉H2
= 〈T ∗H2, H1〉H1

, Hi ∈ Hi , i = 1, 2 .
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Indeed, given orthonormal basis {Φi}d1
i=1 ⊂ H1 and {Ψj}d2

j=1 ⊂ H2, then T is characterized by

Z =
(
Zji

)
j,i
∈ Matd2×d1(Z), via the equation T (Φi) =

d2∑
j=1

Ψj Zji, i = 1, . . . , d1. In this case, T ∗

is given by T ∗(Ψj) :=
d1∑
i=1

Φi Z
∗
ji and Z∗ :=

(
Z∗

ji

)
i,j
∈ Matd1×d2(Z).

4.1 Definition Let T ∈ LZ(H1→H2) be characterized by Z =
(
Zji

)
j,i
∈ Matd2×d1(Z) as above.

Then we define

T̂ :=
d1∑
i=1

d2∑
j=1

Ψj Zji Φ∗
i ∈ F .

4.2 Proposition The assignment, LZ(H1→H2) � T �−→ T̂ ∈ F , with T̂ given in the preceding
definition, satisfies the following properties:

(i) T (H1) = T̂H1 , H1 ∈ H1.

(ii) T̂ = 0 implies T = 0 (injectivity).

(iii) T̂ ∗ =
(
T̂
)∗

.

(iv) If T12 ∈ LZ(H2→H1) and T23 ∈ LZ(H3→H2), then we have T12 ◦ T23 ∈ LZ(H3→H1) and̂T12 ◦ T23 = T̂12 · T̂23.

(v) ‖T‖LZ (H1 →H2) = ‖T̂‖F .

Proof: (i) Denote by {Φi}d1
i=1 and {Ψj}d2

j=1 orthonormal basis of H1 and H2, respectively. Then
the equation

T̂ · Φi0 =
d1∑
i=1

d2∑
j=1

Ψj Zji Φ∗
i Φi0 = T (Φi0) ,

holds for all i0 = 1, . . . , d1.

(ii) Suppose that T̂ :=
d1∑
i=1

d2∑
j=1

Ψj Zji Φ∗
i = 0. Then, multiplying from the left with Ψ∗

j0 and

form the right with Φi0 we get Zj0i0 = 0 for all j0 = 1, . . . , d2, i0 = 1, . . . , d1, and therefore T = 0.
(iii) Recall that if T is realized by the matrix Z =

(
Zj,i

)
j,i

, then T ∗ is given by the matrix

Z∗ =
(
Z∗

ji

)
i,j

, so that

(
T̂
)∗

=

⎛⎝∑
i,j

Ψj Zji Φ∗
i

⎞⎠∗

=
∑
i,j

Φi Z
∗
ji Ψ

∗
j = T̂ ∗.

(iv) Add to the orthonormal basis introduced in (i) the orthonormal basis {Ωk}d3
k=1 of H3.

Denoting the matrices of T12 and T23 by Z12 =
(
Z(12)

ij

)
i,j

and Z23 =
(
Z(23)

jk

)
j,k

, respectively, we

get that the matrix of T12 ◦ T23 is given by

Z12 Z23 =

⎛⎝ d2∑
j=1

Z(12)

ij Z(23)

jk

⎞⎠
i,k

∈ Matd1×d3(Z) .
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Then we calculate

T̂12 · T̂23 =

⎛⎝∑
i,j

Φi Z
(12)

ij Ψ∗
j

⎞⎠ ·
⎛⎝∑

j′,k
Ψj′ Z

(23)

j′k Ω∗
k

⎞⎠
=
∑
i,k

Φi

⎛⎝∑
j

Z(12)

ij Z(23)

jk

⎞⎠Ω∗
k

= ̂T12 ◦ T23 .

(v) Put H1 = H2 =: H. Then from (ii)–(iv) it follows that LZ(H) and ̂LZ(H) ⊂ F are
*–isomorphic *–algebras. Both algebras are C∗–algebras with C∗–norms ‖ · ‖LZ (H) and ‖ · ‖F ,
respectively. Therefore the isomorphy implies that the C∗–norms coincide, i.e. ‖T‖LZ (H) = ‖T̂ ‖F ,
T ∈ LZ(H). In the general case we have that if T ∈ LZ(H1 → H2), then T ∗T ∈ LZ(H1) and
T̂ ∗T =

(
T̂
)∗

T̂ . Therefore,

‖T‖2LZ (H1 →H2) = ‖T ∗T‖LZ (H1) = ‖T̂ ∗T̂‖F = ‖T̂‖2F

and the proof is concluded.
In the following we restrict again to the case where H = HZ, with H an G–invariant algebraic

Hilbert space. From Proposition 3.2 we know that, in this case, H is stabA–invariant.
Recall that g ∈ G acts on H as a unitary operator UH(g), i.e. g H = UH(g) ∈ L(H) and if an

orthonormal basis {Φi}di=1 is given, then the representation UH of G in H is specified by a scalar
unitary d× d–matrix,

(
Ui′i(g)

)
i′,i
∈ Matd(C):

g(Φi) =
d∑

i′=1

Φi′ Ui′i(g) .

In analogy we consider next those Z–module morphisms which are G–invariant.

4.3 Definition Let Hi = HiZ, i = 1, 2, be Hilbert Z–modules, where the associated algebraic
Hilbert spaces Hi are G–invariant. Denote by UHi

(g), g ∈ G, the corresponding unitary rep-
resentations on Hi. Then the subset LZ(H1→H2 ; G) ⊂ LZ(H1→H2) is defined as the set of all
intertwining operators:

LZ(H1→H2 ; G) := {T ∈ LZ(H1→H2): UH2(g) ◦ T = T ◦ UH1(g) , g ∈ G}.

4.4 Lemma Let T ∈ LZ(H1→H2). Then

T ∈ LZ(H1→H2 ; G) iff g
(
T (H1)

)
= T
(
g(H1)
)

g ∈ G , H1 ∈ H1 .

Proof: Obvious, since the following equations,

g
(
T (H1)

)
= UH2(g)

(
T (H1)

)
=
(
UH2(g) ◦ T

)
(H1)

and

T
(
g(H1)
)

= T
(
UH1(g)(H1)

)
=
(
T ◦ UH1(g)

)
(H1),

hold for all H1 ∈ H1.
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4.5 Proposition Let T ∈ LZ(H1→H2). Then,

T ∈ LZ(H1→H2 ; G) iff T̂ ∈ A. (27)

Even more we have {
T̂ : T ∈ LZ(H1→H2 ; G)

}
= (ρH1 , ρH2), (28)

i.e. the mapping T �−→ T̂ exhausts the whole intertwiner space (ρH1 , ρH2).

Proof: First, let T ∈ LZ(H1→H2 ; G). Then, according to Lemma 4.4 we have T
(
g(H1)
)

=

g
(
T (H1)

)
for all g ∈ G, H1 ∈ H1. From Proposition 4.2 (i) we get further

T̂ · g(H1) = T
(
g(H1)
)

= g
(
T (H1)

)
= g

(
T̂ ·H1

)
= g
(
T̂
)
· g(H1) ,

so that g
(
T̂
)

= T̂ and, therefore, T̂ ∈ A. Second, if g
(
T̂
)

= T̂ for all g ∈ G we have

g
(
T (H1)

)
= g

(
T̂ ·H1

)
= g
(
T̂
)
· g(H1) = T̂ · g(H1) = T

(
g(H1)
)

,

which by Lemma 4.4 implies that T ∈ LZ(H1→H2 ; G).
To prove Eq. (28) let {Φi}d1

i=1 and {Ψj}d2
j=1 orthonormal basis of H1 and H2, respectively.

Then

T̂ :=
d1∑
i=1

d2∑
j=1

Ψj Zji Φ∗
i ∈ F ,

where Z =
(
Zji

)
j,i
∈ Matd2×d1(Z) denotes the matrix corresponding to T ∈ LZ(H1→H2 ; G).

But from the definition of the canonical endomorphisms we have for A ∈ A:

T̂ ρH1(A) =

⎛⎝∑
i,j

Ψj Zji Φ∗
i

⎞⎠(∑
i′

Φi′ AΦ∗
i′

)

=

⎛⎝∑
i,j

Ψj Zji AΦ∗
i

⎞⎠

=

⎛⎜⎝∑
i,j

Ψj A

⎛⎝∑
j′

Ψ∗
jΨj′

⎞⎠Zj′i Φ∗
i

⎞⎟⎠
=

⎛⎝∑
j

Ψj AΨ∗
j

⎞⎠⎛⎝∑
i,j′

Ψj′ Zj′i Φ∗
i

⎞⎠
= ρH2(A) T̂ .

On the other hand if B ∈ (ρH1 , ρH2), for all A ∈ A, i = 1, . . . , d1, j = 1, . . . , d2 we have that

Ψ∗
j B Φi A = Ψ∗

j B ρH1(A)Φi = Ψ∗
j ρH2(A)B Φi = A Ψ∗

j B Φi ,

and Ψ∗
j B Φi ∈ A′ ∩ F = Z. Putting Zji := Ψ∗

j B Φi ∈ Z and using the support properties of the
spaces generated by {Φi}d1

i=1 and {Ψj}d2
j=1 we obtain

B :=
∑
i,j

Ψj Zji Φ∗
i .
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Therefore, denoting by T the operator in T ∈ LZ(H1→H2) which is characterized by the matrix
Z =
(
Zji

)
j,i
∈ Matd2×d1(Z) we have from the last equation that T̂ = B. Since B ∈ A we even

know from the first part of the proposition that T ∈ LZ(H1→H2 ; G).
We have the following direct consequence of the preceding result

4.6 Corollary If T ∈ LZ(H), then

T ◦ UH(g) = UH(g) ◦ T , g ∈ G iff T̂ ∈ (ρH , ρH),

i.e. T is an intertwiner of the representation UH(g) on H iff T̂ is an intertwiner of the canonical
endomorphism, ρH.

As it was announced at the beginning of this section we can now extend the mapping

ρH �−→ H, F(ρH) := H

to a functor by means of the assignment

(ρH1 , ρH2) � A �−→ F(A) ∈ LZ(H1→H2 ; G),

where (
F(A)
)
(H1) := A ·H1 .

In other words, F(A) can be characterized, once the orthonormal basis are chosen in H1 and H2,
by the matrix

Z =
(
Zji

)
j,i
∈ Matd2×d1(Z) ,

that satisfies the equation
Z ◦ UH1(g) = UH2(g) ◦ Z , g ∈ G .

In particular, since Z ⊆ (ρH , ρH) (cf. with Eq. (8)), for each H = HZ, where H is G–invariant,
we have that ZH ∈ H for all H ∈ H. This means that for each Z̃ ∈ Z there corresponds a matrix
Z̃ =
(
Z̃i′i

)
i′,i
∈ Matd(Z), such that

Z̃ Φi =
d∑

i′=1

Φi′Z̃i′i . (29)

Therefore, the tensor product of two Hilbert Z–modules H1 and H2,

H1 H2 := spanZ
(
H1 · H2

)
= spanZ

{
H1H2: Hk ∈ Hk, k = 1, 2

}
,

is again a Hilbert Z–module. Indeed, this follows from the computation:

(H1H2)∗ H ′
1H

′
2 = H∗

2 〈H1, H ′
1〉H1

H ′
2 =
〈
H2, 〈H1, H ′

1〉H1
H ′

2

〉
H2

∈ Z ,

where Hk,H
′
k ∈ Hk, k = 1, 2. With orther words H1 H2 is the inner tensor product of the

Hilbert Z–modules H1 and H2 w.r.t. *–homomorphism Z → LZ(H2) defined in Eq. (29) (see
also [20]). Obviously, we have H1 H2 = (H1H2)Z, where H1H2 denotes the C–tensor product,
spanC(H1 · H2), of H1 and H2.
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5 Irreducible endomorphisms

In the present section we will determine the intertwiner space (ρH , ρH), where H = HZ and the
algebraic Hilbert space H is invariant and irreducible w.r.t. G.

5.1 Theorem Let H be as described above. Then the equation

(ρH , ρH) = ρH(Z) , (30)

holds.

Proof: The inclusion ρH(Z) ⊆ (ρH , ρH) follows from Eq. (9).
To prove the other inclusion suppose that A ∈ (ρH , ρH). Then from the relation (28), there

exists T ∈ LZ(H→H ; G), such that A = T̂ . According to Corollary 4.6 this means that

T ◦ UH(g) = UH(g) ◦ T , g ∈ G ,

where UH is the unitary representation of G on H (cf. with the paragraph before Definition 4.3).
Choosing an orthonormal basis {Φi}di=1 of H, we can rewrite the preceding equation as

d∑
i′=1

Zii′ UH, i′i′′(g) =
d∑

i′=1

UH, ii′(g)Zi′i′′ , g ∈ G , i, i′′ = 1, . . . , d , (31)

where
(
Zii′
)

i,i′
∈ Matd(Z) is the matrix characterizing T and

(
UH, ii′(g)

)
i,i′

corresponds to

UH(g). Therefore, by Gelfand’s Theorem, we can associate to each Zii′ ∈ Z a continuous function
Zii′(·) ∈ C(specZ), satisfying Zii′(ϕ) = ϕ(Zii′), ϕ ∈ specZ. From Eq. (31) we obtain

d∑
i′=1

Zii′(ϕ)UH, i′i′′(g) =
d∑

i′=1

UH, ii′(g)Zi′i′′(ϕ) , ϕ ∈ specZ , g ∈ G , i, i′′ = 1, . . . , d .

Denoting by T (ϕ) ∈ L(H) the operator whose scalar matrix w.r.t. the orthonormal basis {Φi}di=1

is
(
Zii′(ϕ)

)
i,i′

, we get from the preceding equation

T (ϕ) ◦ UH(g) = UH(g) ◦ T (ϕ) , ϕ ∈ specZ , g ∈ G .

But UH(G) is irreducible, hence
T (ϕ) = c(ϕ)1lH ,

follows, where c(·) ∈ C(specZ). Again, by Gelfand’s Theorem, the function c(·) can be associated
to an element Z0 ∈ Z, such that c(ϕ) = Z0(ϕ). We obtain from this Zii′ = Z0 δii′ or

T = Z0 1lH.

But, since A = T̂ we get from the last equation

A =
d∑

i,i′=1

Φi Zii′ Φ∗
i′ =

d∑
i,i′=1

Φi Z0 δii′ Φ∗
i′ =

d∑
i=1

Φi Z0 Φ∗
i = ρH(Z0)

and the proof is concluded.

5.2 Corollary If H is irreducible, then the inclusion

Z ⊆ ρH(Z) ,

holds.
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Proof: Use Eq. (8) and the preceding theorem.
We have therefore the following relations for the canonical endomorphism, ρD ≡ ρHD

, with
HD = HDZ, D ∈ Ĝ:

(ρD, ρD′) = {0} , D 	= D′ , D,D′ ∈ Ĝ
(ρD, ρD) = ρD(Z) .

Motivated by Theorem 5.1 we introduce the notion of an irreducible endomorphism, which is
independent of the group G.

5.3 Definition An arbitrary endomorphism λ ∈ endA is said to be irreducible if (λ, λ) = λ(Z).

Note that this definition coincides with the usual notion of irreduciblility in the case where
Z = C1l (see for instance [17]).

5.4 Proposition If ρH ∈ endA is irreducible, then ρ−1
H can be considered on Z and the inclusion

ρ−1
H (Z) ⊆ Z ,

holds, i.e. ρ−1
H Z ∈ endZ.

Proof: From the existence of a left inverse (cf. Eq. (20)) it follows that ρH is injective. Then,
Corollary 5.2 ends the proof.

5.5 Remark According to the preceding Proposition we have that if the endomorphism λ := ρH

is irreducible, then λ−1 Z is a unital injective endomorphism of Z. But according to Gelfand’s
Theorem the category of unital abelian C∗–algebras and their *–homomorphisms and the category
that is opposite to the category of compact topological spaces and their continuous maps are
isomorphic (see e.g. [21, Chapter IV]).

This means that to any unital endomorphism λ−1 Z there corresponds a continuous mapping

fλ: specZ −→ specZ ,

such that (
λ−1(Z)

)
(ϕ) = Z

(
fλ(ϕ)
)

, Z ∈ Z , ϕ ∈ specZ ,

where fλ is surjective in our case.

Z
λ−1

−−−−−−→ Z

↓ ↓

C(specZ) C(specZ)

↑ ↑

specZ
fλ←−−−−−− specZ

From the preceding comments we can divide the irreducible endomorphisms λ := ρH into
two different families: the first one is characterized by the fact that λ−1 Z is also a surjective
mapping. In this case the equations

Z = λ(Z) = (λ, λ)
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hold. For the second family λ−1 Z is not surjective and the following chain of proper inclusions
can be easily established

. . . ⊂
(
λ−1
)n

(Z) ⊂
(
λ−1
)(n−1)

(Z) ⊂ . . . ⊂ λ−1(Z) ⊂ Z .

If Z is finite–dimensional only the first type of endomorphisms will appear.
The continuous mappings fλ ≡ fρH

, H irreducible, are essential ingredients of the Hilbert
C∗–system {F , G}. Roughly, the function fλ reflects, at the level of the spectrum, the action of
an irreducible endomorphism λ on Z.

5.6 Example A simple example that illustrates the present situation is constructed as follows: let
Ω be a compact topological space and B := CAR(h,Γ) the C∗–algebra of the canonical anticom-
mutation relations over an infinite–dimensional Hilbert space h with an antiunitary involution Γ
[22]. Define the C∗–algebra

A := C(Ω,B) = {f : Ω −→ B: f is continuous}

with the natural operations and C∗–norm. From Z(B) = C1l we obtain that

Z(A) = C(Ω, C) ⊃ C1l .

Define next the automorphism γ ∈ autA as (γf) (p) = −f(p), p ∈ Ω, f ∈ A. The field
algebra F is constructed using the automorphism γ as in [17, Section 3.6] and since (id, γ) = {0}
we obtain A′ ∩ F = Z(A). The automorphism γ is irreducible and satisfies

γ
(
Z(A)
)

= Z(A) = (γ, γ) .

The group in this example is G = Z2 = {id, α} (α ∈ autF satisfies α2 = id) and Ĝ = {ι, χ} ∼= Z2.

6 Decomposition of H in terms of HD, D ∈ Ĝ
As at the beginning of Section 3, we consider a Hilbert Z–module H = HZ, where the algebraic
Hilbert space H is G–invariant. Denote the associated canonical endomorphism by λ := ρH.
Further, we will need the quantities HD = HDZ and ρD associated to irreducible D ∈ Ĝ and
defined in Section 2. As before, UH(G) and UD(G) ≡ UHD

(G) are the unitary representations of
G on H and on HD, respectively. UD is irreducible.

6.1 Proposition With the notation introduced above the following properties are true:

(i) The intertwiner space (ρD , λ) is a Hilbert ρD(Z)–module, D ∈ Ĝ.

(ii) For D,D′ ∈ Ĝ and D 	= D′ the Hilbert modules (ρD , λ) and (ρD′ , λ) are mutually orthogonal.

(iii) The Hilbert ρD(Z)–module (ρD , λ) is a free module. There exists an orthonormal basis
{CD, l}m(D)

l=1 , where m(D) denotes the multiplicity of D ∈ Ĝ in the decomposition of UH as a
direct sum of irreducible representations. Further, the following equation holds:

supp (ρD , λ) =
m(D)∑
l=1

CD, l C
∗
D, l = PD ,

where PD is the uniquely determined isotypic projection belonging to D in the mentioned
decomposition.
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Proof: (i) Let A,B ∈ (ρD , λ). Since the endomorphisms ρD are irreducible, we have that

A∗B ∈ (ρD , ρD) = ρD(Z) .

(ii) Let A ∈ (ρD , λ) and B ∈ (ρD′ , λ) with D,D′ ∈ Ĝ and D 	= D′. From Eq. (7) we get

A∗B ∈ (ρD′ , ρD) = {0} .

(iii) First we decompose UH on H into a direct sum of irreducible components. For D ∈ Ĝ we
write explicitly

PD =
m(D)∑
l=1

ED, l , (32)

where the orthonormal family of projections {ED, l}m(D)
l=1 satisfy ED, l ◦ UH(g) = UH(g) ◦ ED, l,

g ∈ G, and the subspaces {ED, l H}l are irreducible. Then, according to Corollary 4.6 we have
that ÊD, l ∈ (λ, λ). We denote by

{ΨD, i, l: D ∈ Ĝ, i = 1, . . . , d, l = 1, . . . ,m(D)}

an adapted orthonormal basis of H w.r.t the decomposition specified in (32). Further, choose an
orthonormal basis {ΦD, i}di=1 of HD and put

CD, l :=
d∑

i=1

ΨD, i, l Φ∗
D, i . (33)

We will show that CD, l ∈ (ρD , λ), D ∈ Ĝ, l = 1, . . . ,m(D). Indeed, note first that g(CD, l) = CD, l,
g ∈ G, so that CD, l ∈ A. Moreover, we obtain for all A ∈ A

CD, l ρD(A) =
d∑

i=1

ΨD, i, l Φ∗
D, i ρD(A)

=
d∑

i=1

ΨD, i, l AΦ∗
D, i

= λ(A)
d∑

i=1

ΨD, i, l Φ∗
D, i

= λ(A)CD, l ,

where for the third equation we have used Proposition 3.1 and the fact that ΨD, i, l ∈ H.
Next, we obtain by a direct computation that C∗

D, lCD, l′ = 0, for l 	= l′:

C∗
D, l CD, l′ =

⎛⎝ d∑
i=1

ΦD, i Ψ∗
D, i, l

⎞⎠ ·
⎛⎝ d∑

i′=1

ΨD, i′, l′ Φ∗
D, i′

⎞⎠
=
∑
i,i′

ΦD, i Ψ∗
D, i, lΨD, i′, l′ Φ∗

D, i′

= 0 ,

because the family of projections {ED, l}l are mutually orthogonal and, therefore, the equation
Ψ∗

D, i, lΨD, i′, l′ = 0 holds for l 	= l′. Note that from Eq. (33) we get

ΨD, i, l = CD, lΦD, i . (34)
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Now we have to prove that {CD, l}m(D)
l=1 is a module basis of (ρD , λ). Let B ∈ (ρD , λ), D ∈ Ĝ.

Then we have
C∗

D, l B ρD(A) = C∗
D, l λ(A)B = ρD(A)C∗

D, l B ,

i.e. C∗
D, l B ∈ (ρD , ρD) = ρD(Z). We put

C∗
D, l B =: ρD(ZD, l) , (35)

for some ZD, l ∈ Z. Furthermore, we have

C∗
D′, l B = 0 , D′ 	= D , (36)

because C∗
D′, l B ∈ (ρD , ρD′) = {0}. Moreover, we calculate using Eq. (33)

m(D)∑
l=1

CD, l C
∗
D, l =

∑
l

⎛⎝ d∑
i=1

ΨD, i, l Φ∗
D, i

⎞⎠ ·
⎛⎝ d∑

i′=1

ΦD, i′ Ψ∗
D, i′, l

⎞⎠
=
∑

l

∑
i,i′

ΨD, i, l Φ∗
D, i ΦD, i′ Ψ∗

D, i′, l

=
∑
l,i

ΨD, i, l Ψ∗
D, i, l

= PD,

where we have used the fact that {ΨD, i, l}D, i, l is an adapted basis w.r.t. the decomposition
specified in Eq. (32). Note that suppH =

∑
D,l,i

ΨD, i, l Ψ∗
D, i′, l = 1. From Eq. (35) we get

PD B =

⎛⎜⎝m(D)∑
l=1

CD, l C
∗
D, l

⎞⎟⎠B =
∑

l

CD, l ρD(ZD, l)

and from Eq. (36) we obtain

PD′ B =

⎛⎜⎝m(D′)∑
l=1

CD′, l C
∗
D′, l

⎞⎟⎠B = 0 ,

for all D′ 	= D. From this we finally have

B =
m(D)∑
l=1

CD, l ρD(ZD, l)

and the proof is concluded.

6.2 Theorem With the notation of the beginning of this section, let D ∈ Ĝ. Then (ρD, λ)HD is
a Hilbert Z–module. Further, H can be decomposed into the following orthogonal direct sum:

H = ⊕
D

(ρD, λ)HD .

Proof: Let Ak ∈ (ρD, λ), Xk ∈ HD, Zk ∈ Z, k = 1, 2, so that Ak Xk Zk ∈ (ρD, λ)HD.
According to Proposition 6.1 (i) we have that A∗

1A2 = ρD(Z) for some Z ∈ Z and, therefore,(
A1 X1 Z1

)∗ (
A2 X2 Z2

)
= Z∗

1 X∗
1 A∗

1 A2 X2 Z2

= Z∗
1 X∗

1 ρD(Z)X2 Z2

= Z∗
1 X∗

1 X2 Z Z2

= Z∗
1 〈X1, X2〉HD

Z Z2 ∈ Z .
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The mutual orthogonality of the Hilbert Z–modules (ρD, λ)HD, D ∈ Ĝ, follows from the mutual
orthogonality of the ρD(Z)–module (ρD, λ) (cf. Proposition 6.1 (ii)).

It remains to show that P̂D ·
(
HZ
)

= (ρD, λ)HDZ where, as before, G H acts by the unitary

representation UH(G) and PD ∈ L(H) denotes the isotypical projection w.r.t. D ∈ Ĝ. Recall that
PD ◦ UH(g) = UH(g) ◦ PD, g ∈ G, implies P̂D ∈ (λ, λ) ⊂ A (cf. Eq. (28)). The family {ΦD, i}di=1

denotes an orthonormal basis of HD.
First, we prove P̂D ·

(
HZ
)
⊆ (ρD, λ)HDZ. For H ∈ HZ we have

P̂D H ∈ span{AHD} = ΠDF

and therefore

P̂D H =
d∑

i=1

Ai ΦD, i , Ai ∈ A .

To prove that Ai ∈ (ρD, λ), i = 1, . . . , d, we take B ∈ A and put

P̂D H B =
d∑

i=1

Ai ΦD, i B =
d∑

i=1

Ai ρD(B)ΦD, i .

On the other hand we get

P̂D H B = P̂D λ(B)H = λ(B) P̂D H =
d∑

i=1

λ(B)Ai ΦD, i .

Recall that {ΦD, i}di=1 is also an A–module basis of F0. Therefore λ(B)Ai = Ai ρD(B) for all
B ∈ A, i.e. Ai ∈ (ρD, λ).

Second, to prove the other inclusion take A ∈ (ρD, λ). Then the inclusion AHD ⊆ HZ follows
from

(AΦD, i) B = AρD(B)ΦD, i = λ(B) (AΦD, i) , B ∈ A ,

so that AΦD, i ∈ HZ according to Proposition 3.1. Finally, for g ∈ G we have

g(AΦD, i) = Ag(ΦD, i)

= A
(
UHD

(ΦD, i)
)

=
d∑

i′=1

(AΦD, i′)UD, i′i(g) ,

so that AΦD, i transforms according to D ∈ Ĝ and therefore AHD ⊆ P̂DHZ.

6.3 Remark According to Proposition 3.2 the Hilbert Z–module H = HZ is stabA–invariant.
This means that for each β ∈ stabA and for an orthonormal basis {Ψi}di=1 of H we obtain

β(Ψi) =
d∑

i′=1

Ψi′ Zi′i(β) , Zi′i(β) ∈ Z ,

i.e. to each β ∈ stabA there corresponds a matrix Z(β) =
(
Zi′i(β)

)
i′,i
∈ Matd(Z). From the

orthonormality of the basis {Ψi}di=1 we get immediately that (cf. also with Lemma 7.2)

Z(β)∗Z(β) = 1l d ,
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where Z(β)∗ =
(
Z∗

i′i(β)
)

i,i′
, 1l d ∈ Matd(Z). We also have

Z(β1 ◦ β2) = Z(β1)Z(β2) and Z(ι) = 1l d ,

where β1, β2 ∈ stabA and ι denotes the identical automorphism. In particlular, choosing an
orthonormal basis {ΦD, i}di=1 of HD we denote the corresponding matrices by

ZD =
(
ZD, i′i

)
i′,i
∈ Matd(Z) .

Choose D1,D2 ∈ Ĝ and consider HD1HD2 as well as the Hilbert Z–module HρD1◦ρD2
= HD1HD2 ,

HDk
= HDk

Z, k = 1, 2. Recall that the representation UHD1HD2
(G) on HD1HD2 belongs to the

class D1D2. Let
ZD1D2 =

(
ZD1D2, i′1i′2i1i2

)
i′1, i′2, i1, i2

be the matrix associated to β HD1HD2 w.r.t. orthonormal basis {ΦD1, i1 ΦD2, i2}i1,i2 . According to
Theorem 6.2 we have the following decomposition of HD1HD2 :

HρD1◦ρD2
= HD1HD2 = ⊕

D
(ρD, ρD1 ◦ ρD2)HD .

This means that there is an orthonormal basis in HD1HD2 of the form {CD, l ΦD, i}l,i, l =
1, . . . ,m(D), i = 1, . . . , d, m(D) being the multiplicity of D ∈ Ĝ in the decomposition of
UHD1HD2

(G) (cf. with Proposition 6.1 and with Eq. (34)), where
∑
D

d · m(D) = d1d2. Denote

by ΓD1D2 =
(
ΓD1D2

i1i2, D l i

)
i1i2, D l i

∈ Matd1d2(C) the corresponding scalar unitary transformation

matrix (Clebsch–Gordan matrix)

ΦD1, i1 ΦD2, i2 =
∑

D

m(D)∑
l=1

d∑
i=1

ΓD1D2
i1i2, D l i CD, l ΦD, i .

Then we have
ZD1D2(β) = ΓD1D2

(
diag

D

m(D)ZD

)(
ΓD1D2

)−1
, (37)

where diag
(
m(D)ZD

)
:= diag

(
ZD, . . . ,ZD

)
︸ ︷︷ ︸

m(D)–times

.

6.4 Remark Note that the expression (13) is not independent of the choice of the orthonormal
module basis in H. There is, however, the possibility to define an ε associated to the Hilbert
Z–module: let H = HZ with H irreducible, i.e. ρH is irreducible. Then, according to Lemma 3.3,
the set of all G–invariant algebraic Hilbert spaces H′ ⊂ H is given by H′ = HZ with Z ∈ Z
unitary. The first step is to select from each class {HZ}Z ∈ U(Z) exactly one representant H ⊂ H.

Now, according to Lemma 6.2 we have for an arbitrary Hλ with λ = ρH the unique decompo-
sition

Hλ = ⊕
D ∈ Ĝ

(ρD, λ)HD .

Thus, by
Hλ := ⊕

D ∈ Ĝ
(ρD, λ)HD ,

where HD now denotes the representant in the corresponding class {HDZ}Z ∈ U(Z), we obtain a
unique G–invariant algebraic Hilbert space and on the basis of this choice we define

ε(H1,H2) := ε(H1,H2) ,

where ε(H1,H2) is given by the expression (13). Unfortunately, this definition of ε(H1,H2)
depends on the initial choice of the representants from each class {HZ}Z ∈ U(Z).
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7 The stabilizer, stabA
We start with a first characterization of the elements of stabA. Recall the notions of spectral
projection, ΠD, D ∈ Ĝ, and A–scalar product 〈·, ·〉A introduced in Section 2.

7.1 Lemma If β ∈ stabA, then the equation

β ◦ ΠD = ΠD ◦ β , D ∈ Ĝ , (38)

holds and, further, we have

β ∈ stabA iff 〈β(F1), β(F2)〉A = 〈F1, F2〉A , F1, F2 ∈ F . (39)

Proof: We prove first Eq. (38). Let β ∈ stabA and take F ∈ ΠD F . Then from Proposition 3.1,
Proposition 3.2 and Eq. (3) we have

β(F ) ∈ AHD Z = A ρD(Z)HD ⊆ AHD = ΠD F

and, therefore,
(
ΠD ◦ β

)
(F ) = β(F ) for all F ∈ ΠD F . This implies

ΠD ◦ β ◦ ΠD = β ◦ ΠD

and
ΠD′ ◦ β ◦ΠD = 0 , D′ 	= D, D′,D ∈ Ĝ .

For F ∈ F0 we have
F =
∑

D′∈ Ĝ

ΠD′ F ,

(formal infinite sum) and using this expression we obtain

(
ΠD ◦ β

)
(F ) =

⎛⎝ΠD ◦ β ◦
(∑

D′
ΠD′

)⎞⎠(F ) =
(
β ◦ ΠD

)
(F ) ,

so that Eq. (38) holds.
Now, if β ∈ stabA, then β(A) = A for all A ∈ A or β ◦ Πι = Πι. But from Eq. (38) we have

also the relation Πι = Πι ◦ β and since

〈β(F1), β(F2)〉A = Πι

((
β(F1)
)(

β(F2)
)∗)

=
(
Πι ◦ β

)
(F1F

∗
2 ) ,

we obtain
〈β(F1), β(F2)〉A = 〈F1, F2〉A ,

for all F1, F2 ∈ F .
To prove the other implication suppose that 〈β(F1), β(F2)〉A = 〈F1, F2〉A, F1, F2 ∈ F , i.e. Πι◦

β = Πι. Since Πι ◦ Πι = Πι we get
Πι ◦ β ◦Πι = Πι (40)

and
Πι ◦ β ◦ ΠD = 0 , D 	= ι , D ∈ Ĝ . (41)

From this we have for D 	= ι, A ∈ A and {ΦD, i}di=1 an orthonormal basis of HD(
β(A)
)

D, i
= 〈β(A), ΦD, i〉A =

〈
A, β−1

(
ΦD, i

)〉
A = A

(
β−1
(
ΦD, i

))
ι
= 0 ,
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because (
β−1
(
ΦD, i

))
ι
= Πι

((
β−1
(
ΦD, i

)))
=
(
Πι ◦ β−1 ◦ ΠD

)
(ΦD, i) = 0 .

This implies

β(A) =
(
β(A)
)

ι
or
(
β ◦Πι

)
(F ) =

(
Πι ◦ β ◦Πι

)
(F ) , F ∈ F .

Using Eq. (40) we obtain finally

β ◦ Πι = Πι ◦ β ◦ Πι = Πι

and β(A) = A for all A ∈ A = ΠιF , i.e. β ∈ stabA.

7.2 Lemma Let Z =
(
Zi′i

)
i′,i
∈ Matd(Z) be the matrix corresponding to β ∈ stabA restricted to

the Hilbert Z–module H = HZ, where the orthonormal basis {Ψi}di=1 is fixed. Then Z is unitary,
i.e. the equations

Z∗Z = ZZ∗ = 1l d

hold. In terms of the entries we can equivalently write

d∑
i′=1

Z∗
i′i Zi′j = δij =

d∑
i′=1

Zii′ Z
∗
ji′ .

Proof: Write H,H ′ ∈ H as H =
d∑

i=1
Ψi Xi, H ′ =

d∑
j=1

Ψj Yj, where Xi, Yi ∈ Z, i = 1, . . . , d.

Then we have on the one hand

H∗H ′ =
d∑

i=1

X∗
i Yi ∈ Z

and on the other hand

H∗H ′ = β(H∗H ′) = β(H)∗β(H ′) =
∑

i,j,i′,j′
X∗

i Z∗
i′i Ψ

∗
i′ Ψj′ Zj′j Yj =

∑
i,j,i′

X∗
i Z∗

i′i Zi′j Yj .

Therefore the equation,
d∑

i′=1
Z∗

i′i Zi′j = δij , holds. The second equation, ZZ∗ = 1l d, follows from

Gelfand’s Theorem and from the fact that the scalar matrices
(
Zi′i(ϕ)

)
i′,i
∈ Matd(C), ϕ ∈ specZ,

are finite–dimensional (cf. with Section 3).
The preceding lemma says that we can associate to each β ∈ stabA and each Hilbert Z–mo-

dule H, a unitary module morphism

stabA � β �−→ UH(β) ∈ LZ(H) , (42)

because β(HZ) = β(H)Z, H ∈ H, Z ∈ Z.
From the definition of the functor F, given after Corollary 4.6, and from Eq. (28) we know

that the elements A ∈ (ρH1 , ρH2) determine via F(A), the set of intertwining operators between
UH1(G) and UH2(G). Next we prove that this intertwining property is still valid for UH(β).

7.3 Proposition Let β ∈ stabA, H1, H2 be Hilbert Z–modules and UH1(β), UH2(β) the corre-
sponding unitary module morphisms given in Eq. (42). If A ∈ (ρH1 , ρH2), then the following
intertwining relation holds:

UH2(β) ◦ F(A) = F(A) ◦ UH1(β) , β ∈ stabA , (43)

where F is the functor defined after Corollary (4.6)
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Proof: First note that Eq. (43) can be rewritten as(
UH2(β)

)
(AH1) = A

(
UH1(β)

)
(H1) , A ∈ (ρH1 , ρH2), H1 ∈ H1 .

According to Eq. (42), β Hk acts via UHk
(β) ∈ LZ(Hk) as β(Hk) = UHk

(β)(Hk), k = 1, 2. Further
we have β(AF ) = Aβ(F ), F ∈ F . Therefore we obtain(

UH2(β)
)
(AH1) = β(AH1) = Aβ(H1) = A

(
UH1(β)

)
(H1) ,

and the proof is concluded.
From Definition 4.1 we can associate to a unitary module morphism UH(β) ∈ LZ(H) an

element of the field algebra ̂UH(β) ∈ F . Obviously the assignment

stabA � β �−→ ̂UH(β) ,

is a unitary representation of stabA in F .

7.4 Lemma The representation
stabA � β �−→ ̂UH(β) ,

is continuous, where in stabA we use the topology of pointwise norm convergence and in F the
topology given by the C∗–norm.

Proof: Suppose that (βn)n −→ β, i.e. ‖βn(F )− β(F )‖F −→ 0 for all F ∈ F . Now if {Ψi}di=1

is an orthonormal basis in H, and using the support property, suppH = 1l , we obtain

∥∥∥ ̂UH(βn)− ̂UH(β)
∥∥∥
F

=

∥∥∥∥∥ ̂UH(βn)

⎛⎝ d∑
i=1

ΨiΨ∗
i

⎞⎠− ̂UH(β)

⎛⎝ d∑
i=1

ΨiΨ∗
i

⎞⎠∥∥∥∥∥
F

≤
d∑

i=1

∥∥∥ ̂UH(βn)Ψi − ̂UH(β)Ψi

∥∥∥
F

= ‖βn(Ψi)− β(Ψi)‖F ,

which proves the assertion.
Next we will show that the unitary operators UH(β) are “generated” by the elements UHD

(β),
D ∈ Ĝ (recall Theorem 6.2).

7.5 Proposition Let β ∈ stabA. Then each unitary module morphism UH(β) is uniquely de-
termined by the family

(
UHD

(β)
)

D∈ Ĝ
, where HD = HDZ and HD is the algebraic Hilbert space

corresponding the irreducible D ∈ Ĝ. Precisely, if H is the Hilbert Z–module associated to the
endomorphism λ ≡ ρH ∈ endA, if {ΦD, i}di=1 is an orthonormal basis of HD and if

H � H =
∑

D

d∑
i=1

AD, i ΦD, i , AD, i ∈ (ρD, λ) ,

is the orthogonal decomposition of H according to Theorem 6.2, then we get(
UH(β)

)
(H) =

∑
D

∑
i

AD, i

(
UHD

(β)
)
(ΦD, i).
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Proof: Since β ∈ stabA, we have

β(H) =
∑

D

∑
i

AD, i β(ΦD, i) ,

and according to Proposition 7.3 the equation(
UH(β)

)
(H) =

∑
D

∑
i

AD, i

(
UHD

(β)
)
(ΦD, i) ,

finishes the proof.
Proposition 7.5 justifies that we restrict to the study of UHD

(β), D ∈ Ĝ, which determine
completely the morphisms UH(β) for a general Hilbert Z–module H.

Denote by UZ(HD) the set of all unitary module morphisms in LZ(HD).

7.6 Proposition The mapping,

stabA � β �−→ V (β) :=
∏
D

UHD
(β) ∈
∏
D

UZ(HD) ,

is a group monomorphism and a homeomorphism, where in stabA we take the same topology as
in Lemma 7.4 and in

∏
D

UZ(HD) the Tychonoff product topology generated by the operator norm

topology in LZ(HD).

Proof: First note that if V (β1) = V (β2), then UHD
(β1) = UHD

(β2), D ∈ Ĝ, and, therefore,
β1(ΦD, i) = β2(ΦD, i) for all elements of the orthonormal basis ΦD, i ∈ HD, D ∈ Ĝ, hence β1(F ) =
β2(F ), for all F ∈ F0. Since F = clo‖·‖F0 we get β1 = β2. Further, from UHD

(β1 ◦ β2) =
UHD

(β1)◦UHD
(β2), β1, β2 ∈ stabA, we obtain V (β1 ◦β2) = V (β1)◦V (β2) and V (ι) =

∏
D

1lHD
= 1l .

Second, to prove the homeomorphism property, note that the continuity already follows from
Proposition 4.2 (v) and Lemma 7.4. For the rest of the proof we follow arguments given in [5,
Lemma 3.2]. Suppose that we have a sequence {βn}n ⊂ stabA such that∏

D

UZ(HD) � V (βn) −→ V ∈
∏
D

UZ(HD) .

From the equation βn(ΨD Z) = βn(ΨD)Z =
(
UHD

(βn)
)
(ΨD)Z, ΨD ∈ HD, Z ∈ Z, we get that

UZ(HD) � UHD
(βn) =: Un −→ UHD

=: U ∈ UZ(HD)

w.r.t. the operator norm topology. But from

U−1
n − U−1 = U−1

n (U − Un)U−1 ,

we also have
UZ(HD) � U−1

n −→ U−1 ∈ UZ(HD) .

With other words, we have

βn(ΨD Z) −→
(
UHD

)
(ΨD)Z and

β−1
n (ΨD Z) −→

(
U−1

HD

)
(ΨD)Z .

Therefore, we can define for F ∈ F0

β(F ) := lim‖·‖Fβn(F ) , F ∈ F0

γ(F ) := lim‖·‖Fβ−1
n (F ) , F ∈ F0 .
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Since βn and β−1
n are automorphisms of F the limits β and γ can be extended by continuity to

F = clo‖·‖F F0, respectively. So we have

F =
(
γ ◦ β
)
(F ) =

(
β ◦ γ
)
(F ) , F ∈ F ,

i.e. β ∈ autF , γ = β−1 and even more β ∈ stabA, so that U = UHD
= UHD

(β) and V = V (β).
Thus V (βn) −→ V implies βn −→ β, i.e. V (stabA) is closed and finally we have that the
assignment β �−→ V (β) is homeomorphism.

From the preceding result it follows also that if Z is finite–dimensional, then stabA is compact
as in the case where Z = C1l .

Recall that if we consider a fixed orthonormal basis {ΦD, i}di=1 of HD, D ∈ Ĝ, then UHD
(β)

corresponds to a matrix

ZD(β) =
(
ZD, i′i(β)

)
i′,i
∈ Matd(Z) , HD = HDZ ,

by means of (
UHD

(β)
)
(ΦD, i) =

d∑
i′=1

ΦD, i′ZD, i′i(β) .

Using Gelfand’s Theorem we can also interpret ZD(β) as a continuous matrix–valued function
on specZ, i.e. for each ϕ ∈ specZ we get a unitary scalar matrix

(
ZD(β)

)
(ϕ) ∈ Matd(C).

In the next theorem we will characterize the subgroup G ⊂ stabA.

7.7 Theorem Let β ∈ stabA and ZD(β) be the corresponding matrix from Matd(Z), where the
orthonormal basis {ΦD, i}di=1 of HD, D ∈ Ĝ, are fixed. Then,

β ∈ G iff ZD(β) ∈ Matd(C) , for all D ∈ Ĝ .

In other words β ∈ G iff the corresponding functions
(
ZD(β)

)
(·) are constant unitary matrix

functions on specZ.

Proof: Define first the set

S := {β ∈ stabA: ZD(β) ∈ Matd(C) , D ∈ Ĝ}

and note that S is a subgroup of stabA. Further we have that G ⊆ S (cf. with the remark before
Proposition 3.1). We prove the other inclusion G ⊇ S. First note that for β ∈ S ⊆ stabA we
have

β(H) ⊆ H ,

for all G–invariant algebraic Hilbert spaces H ⊂ F . Now we consider the set C of all functions

G � g �−→ fH2,H1(g) := 〈H1, g(H2)〉H = H∗
1g(H2) ∈ C1l , H1,H2 ∈ H ,

where H runs through all finite–dimensional and G–invariant algebraic Hilbert spaces in F .
Obviously, these functions are continuous on G, i.e. C ⊆ C(G). Further

(i) C is closed w.r.t. multiplication, because

(H1H
′
1)

∗g(H2H
′
2) = H ′∗

1 H∗
1g(H2) g(H ′

2) = H∗
1g(H2)H ′∗

1 g(H ′
2) .
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(ii) C is closed w.r.t. linear combinations. Let H1,H2 be given. Then H := W1H1 + W2H2,
with W1,W2 ∈ A, W ∗

1 W1 = W ∗
2 W2 = 1l , W ∗

1 W2 = W ∗
2 W1 = 0, W1W

∗
1 + W2W

∗
2 = 1l , is also

of the required type, and

(W1H1 + W2H2)∗g(W1H1 + W2H2)
= H∗

1W ∗
1 g(W1)g(H1) + H∗

2W ∗
2 g(W1)g(H1)

+H∗
1W ∗

1 g(W2)g(H2) + H∗
2W ∗

2 g(W2)g(H2)

= H∗
1g(H1) + H∗

2g(H2) ,

where we have used that g(Wk) = Wk, since Wk ∈ A, k = 1, 2.

(iii) The function c(g) ≡ 1 belongs to C, because C1l is an (irreducible) invariant subspace.

(iv) G is separated by C, because from g1 H = g2 H for all admissible H we obtain immediately
g1 = g2.

(v) The complex–conjugated functions of elements in C belong also to C. Namely, let {Ψi}di=1

be an orthonormal basis of H and {Ψi}di=1 an orthonormal basis of a conjugated space H

(w.r.t. G). Then according to Section 2 we have Ψ∗
i = R∗

H Ψi and g(Ψi) =
d∑

i′=1
Ψi′ Ui′i(g),

where
(
Ui′i(g)

)
i′i

is a scalar matrix. Then

(
g(Ψi)
)∗

=
d∑

i′=1

Ψ∗
i′ Ui′i(g)

= g(Ψ∗
i ) = g

(
R∗

H Ψi

)
= R∗

H g(Ψi) = R∗
H

d∑
i′=1

Ψi′ Vi′i(g)

=
d∑

i′=1

Ψ∗
i′ Vi′i(g) ,

so that
Vi′i(g) = Ui′i(g).

Therefore, according to the Stone–Weierstraß Theorem the *–algebra C is dense in C(G) and
therefore also dense in L2(G).

Now let β ∈ S, then β(X) ∈ H for X ∈ H. As in [23, pp. 206-207] we define an operator U
on C by

Uβ (fX,Y ) := fX, β(Y ) .

We calculate for Xk ∈ Hk, k = 1, 2:∫
G

(
Uβ (fX1,Y1)

)
(g)
(
Uβ (fX2,Y2)

)
(g) dg =

∫
G

fX1, β(Y1)(g) fX2, β(Y2)(g) dg

=
∫
G

(βY1)∗g(X1)
(
(βY2)∗g(X2)

)∗
dg

= (βY1)∗

⎛⎜⎝∫
G

g(X1X
∗
2 ) dg

⎞⎟⎠ (βY2)



26

= β

⎛⎜⎝Y ∗
1

∫
G

g(X1X
∗
2 ) dg Y2

⎞⎟⎠

= β

⎛⎜⎝∫
G

fX1,Y1(g) fX2, Y2(g) dg

⎞⎟⎠
=
∫
G

fX1,Y1(g) fX2, Y2(g) dg ,

where for the fourth equation we have used the the relation
∫
G

g(X1X
∗
2 ) dg ∈ A. This equation

expresses the uniqueness of the definition of U as an operator on C and, simultaneously, its
isometry property w.r.t. the scalar product in L2(G). By continuous extension of Uβ to the whole
L2(G) we obtain a unitary operator on L2(G), which is also denoted by Uβ . Moreover, we have

Uβ(fX1,Y1 fX2,Y2) = Uβ(fX1X2,Y1Y2) = fX1X2, β(Y1Y2)

= fX1X2, β(Y1)β(Y2) = fX1, β(Y1) fX2, β(Y2)

= Uβ(fX1,Y1) · Uβ(fX2,Y2) ,

i.e. Uβ ∈ aut C, hence Uβ ∈ autC(G). But according to Gelfand’s Theorem the automorphisms
of C(G) correspond bijectively to the homeomorphisms of G. Therefore, there is a gβ ∈ G such
that if e is the unit element in G the equation(

Uβf
)
(e) = f(g−1

β ) , f ∈ C(G) , gβ ∈ G .

Hence we obtain for X,Y ∈ H

〈β(Y ), X 〉H = fX, β(Y )(e) =
(
Uβ(fX,Y )

)
(e) = fX,Y

(
g−1

β

)
=
〈
Y , g−1

β (X)
〉
H

=
〈
Y , U(g−1

β )(X)
〉
H = 〈Y , U(gβ)∗(X)〉H = 〈U(gβ)Y , X 〉H

= 〈gβ(Y ), X 〉H ,

where g(X) = UH(g)X and UH(g) is unitary for g ∈ G. Recall that F = C∗
(
A, {H}

)
, which

implies β = gβ.
For the next theorem recall Proposition 5.4, Remark 5.5, Remark 6.3, Proposition 7.5 and

Proposition 7.6.

7.8 Theorem Let
stabA � β �−→ V (β) :=

∏
D

UHD
(β) ∈
∏
D

UZ(HD) ,

be the assignment specified in Proposition 7.6 and choose a fixed orthonormal basis in HD,
{ΦD, i}di=1 . The d×d–matrices in Matd(Z) associated to UHD

(β) are denoted by ZD =
(
ZD, i′i

)
i′,i

.

Then the following conditions hold

ZD1D2 = ρ−1
D2

(ZD1)⊗ ZD2 , D1,D2 ∈ Ĝ (44)

1l = ρ−1
D

(ZD)Zt
D

, D,D ∈ Ĝ , (45)

where ZD1D2 is given in Remark 6.3 by formula (37) and
(
ρ−1

D2
(ZD1)
)

i′i
= ρ−1

D2

(
ZD1, i′i

)
, with

i, i′ = 1, . . . , d. The superindex t denotes the transposed matrix.



27

Proof: Since β ∈ stabA is an automorphism, we have on the one hand for i1 = 1, . . . , d1,
i2 = 1, . . . , d2,

β
(
ΦD1, i1 ΦD2, i2

)
=
∑
i′1

∑
i′2

ΦD1, i′1 ΦD2, i′2 ZD1D2, i′1i′2 i1i2

=
∑
i′1

∑
i′2

(
ρD1 ◦ ρD2

)
(ZD1D2, i′1i′2 i1i2) ΦD1, i′1 ΦD2, i′2

and on the other hand

β
(
ΦD1, i1

)
β
(
ΦD2, i2

)
=
∑
i′1

∑
i′2

ΦD1, i′1 ZD1, i′1i1 ΦD2, i′2 ZD2, i′2i2

=
∑
i′1

∑
i′2

ρD1(ZD1, i′1 i1)
(
ρD1 ◦ ρD2

)
(ZD2, i′2i2) ΦD1, i′1 ΦD2, i′2 ,

so that we obtain
ρD2

(
ZD1D2, i′1i′2 i1i2

)
= ZD1, i′1 i1 ρD2

(
ZD2, i′2 i2

)
.

This equation implies (44).
Further, from Equations (12) and (16) we have

β(ΦD, i)∗ =
∑
i′

Z∗
D, i′i Φ∗

D, i′ =
∑
i′

Z∗
D, i′i R

∗
D ΦD, i′ = R∗

D

∑
i′

ΦD, i′ ρ
−1
D

(
Z∗

D, i′i

)
and also

β
(
Φ∗

D, i

)
= β
(
R∗

D ΦD, i

)
= R∗

D

∑
i′

ΦD, i′ ZD, i′i .

From these equations we obtain
ZD, i′i = ρ−1

D

(
Z∗

D, i′i

)
,

which implies (45).
Taking again into account Remark 6.3 we can formulate the following counterpart of Theo-

rem 7.8.

7.9 Theorem Suppose that the matrices

ZD =
(
ZD, i′i

)
i′,i
∈ Matd(Z) , D ∈ Ĝ ,

satisfy the properties (44) and (45) of the preceding theorem, where ZD1D2 is defined in Eq. (37).
Then the linear mapping γ: F0 −→ F0 defined by

γ(A) := A , A ∈ A ,

γ(ΦD, i) :=
∑
i′

ΦD, i′ ZD, i′i ,

is an automorphism of the *–algebra F0 which can be uniquely extended to an automorphism γ
of F , with γ ∈ stabA.

Proof: The properties γ(ΦD1, i1 ΦD2, i2) = γ(ΦD1, i1)γ(ΦD2, i2) and γ(ΦD, i)∗ = γ(Φ∗
D, i),

D1,D2,D ∈ Ĝ, ik = 1, . . . , dk, k = 1, 2, i = 1, . . . , d, follow directly from Equations (44) and
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(45) (cf. the proof of the preceding theorem). Furthermore, γ−1 exists on F0 and is defined by
(cf. Lemma 7.2)

γ−1(A) := A , A ∈ A ,

γ−1(ΦD, i) :=
∑
i′

ΦD, i′ Z
∗
D, ii′ ,

so that γ is an automorphism of F0. It remains to show that γ is isometric on F0 and, therefore,
it can be uniquely and isometrically extended to an automorphism of F , also denoted by γ. In
this case γ ∈ stabA.

In order to prove the isometry of γ we use theA–valued scalar product 〈·, ·〉A and its properties
stated in Section 2. First we prove the equation

〈γ(F1), γ(F2)〉A = 〈F1, F2〉A , F1, F2 ∈ F0 .

Indeed, put F1 =
∑

D1, i1

AD1, i1 ΦD1, i1 and F1 =
∑

D2, i2

BD2, i2 ΦD2, i2 . Then we compute

〈γ(F1), γ(F2)〉A
=
∑

D1, i1

∑
D2, i2

AD1, i1 〈γ(ΦD1, i1), γ(ΦD2, i2)〉A B∗
D2, i2

=
∑

D1, i1

∑
D2, i2

∑
i′1,i′2

AD1, i1 ρD1

(
ZD1, i′1i1

) 〈
ΦD1, i′1, ΦD2, i′2

〉
A ρD2

(
ZD2, i′2i2

)∗
B∗

D2, i2

=
∑

D1, i1

∑
i′1

∑
i′′1

1
d1

AD1, i1 ρD1

(
Z∗

D1, i′1i′′1
ZD1, i′1i1

)
B∗

D1, i′′1

=
∑

D1, i1

1
d1

AD1, i1 B∗
D1, i1

= 〈F1, F2〉A .

Next recall (see e.g. [10, pp. 201-203]) that the C∗–norm ‖ · ‖F in the Hilbert C∗–system {F , G}
can be written as

‖F‖F = ‖π(F )‖op , F ∈ F ,

where ‖ · ‖op is the operator norm w.r.t. the norm |F | :=
∥∥∥〈F , F 〉A

∥∥∥ 1
2 of the operator π(F ) on F ,

defined by (
π(F )
)
(X) := XF ∗ , F,X ∈ F .

Note that we have |γ(F )| = |F | for all F ∈ F0. Further, we get∣∣∣π(γ(F )
)
(X)
∣∣∣ = ∣∣∣X (γ(F )

)∗ ∣∣∣ = ∣∣∣γ(γ−1(X)F ∗) ∣∣∣ = ∣∣∣γ−1(X)F ∗
∣∣∣ , F ∈ F0 .

This equation implies ∥∥∥π(γ(F )
) ∥∥∥

op
= ‖π(F )‖op , F ∈ F0 ,

or, equivalently, ∥∥∥γ(F )
∥∥∥
F

= ‖F‖F , F ∈ F0 ,

and the proof is concluded.
Finally, we are able to give a characterization of stabA in terms of specZ, G and the irre-

ducible endomorphisms, ρD, D ∈ Ĝ, more precisely in terms of the continuous mappings

fD = fρD
: specZ −→ specZ
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which correspond to ρ−1
D (see Remark 5.5).

First we consider an element of the group C(specZ → G). Then to each ϕ ∈ specZ there
corresponds g(ϕ) ∈ G, such that the assignment ϕ �→ g(ϕ) is continuous. Recall that g(ϕ) acts
unitarily on HD, i.e.

g(ϕ)(ΦD, i) =
d∑

i′=1

ΦD, i′ UD, i′i

(
g(ϕ)
)

,

where
(

UD, i′i

(
g(ϕ)
))

i′,i
is a continuous unitary matrix–valued function on specZ which in its

turn determine the elements ZD, i′i ∈ Z, i, i′ = 1, . . . , d via the relation

ZD, i′i(ϕ) := UD, i′i

(
g(ϕ)
)

, ϕ ∈ specZ .

The matrix ZD =
(
ZD, i′i

)
i′,i
∈ Matd(Z) is unitary.

Next we define a closed subgroup T ⊂ C(specZ → G).

7.10 Definition The continuous function

specZ � ϕ �−→ g(ϕ) ∈ G

is an element of T ⊂ C(specZ → G) if the following two conditions are satisfied for all ϕ ∈
specZ:

ZD1D2(ϕ) =
(
ZD1 ◦ fD2

)
(ϕ)⊗ ZD2(ϕ) , D1,D2 ∈ Ĝ (46)

1l =
(
ZD ◦ fD

)
(ϕ)ZD(ϕ)t , D,D ∈ Ĝ , (47)

where ZD1D2(ϕ) is the matrix–valued function on specZ associated to ZD1D2 (see Eq. (37)), the
superindex t means the transposed matrix and the functions fD, D ∈ Ĝ, are given in Remark 5.5.

Note that the fact that g(ϕ) ∈ G already implies that the scalar unitarities g(ϕ) HD1HD2 and
g(ϕ) HD satisfy the Eq. (37). Since Γ is a scalar (hence a constant) unitarity, the matrix ZH

corresponding to a given continuous function ϕ �→ g(ϕ) and to a Hilbert Z–module H, satisfies
also Eq. (37).

7.11 Theorem The automorphism β ∈ autF satisfies β ∈ stabA iff there is a continuous func-
tion

specZ � ϕ �−→ g(ϕ) ∈ G ,

such that the corresponding matrices ZD =
(
ZD, i′i

)
i′,i
∈ Matd(Z) satisfy the conditions (46) and

(47). Moreover, stabA is isomorphic and homeomorphic to the subgroup T ⊂ C(specZ → G).

Proof: (i) Let β ∈ stabA, so that, according to Theorem 7.8, the associated matrices satisfy
the conditions (44) and (45). Then the matrices ZD(ϕ), with ϕ ∈ specZ fixed, are constant
matrix functions satisfying (46) and (47). Therefore, from Theorem 7.7 there is an automorphism
g(ϕ) ∈ G associated to {ZD(ϕ)}D, D ∈ Ĝ, and ϕ �→ g(ϕ) is continuous (note Proposition (7.6)).
Using the function fD defined in Remark 5.5 the conditions (44) and (45) can be rewritten in the
form of equations (46) and (47) of Definition 7.10. So the function ϕ �→ g(ϕ) is an element of T .

(ii) Conversely, if ϕ �→ g(ϕ) is an element of T , then, according to the remarks before
Definition 7.10, we have the corresponding unitary matrices ZD, that satisfy by assumption the
conditions (46) and (47), which can be rewritten in the form (44) and (45) of Theorem 7.8. Then,
by Theorem 7.9, they define an automorphism β ∈ stabA. The bijection between stabA and T ,
stabA ↔ T , is an isomorphism and an homeomorphism by Theorem 7.7.
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[14] H. Baumgärtel, Math. Nachr. 161, 361 (1993).

[15] K. Shiga, J. Math. Soc. Japan 7, 224 (1955).

[16] D.E. Evans and T. Sund, Rep. Math. Phys. 17, 299 (1980).
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