# SUPERSOLUTIONS AND STABILIZATION OF THE SOLUTION OF A NONLINEAR PARABOLIC SYSTEM 

Hamid Elouardi, François de Thelin

Abstract
Let us consider a nonlinear parabolic system of the following type:
$(S) \begin{aligned} & \frac{\partial u}{\partial t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\frac{\partial H}{\partial u}(x, u, v) \\ & \frac{\partial v}{\partial t}-\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)=\frac{\partial H}{\partial v}(x, u, v)\end{aligned}$
with Dirichlet, boundary conditions and initial data.
In this paper, we construct sub-supersolutions of ( $S$ ), and by use of them, we prove that, for $t_{n} \rightarrow+\infty$, the solution of ( $S$ ) converges to some solution of the elliptic system associated with (S).

## 0. Introduction

This paper concerns the existence and asymptotic behaviour of bounded, non negative solutions of the following system of nonlinear equations:

$$
\text { (S) } \begin{cases}\frac{\partial u}{\partial t}-\Delta_{p} u=f(x, u, v) & \text { in } \Omega_{x} \mathbf{R}_{+} \\ \frac{\partial v}{\partial t}-\Delta_{q} v=g(x, u, v) & \text { in } \Omega_{x} \mathbf{R}_{+} \\ u(x, t)=v(x, t)=0 & \text { in } \partial \Omega_{x} \mathbf{R}_{+} \\ u(x, 0)=\varphi_{0}(x), v(x, 0)=\psi_{0}(x) & \text { in } \Omega\end{cases}
$$

where $p \geq 2, q \geq 2, \Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ and $\Omega$ is a bounded regular open subset of $\mathrm{R}^{N}$.

For $p=q=2$, Problem ( $\$$ ) has been investigated by many authors $[5,6,12]$.
$(\$)$ is an example of a nonlinear parabolic system arising from non-Newtonian fluid mechanics. NAKAO $[9]$ studies a similar system in which $p=q>2$ and the right hand side is $f,-\lambda f, \lambda$ constant. The case of a single equation of the type ( $\$$ ) is studied in $[2,3,8,11]$. The purpose of this paper is to extend the results of [3] to the system ( $\$$ ).

First, using sub-supersolutions, we show that ( $\$$ ) has a solution. Moreover, supposing that there exist $\lambda>0, \mu>0$ and a function $H(x, u, v)$ such that
$f=\lambda \frac{\partial H}{\partial u}$ and $g=\mu \frac{\partial H}{\partial v}$, we prove that the solution of (\$) converges to a solution of the Dirichlet problem for the elliptic system.

We obtain regularizing effects such that:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(|\nabla u|^{p-2} \nabla u\right) \in L^{2}\left(t_{0},+\infty ; L^{p^{*}}(\Omega)\right) \text { and } \\
& \frac{\partial}{\partial t}\left(|\nabla v|^{q-2} \nabla v\right) \in L^{2}\left(t_{0},+\infty ; L^{q *}(\Omega)\right)
\end{aligned}
$$

Our method is closely related to the paper of LANGLAIS and PHILLIPS [7], and also to the paper of ELHACHIMI and DE THELIN [3] who study the stabilization of the solution of a single equation. Some examples are discussed in part IV, and include:

$$
\begin{aligned}
& H(x, u, v)=k(x) u v+\lambda u^{\gamma_{2}+1}+\mu v^{\gamma_{2}+1} \\
& H(x, u, v)=-u^{m} v^{n}+\lambda u^{\gamma_{2}+1}+\mu v^{\gamma_{2}+1}
\end{aligned}
$$

Some numerical results related to the system (S) are given in[4].
All Theorems are written in the case $p>2, q>2$; obvious modifcations (for Theorem 6) give the case $p=2$ or $q=2$.

## 1. Preliminaries and sub-supersolutions

Throughout this paper, $\Omega$ stands for a regular bounded open subset of $\mathbb{R}^{N}$. Left $f$ and $g$ be some functions from $\mathbf{R}^{N+2}$ to $\mathbf{R}$ such that:

$$
\left\{\begin{array}{l}
f, g \in C^{1}(\bar{\Omega} \times \mathbf{R} \times \mathbf{R})  \tag{1.1}\\
\text { and for any } x \in \Omega, u \in \mathbf{R}_{+}, v \in \mathbf{R}_{+}: f(x, 0, v) \geq 0, g(x, u, 0) \geq 0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\text { For any } M>0, N>0 \text {, there exist } k_{M, N}^{1}>0, k_{M, N}^{2}>0  \tag{1.2}\\
\text { such that : } \\
\text { a) } f(x, u, v)-f(x, w, v) \leq k_{M, N}^{1}(u-w), \forall x \in \Omega \\
\forall u, v, w: 0 \leq w \leq u \leq M, v \in[0, N] \\
\text { b) } g(x, u, v)-g(x, u, w) \leq k_{M, N}^{2}(v-w), \forall x \in \Omega \\
\forall u, v, w: 0 \leq w \leq v \leq N, u \in[0, M]
\end{array}\right.
$$

Remark 1: the condition 1.2. a) is satisfied if $u \rightarrow f(x, u, v)$ is a non increasing function on $\mathbf{R}_{+}$.

We shall also use the following notations:

$$
\begin{gathered}
\text { for } \left.T>0, Q_{T}=\Omega \times\right] 0, T\left[, S_{T}=\partial \Omega \times[0, T]\right. \\
F(\nabla u)=|\nabla u|^{p-2} \nabla u, G(\nabla v)=|\nabla v|^{q-2} \nabla v, \text { with } p>2 \text { and } q>2 . \\
\Delta_{p} u=\operatorname{div}(F(\nabla u)), \Delta_{q} v=\operatorname{div}(G(\nabla v)) .
\end{gathered}
$$

Let $\varphi_{0}, \psi_{0}$ be given such that:

$$
\left\{\begin{array}{l}
\varphi_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \varphi_{0} \geq 0  \tag{1.3}\\
\psi_{0} \in W_{0}^{1, q}(\Omega) \cap L^{\infty}(\Omega), \psi_{0} \geq 0
\end{array}\right.
$$

We say that $(u, v)$ is a solution of $(\$)$ in $Q_{T}$ (resp: $(\hat{u}, \hat{v})$ is a supersolution of $(\$)$ in $\left.Q_{T}\right)$ iff

$$
\begin{equation*}
\frac{\partial u}{\partial t}\left(\operatorname{resp} \frac{\partial \hat{u}}{\partial t}\right) \in L^{2}\left(Q_{T}\right), \frac{\partial v}{\partial t}\left(\operatorname{resp} \frac{\partial \hat{v}}{\partial t}\right) \in L^{2}\left(Q_{T}\right) \tag{1.5}
\end{equation*}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{\partial u}{\partial t}-\Delta_{p} u-f(x, u, v)=0 \\
\frac{\partial v}{\partial t}-\Delta_{q} v-g(x, u, v)=0
\end{array} \quad \text { in } Q_{T}\right.  \tag{1.6}\\
& \left(\operatorname{resp} \cdots \geq 0 \quad \text { in } Q_{T}\right)
\end{align*}
$$

$$
\begin{align*}
& u=v=0(\text { resp }: \hat{u} \geq 0, \hat{v} \geq 0) \text { in } S_{T}  \tag{1.7}\\
& \left\{\begin{array}{l}
u(., 0)=\varphi_{0}\left(\text { resp }: \hat{u}(., 0) \geq \varphi_{0}\right) \\
v(., 0)=\psi_{0}\left(\text { resp }: \hat{v}(., 0) \geq \psi_{0}\right)
\end{array} \text { in } \Omega\right. \tag{1.8}
\end{align*}
$$

Our method is based upon a comparison principale for the system (S); but the usual notion of supersolution does not work; so, following Hernandez [6], we set:

Definition 1. $[(0,0),(\hat{u}, \hat{v})]$ is said to be a sub-supersolution of (\$) in $Q_{T}$ if it satisfies the following conditions:

$$
\begin{equation*}
\hat{u} \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega), \hat{v} \in W^{1, q}(\Omega) \cap L^{\infty}(\Omega) \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
\forall x \in \Omega: 0 \leq \varphi_{0}(x) \leq \hat{u}(x) \leq M_{1}, 0 \leq \psi_{0}(x) \leq \hat{v}(x) \leq N_{1} \tag{1.10}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\forall x \in \Omega, \forall v \in[0, \hat{v}]:-f(x, 0, v) \leq 0 \leq-\Delta_{p} \hat{u}-f(x, \hat{u}, v) \\
\forall x \in \Omega, \forall u \in[0, \hat{u}]:-g(x, u, 0) \leq 0 \leq-\Delta_{q} \hat{v}-g(x, u, \hat{v})
\end{array}\right.
$$

Remark 2: if we suppose that $v \rightarrow f(x, u, v) \uparrow$ and $u \rightarrow g(x, u, v) \uparrow$ any supersolution of ( $\$$ ) gives a sub-supersolution of ( $\mathbf{S}$ ).

Our first results are sufficient conditions for the existence of sub-supersolutions of (\$).

It is well known (cf.[3]) that the problem:

$$
\begin{cases}-\Delta_{p} u=k_{0}+k_{1} u^{\gamma}, & x \in \Omega \\ u=0 & x \in \partial \Omega\end{cases}
$$

has a supersolution if $\gamma \in 10, p-1[$.

Theorem 1. Assume that $v \rightarrow f(x, u, v)$ and $u \rightarrow g(x, u, v)$ are monotone non-increasing functions, and that there exist

$$
\left.\lambda_{0} \geq 0, \mu_{0} \geq 0, \lambda_{1}>0, \mu_{1}>0 \text { and } \gamma_{1} \in\right] 0, p-1\left[, \lambda_{2} \in\right] 0, q-1[
$$

such that

$$
\left\{\begin{array}{l}
f(x, u, 0) \leq \lambda_{0}+\lambda_{1} u^{\gamma_{2}}, \forall x \in \Omega, \forall u \in \mathbf{R}_{+}  \tag{1.12}\\
g(x, 0, v) \leq \mu_{0}+\mu_{1} v^{\gamma_{2}}, \forall x \in \Omega, \forall v \in \mathbf{R}_{+}
\end{array}\right.
$$

Then (\$) has a sub-supersolution.
Proof: By [3] and (1.12), the equations

$$
\begin{aligned}
& -\Delta_{p} u=f(x, u, 0) \text { and } \\
& -\Delta_{q} v=g(x, 0, v)
\end{aligned}
$$

have supersolutions $\bar{u}$ and $\bar{v}$. In fact, the monotonicity assumptions on $f$ and $g$ prove that $[(0,0),(\bar{u}, \bar{v})]$ is a sub-supersolution of $(\$)$.

Theorem 2. Let $v \rightarrow f(x, u, v)$ be a non-decreasing function and $u \rightarrow$ $g(x, u, v)$ be a non-increasing function.

Assume that there exist constants

$$
\mu_{0} \geq 0, \mu_{1}>0, \gamma_{2} \in[0, q-1[
$$

and for any $N$;

$$
\left.\lambda_{0} \geq 0, \lambda_{1}>0, \gamma_{1} \in\right] 0, p-1[
$$

such that:

$$
\left\{\begin{array}{l}
f(x, u, N) \leq \lambda_{0}+\lambda_{1} u^{\gamma_{1}}  \tag{1.14}\\
g(x, 0, v) \leq \mu_{0}+\mu_{1} v^{\gamma_{2}}
\end{array}\right.
$$

Then (S) has a sub-supersolution.
Proof: By [3] there exits $\bar{v}$ such that:

$$
-\Delta_{q} \bar{v} \geq \mu_{0}+\mu_{1} \bar{v}^{\gamma_{2}}
$$

Let $N \leq \bar{v}$ and $\bar{u}$ be such that:

$$
-\Delta_{p} \bar{u} \leq \lambda_{0}+\lambda_{1} \bar{u}^{\gamma_{1}}
$$

Then:

$$
\begin{aligned}
& -\Delta_{p} \bar{u} \geq f(x, u, N) \geq f(x, \bar{u}, \bar{v}) \\
& -\Delta_{q} \bar{v} \geq g(x, 0, \bar{v})
\end{aligned}
$$

whence the result.

Theorem 3. Assume that there exist $\left.k_{i}>0,\right\rceil=0,1$ such that:

$$
\left\{\begin{array}{l}
f(x, u, v)=k_{0} v+\varphi(x, u) \\
g(x, u, v)=k_{1} u+\psi(x, v)
\end{array}\right.
$$

and that there exist $\mu_{1} \geq 0, \lambda_{1} \geq 0, \mu_{2}>0, \lambda_{2}>0, \gamma_{1} \in\left[1, p-I\left[\right.\right.$ and $\gamma_{2} \in$ [1,q-1[ such that:

$$
\varphi(x, u) \leq \mu_{1}+\mu_{2} u^{\gamma_{1}}, \psi(x, v) \leq \lambda_{1}+\lambda_{2} v^{\gamma_{2}}, \forall x \in \Omega, \forall u, v \in \mathbf{R}_{+}
$$

Then (S) has a sub-supersolution.

Proof: By Remark 2, it is sufficient to show the existence of a supersolution.
Let $M_{0}=\left\|\psi_{0}\right\|_{L^{\infty}(\Omega)}, N_{0}=\left\|\varphi_{0}\right\|_{L^{\infty}(\Omega)}$ and $R$ be such that $\Omega \subset B(0, R)$
We seek $\bar{u}$ and $\bar{v}$ of the following type:

$$
\begin{aligned}
& \bar{u}(x)=\alpha r^{p *}+\beta, \bar{v}(x)=\gamma r^{q *}+\delta, \text { where } r=|x| \\
& \alpha<0, \beta>0, \gamma<0, \delta>0 .
\end{aligned}
$$

(1.7) and (1.8) are satisfied if:

$$
\left\{\begin{array}{c}
\alpha R^{p *}+\beta=M_{0}  \tag{1.16}\\
\gamma R^{q+}+\delta=N_{0}
\end{array}\right.
$$

We want

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right)=N\left|\alpha p^{*}\right|^{p-1} \geq k_{0} \bar{v}+\mu_{1}+\mu_{2} \bar{u}^{\gamma_{1}}  \tag{1.17}\\
-\operatorname{div}\left(|\nabla \bar{v}|^{q-2} \nabla \bar{v}\right)=N\left|\gamma q^{*}\right|^{q-1} \geq k_{1} \bar{u}+\lambda_{1}+\lambda_{2} \bar{v}^{\gamma_{2}}
\end{array}\right.
$$

Set $\beta=\delta$. Then, if $\beta$ is sufficiently large, using the fact that $\gamma_{1} \in[1, p-1[$ and $\gamma_{2} \in \in[1, q-1[$, we can obtain

$$
\left\{\begin{array}{c}
\frac{N\left(p^{0}\right)^{p-1}}{R^{p}} \frac{\left(\beta-M_{\theta}\right)^{p-1}}{\mu_{1}+\mu_{2} \beta^{\lambda_{1}}}-1-\frac{k_{0} \beta}{\mu_{1}+\mu_{2} \beta^{\gamma_{2}}} \geq 0 \text { and }  \tag{1.18}\\
\frac{N\left(q^{\bullet}\right)^{\theta-1}}{R^{q}} \frac{\left(\delta-N_{0}\right)^{q-1}}{\lambda_{1}+\lambda_{2} \delta \gamma^{2}}-I-\frac{k_{1} \delta}{\lambda_{1}+\lambda_{2} \delta \gamma^{2}} \geq 0
\end{array}\right.
$$

So (1.17) is satisfied and we check $\alpha$ and $\gamma$ with (1.16)

## 2. Existence results

Our main result is the following one:

Theorem 4. Let $p>2, q>2$ and $\varphi_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \psi_{0} \in W_{0}^{1, q}(\Omega) \cap$ $L^{\infty}(\Omega), \varphi_{0} \geq 0, \psi_{0} \geq 0$ be given.

Suppose that $f$ and $g$ verify (1.1) and (1.2) and that (\$) has a sub-supersolution $/(0,0),(\bar{u} \bar{v})]$ in $Q_{T}$.

Then (\$) has a unique solution $(u, v)$ in $Q_{T}$ satisfying:

$$
\left\{\begin{array}{l}
0 \leq u \leq \bar{u} \\
0 \leq v \leq \bar{v}
\end{array} \text { in } Q_{T}\right.
$$

Proof:: By Theorem II.2[3], we can choose $u_{0} \in L^{\infty}\left(0, T ; W^{1, p}(\Omega) \cap L^{\infty}(\Omega)\right)$ $v_{0} \in L^{\infty}\left(0, T ; W^{1, q}(\Omega) \cap L^{\infty}(\Omega)\right)$ satisfiying $0 \leq u_{0} \leq \bar{u}$ and $0 \leq v_{0} \leq \bar{v}$, such that:

$$
\begin{aligned}
& \begin{cases}\frac{\partial u_{0}}{\partial t}-\Delta_{p} u_{0}=f\left(x, u_{o}, 0\right) & \text { in } Q_{T} \\
u_{0}(x, t)=0 & \text { in } S_{T} \\
v_{0}(x, 0)=\varphi_{0}(x) & \text { in } \Omega\end{cases} \\
& \begin{cases}\frac{\partial v_{0}}{\partial t}-\Delta_{q} v_{0}=g\left(x, 0, v_{0}\right) & \text { in } Q_{T} \\
v_{0}(x, t)=0 & \text { in } S_{T} \\
v_{0}(x, 0)=\psi_{0}(x) & \text { in } \Omega\end{cases}
\end{aligned}
$$

By the existence theorem of Meike ([9], p 1024) we construct two sequences of functions, $\left(u_{n}\right)$ and ( $v_{n}$ ), such that:

and

$$
\begin{aligned}
& \text { (2.4) }\left\{\frac{\partial v_{n+1}}{\partial t}-\Delta_{q} v_{n+1}=g\left(x, u_{n}, v_{n+1}\right) \text { in } Q_{T}\right. \\
& \begin{array}{ll}
\text { (2.5) }
\end{array} \begin{cases}v_{n+1}(x, t)=0 & \text { in } S_{T} \\
u_{n+1}(x, 0)=\psi_{0}(x) & \text { in } \Omega\end{cases}
\end{aligned}
$$

We need several lemmas to complete the proof of Theorem 4:
Lemma 1. For any $n \in \mathbb{N}$, the relations $0 \leq u_{n} \leq \bar{u}, 0 \leq v_{n} \leq \bar{v}$ imply that $0 \leq u_{n+1} \leq \bar{u}$ and $0 \leq v_{n+1} \leq \bar{v}$

Proof of lemma 1: By (1.10), (1.11) and the above assumptions, we have:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(u_{n+1}-u i\right)-\left(\Delta_{p} u_{n+1}-\Delta_{p} \bar{u}\right) \leq f\left(x, u_{n+1}, v_{n}\right)-f\left(x, \bar{u}, v_{n}\right) \tag{2.7}
\end{equation*}
$$

Multiplying (2.7) by $\left(u_{n+1}-\bar{u}\right)_{+}$, the monoticity of $\Delta_{p}$ implies:

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u_{n+1}-\bar{u}\right)_{+}^{2} \leq \lambda \int_{\Omega}\left(f\left(x, u_{n+1}, v_{n}\right)-f\left(x, \bar{u}, v_{n}\right)\right)\left(u_{n+1}-\bar{u}\right)_{+}
$$

By the Lipschitz condition (1.2), the initial condition and Gronwall's Lemma, we obtain : $u_{n+1} \leq \bar{u}$.

The hypothesis $f\left(x, 0, v_{n}\right) \geq 0$, gives $u_{n+1} \geq 0$; similarly, we get $0 \leq v_{n+1} \leq$ $\bar{v}$.

Lemma 2. There exists $C=C\left(M_{1}, N_{1}, T\right)$ such that:

$$
\begin{align*}
& \left\|u_{n+1}\right\|_{L^{\infty}\left(Q_{T}\right)} \leq C  \tag{2.8}\\
& \left\|u_{n+1}\right\|_{L^{\infty}\left(0, T ; W_{\theta}^{1, p}\right)} \leq C  \tag{2.9}\\
& \left\|\frac{\partial u_{n+1}}{\partial t}\right\|_{L^{2}\left(Q_{T}\right)} \leq C \tag{2.10}
\end{align*}
$$

The same estimates hold for $v_{n+1}$ with $p$ replaced by $q$.
Proof of Lemma 2: By lemma 1, for any $n \in N, u_{n}$ and $v_{n}$ are bounded; whence (2.8). The properties of the functions $f$ and $g$, then imply that $f\left(x, u_{n+1}, v_{n}\right)$ is bounded.

We therefore obtain:

$$
\begin{aligned}
& \int_{\Omega} f\left(x, u_{n+1}, v_{n}\right) \frac{\partial u_{n+1}}{\partial t} \leq \frac{1}{2} \int_{\Omega}\left(f\left(x, u_{n+1}, v_{n}\right)\right)^{2}+ \\
& +\frac{1}{2} \int_{\Omega}\left(\frac{\partial u_{n+1}}{\partial t}\right)^{2} \leq C_{0}+\frac{1}{2} \int_{\Omega}\left(\frac{\partial u_{n+1}}{\partial t}\right)^{2} d x
\end{aligned}
$$

Multiplying (2.1) by $\frac{\partial u_{n+1}}{\partial t}$, we get:

$$
\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left(\frac{\partial u_{n+1}}{\partial t}\right)^{2} d x d t+\frac{1}{p} \int_{\Omega}\left|\nabla u_{n+1}(\cdot, T)\right|^{p} d x \leq C_{0} T+\frac{1}{p} \int_{\Omega}\left|\nabla \varphi_{0}\right|^{p} d x
$$

It is the same for $v_{n+1}$.
Proof of theorem 4: By (2.8), (2.9), (2.10), there is a subsequence ( $u_{n}, v_{n}$ ) with the following properties:
$u_{n}$ converges to $u$ in the weak * sense in $L^{\infty}\left(0, T ; W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)\right)$ and $u_{n}$ converges weakly in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) ; u_{n}$ is such that $\frac{\partial u_{n}}{\partial t}$ converges to $\frac{\partial u}{\partial t}$ in weak $L^{2}\left(Q_{T}\right)$; the same holds also for $v_{n}$ with $p$ replaced by $q$.

By standard monotonicity argument [8], $\Delta_{p} u_{n+1}$, converges to $\Delta_{p} u$ in weak $L^{p *}\left(0, T ; W^{-1, p *}(\Omega)\right), \Delta_{q} v_{n+1}$ converges to $\Delta_{q} v$ in weak $L^{q *}\left(0, T ; W^{-1, q *}(\Omega)\right)$. $u_{n}$ converges almost everywhere to $u$ and $v_{n}$ converges almost everywhere to $v$.

By Lebesgue's theorem:

$$
\begin{aligned}
& f\left(\cdot, u_{n+1}, v_{n}\right) \text { converges to } f(\cdot, u, v) \\
& g\left(\cdot, u_{n}, v_{n+1}\right) \text { converges to } g(\cdot, u, v)
\end{aligned}
$$

whence ( $u, v$ ) is a solution of ( $\$$ ) in $Q_{T}$.
Applying lemma 1, we have $0 \leq u \leq \bar{u}, 0 \leq v \leq \bar{v}$.
Remark 3: Uniqueness follows from the Lipschitz condition on $f$ and $g$.

## 3. Asymptotic behaviour

Hereafter, we assume that there exist positive constants $\lambda>0$ and $\mu>0$ and a function $H$ from $\mathbf{R}^{N+2}$ to $\mathbf{R}$ such that

$$
\left(1.1^{\prime}\right)-\left(1.2^{\prime}\right)\left\{\begin{array}{l}
f=\lambda \frac{\partial H}{\partial u}, \quad g=\mu \frac{\partial H}{\partial v} \\
f \text { and } g \text { satisfy }(1.1) \text { and }(1.2)
\end{array}\right.
$$

For a solution ( $u, v$ ) of ( $\mathbf{S}$ ), we define the $\omega$-limit set by:

$$
\omega\left(\varphi_{0}, \psi_{0}\right)=\left\{w=\left(w_{1}, w_{2}\right): w_{1} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), w_{2} \in w_{0}^{1, q}(\Omega) \cap L^{\infty}(\Omega) \mid\right.
$$

$$
\begin{aligned}
\exists t_{n} \rightarrow+\infty: u\left(\cdot, t_{n}\right) & \rightarrow w_{1} \text { in } W_{0}^{1, p}(\Omega) \\
v\left(\cdot, t_{n}\right) & \left.\rightarrow w_{2} \text { in } W_{0}^{1, q}(\Omega)\right\}
\end{aligned}
$$

Let $\mathcal{E}$ be the set of non negative solutions $w=\left(w_{1}, w_{2}\right)$ of the elliptic problem:

$$
\begin{cases}-\Delta_{p} w_{1}=\lambda \frac{\partial H}{\partial u}\left(x, w_{1}, w_{2}\right) & \text { in } \Omega \\ -\Delta_{q} w_{2}=\mu \frac{\partial H}{\partial v}\left(x, w_{1}, w_{2}\right) & \text { in } \Omega \\ w_{1}=w_{2}=0 & \end{cases}
$$

Our main result is the following:
Theorem 5. Let $p>2, q>2$ and $\varphi_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \psi_{0} \in W_{0}^{1, q}(\Omega) \cap$ $L^{\infty}(\Omega), \varphi_{0} \geq 0, \psi_{0} \geq 0$.

Suppose that $H$ satisfies (1.1'), (1.2') and that ( $\mathbf{(})$ has a sub-supersolution.
Then $\omega\left(\varphi_{0}, \psi_{0}\right) \neq \phi$ and $\omega\left(\varphi_{0}, \psi_{0}\right) \subset \mathcal{E}$.
To prove this Theorem, we need the following lemmas:

Lemma 3. Under the assumptions of Theorem 5, there exists a constant $C=C\left(M_{1}, N_{1}\right)$ such that for any $T>0$ :

$$
\begin{align*}
& \|u\|_{L^{\infty}\left(Q_{T}\right)} \leq C<+\infty,\|v\|_{L^{\infty}\left(Q_{T}\right)} \leq C<+\infty  \tag{3.1}\\
& \|u\|_{L^{\infty}\left(0, T ; W_{0}^{1 . p}(\Omega)\right)} \leq C<+\infty,\|v\|_{L^{\infty}\left(0, T ; W_{0}^{1, \cdot}(\Omega)\right)} \leq C<+\infty  \tag{3.2}\\
& \left\|\frac{\partial u}{\partial t}\right\|_{L^{2}\left(Q_{T}\right)} \leq C<+\infty,\left\|\frac{\partial v}{\partial t}\right\|_{L^{2}\left(Q_{T}\right)} \leq C<+\infty \tag{3.3}
\end{align*}
$$

Proof of lemma 3: By Theorem 4 we have (3.1).

Multiplying the first equation (1.6) by $\frac{1}{\lambda} \frac{\partial u}{\partial t}$ and the second equation by $\frac{1}{\mu} \frac{\partial v}{\partial t}$, we obtain:

$$
\begin{align*}
& \frac{1}{\lambda} \int_{Q_{T}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t+\frac{1}{\mu} \int_{Q_{T}}\left(\frac{\partial v}{\partial t}\right)^{2} d x d t  \tag{3.4}\\
& +\frac{1}{\lambda p} \int_{\Omega}|\nabla u(\cdot, T)|^{p} d x+\frac{1}{\mu q} \int_{\Omega}|\nabla v(\cdot, T)|^{q} d x \\
& =\int_{Q_{T}}\left(\frac{\partial H}{\partial u}(\cdot, u, v) \frac{\partial u}{\partial t}+\frac{\partial H}{\partial v}(\cdot, u, v) \frac{\partial v}{\partial t}\right) d x d t \\
& +\frac{1}{\lambda p} \int_{\Omega}\left|\nabla \varphi_{0}\right|^{p} d x+\frac{1}{\mu q} \int_{\Omega}\left|\nabla \psi_{0}\right|^{q} d x \\
& =\int_{\Omega}\left(H(\cdot, u(T), v(T))-H\left(\cdot, \varphi_{0}, \psi_{0}\right)\right) d x \\
& +\frac{1}{\lambda p} \int_{\Omega}\left|\nabla \varphi_{0}\right|^{p} d x+\frac{1}{\mu q} \int_{\Omega}\left|\nabla \psi_{0}\right|^{q}
\end{align*}
$$

$H$ is continuous and $(u, v)$ is bounded; we then obtain:

$$
\frac{1}{\lambda} \int_{\substack{Q_{T} \\ \leq C\left(M_{1}, N_{2}\right)}}\left(\frac{\partial u}{\partial t}\right)^{2}+\frac{1}{\mu} \int_{Q_{T}}\left(\frac{\partial v}{\partial t}\right)^{2}+\frac{1}{\lambda p} \int_{\Omega}|\nabla u(\cdot, T)|^{p} d x+\frac{1}{\mu q} \int_{\Omega}|\nabla v(\cdot, T)|^{\varphi} d x
$$

whence (3.2) and (3.3).
Lemma 4. Let $\left.t_{0} \in\right] 0,1[$. Under the assumptions of Theorem 5, there exists $C=C\left(t_{0}\right)>0$ such that for any $T \geq t_{0}$ :

$$
\begin{align*}
& \left\|\frac{\partial u}{\partial t}\right\|_{L^{\infty}\left(t_{0},+\infty ; L^{2}(\Omega)\right)} \leq C,\left\|\frac{\partial v}{\partial t}\right\|_{L^{\infty}\left(t_{0},+\infty ; L^{2}(\Omega)\right)} \leq C  \tag{3.5}\\
& \left\|\frac{\partial}{\partial t} F(\nabla u)\right\|_{L^{2}\left(t_{0}, T_{i} L^{p *}(\Omega)\right)} \leq C,\left\|\frac{\partial}{\partial t} G(\nabla v)\right\|_{L^{2}\left(t_{0}, T ; L^{0 *}(\Omega)\right)} \leq C \tag{3.6}
\end{align*}
$$

Proof of Lemma 4: Let $E_{p}(\nabla u)=|\nabla u|^{\frac{p-2}{2}} \nabla u$. Calculations, [cf.3], give:

$$
\begin{align*}
& \left|\frac{\partial}{\partial t} E_{p}(\nabla u)\right|^{2} \leq \frac{p+2}{4} \frac{\partial}{\partial t} F(\nabla u) \cdot \frac{\partial}{\partial t} \nabla u  \tag{3.7}\\
& \left|\frac{\partial}{\partial t} F(\nabla u)\right| \leq\left(\frac{4 p}{p+2}\right)^{1 / 2}|\nabla u|^{\frac{p-2}{2}}\left|\frac{\partial}{\partial t} E_{p}(\nabla u)\right| \tag{3.8}
\end{align*}
$$

Similary for $E_{q}(\nabla v)=|\nabla v|^{\frac{q-2}{2}} \nabla v$.
By formal derivation of the first equation of (1.6), we get

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial t^{2}}-\operatorname{div}\left(\frac{\partial}{\partial t} F(\nabla u)\right)=\lambda \frac{\partial}{\partial t}\left(\frac{\partial H}{\partial u}\right)=  \tag{3.9}\\
& =\lambda \frac{\partial^{2} H}{\partial u^{2}} \cdot \frac{\partial u}{\partial t}+\lambda \frac{\partial^{2} H}{\partial u \partial v} \cdot \frac{\partial v}{\partial t}
\end{align*}
$$

Multiplying (3.9) by $\frac{\partial u}{\partial t}$, we get with (3.7) and (1.1')

$$
\begin{equation*}
\frac{1}{2} \frac{\partial}{\partial t} \int_{\Omega}\left(\frac{\partial u}{\partial t}\right)^{2}+\frac{4}{p+2} \int_{\Omega}\left|\frac{\partial}{\partial t} E_{p}(\nabla u)\right|^{2} d x \leq k_{0} \int_{\Omega}\left(\frac{\partial u}{\partial t}\right)^{2}+k_{1} \int_{\Omega}\left(\frac{\partial v}{\partial t}\right)^{2} \tag{3.10}
\end{equation*}
$$

Similarly, we have:
(3.11)

$$
\frac{1}{2} \frac{\partial}{\partial t} \int_{\Omega}\left(\frac{\partial v}{\partial t}\right)^{2}+\frac{4}{q+2} \int_{\Omega}\left|\frac{\partial}{\partial t} E_{q}(\nabla v)\right|^{2} d x \leq k_{0}^{\prime} \int_{\Omega}\left(\frac{\partial u}{\partial t}\right)^{2}+k_{1}^{\prime} \int_{\Omega}\left(\frac{\partial v}{\partial t}\right)^{2}
$$

By (3.3), there exists $\left.t_{1} \in\right] 0, t_{0}[$ such that:

$$
\begin{gather*}
\left\|\frac{\partial u}{\partial t}\left(\cdot, t_{1}\right)\right\|_{L^{2}(\Omega)}^{2}+\left\|\frac{\partial v}{\partial t}\left(\cdot, t_{1}\right)\right\|_{L^{2}(\Omega)}^{2}=  \tag{3.12}\\
=\int_{0}^{t_{0}}\left(\left\|\frac{\partial u}{\partial t}(\cdot, t)\right\|_{L^{2}(\Omega)}^{2}+\left\|\frac{\partial v}{\partial t}(\cdot, t)\right\|_{L^{2}(\Omega)}^{2}\right) d t \leq C<+\infty
\end{gather*}
$$

and integrating (3.10) $+(3.11)$ on $\left(t_{1}, T\right)$, we obtain with (3.3):

$$
\begin{align*}
& \frac{1}{2}\left\|\frac{\partial u}{\partial t}(\cdot, T)\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\|\frac{\partial v}{\partial t}(\cdot, T)\right\|_{L^{2}(\Omega)}^{2}  \tag{3.13}\\
& +\frac{4}{p+2} \int_{t_{0}}^{T} \int_{\Omega}\left|\frac{\partial}{\partial t} E_{p}(\nabla u)\right|^{2} d x d t+\frac{4}{q+2} \int_{t_{0}}^{T} \int_{\Omega}\left|\frac{\partial}{\partial t} E_{q}(\nabla v)\right|^{2} d x d t \\
& \leq K\left[\int_{t_{1}}^{T} \int_{\Omega}\left(\left(\frac{\partial u}{\partial t}\right)^{2}+\left(\frac{\partial v}{\partial t}\right)^{2}\right)\right] d x d t+\frac{1}{2}\left\|\frac{\partial u}{\partial t}\left(\cdot, t_{1}\right)\right\|_{L^{2}(\Omega)}^{2} \\
& +\frac{1}{2}\left\|\frac{\partial v}{\partial t}\left(\cdot, t_{1}\right)\right\|_{L^{2}(\Omega)}^{2} \leq C<+\infty
\end{align*}
$$

By (3.8) and Holder's inequality, we obtain with (3.13) and (3.2):

$$
\begin{align*}
& \left\|\frac{\partial u}{\partial t}(\cdot, T)\right\|_{L^{2}(\Omega)}^{2}+\left\|\frac{\partial v}{\partial t}(\cdot, T)\right\|_{L^{2}(\Omega)}^{2}+\left\|\frac{\partial}{\partial t} F(\nabla u)\right\|_{L^{2}\left(t_{0}, T ; L^{p \cdot}(\Omega)\right)}^{2}  \tag{3.14}\\
& +\left\|\frac{\partial}{\partial t} G(\nabla v)\right\|_{L^{2}\left\{t_{0}, T, L^{*}(\Omega)\right)}^{2} \leq C
\end{align*}
$$

(3.14) gives the estimates (3.5) and (3.6).

This formal proof of (3.14) can be made rigorous by means of the finite dimensional problems associated with ( $\$$ ).

The details are in [4, p 35] and are omitted.

Theorem 6. Let $p>2, q>2, \varphi_{0} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), \psi_{0} \in W_{0}^{1, q}(\Omega) \cap$ $L^{\infty}(\Omega)$, and $\varphi_{0} \geq 0, \psi_{0} \geq 0$.

Suppose that $H$ satisfies (1.1'), (1.2') and that (\$) has a sub-supersolution $[(0,0),(\bar{u}, \bar{v})]$. Then, for any $\left.t_{0} \in\right] 0,1[$, the solution $(u, v)$ of (S) satisifies the following regularizing estimates:

$$
\begin{align*}
& u \in L^{\infty}\left(t_{0},+\infty ; B_{\infty}^{1+1 /(p-1)^{2}, p}(\Omega)\right)  \tag{3.15}\\
& \frac{\partial u}{\partial t} \in L^{2}\left(t_{0},+\infty ; L^{2}(\Omega)\right) \cap L^{\infty}\left(t_{0},+\infty ; L^{2}(\Omega)\right)  \tag{3.16}\\
& \frac{\partial}{\partial t} F(\nabla u) \in L^{2}\left(t_{0},+\infty ; L^{p *}(\Omega)\right) \tag{3.17}
\end{align*}
$$

where $B_{\infty}^{1+1 /(p-1)^{2}, p}(\Omega)$ is a BESOV space defined by the real interpolation method (cf./1/,/13/).

The same estimates hold for $v$ provided $p$ and $F$ are replaced by $q$ and $G$ respectively.

Proof of Theorem 6: By (3.3), (3.5) and (3.6) we have (3.16) and (3.17), whence $\frac{\partial u}{\partial t} \in L^{\infty}\left(t_{0},+\infty ; L^{p *}(\Omega)\right)$ and $\frac{\partial v}{\partial t} \in L^{\infty}\left(t_{0},+\infty ; L^{q *}(\Omega)\right)$.

By SIMON'S regularity results [13], we have:

$$
\|u(\cdot, t)\|_{B_{\infty}^{1+1 / p-1)^{2} \cdot p}(\Omega)} \leq C\left\|\frac{\partial H}{\partial u}(\cdot, u, v)-\frac{\partial u}{\partial t}(\cdot, t)\right\|_{L^{p *}(\Omega)}+C^{\prime}
$$

whence (3.15). The proof is the same for $v$.
Proof of theorem 5:
a) $\omega\left(\varphi_{0}, \psi_{0}\right) \neq \phi$ because $B_{\infty}^{i+1 /(r-1\rangle^{2}, r}(\Omega)$ is Compactly inbedded in $W^{1, r}(\Omega)$ for $r=p$ and $q[1]$. By Theorem 6, letting

$$
w_{1}=\lim _{n \rightarrow+\infty} u\left(\cdot, t_{n}\right), w_{2}=\lim _{n \rightarrow+\infty} v\left(\cdot, t_{n}\right) \text { and }
$$

$w=\left(w_{1}, w_{2}\right) \in \omega\left(\varphi_{0}, \psi_{0}\right)$, we get that $w=\left(w, w_{2}\right) \in \mathcal{E}$. The proof is analogous to EL HACHIMI and DE THELIN [3] and is omitted

## 4. Examples

Example 1. Let $H(x, u, v)=K(x) u v+\lambda u^{\gamma_{1}+1}+\mu v^{\gamma_{2}+1}$, where $K \in$ $\mathcal{C}(\bar{\Omega}), K(x)>0, \lambda>0, \mu>0, \gamma_{1} \in\left[1, p-1 \mid\right.$ and $\gamma_{2} \in[1, q-1[$.

Then we can apply Theorem $3,4,5,6$.
Example 2. Let $H(x, u, v)=-u^{m} v^{n}+\lambda^{\gamma_{1}+1}+\mu v^{\gamma_{2}+1}$, where $m \geq 1, n \geq$ $1, \lambda>0, \mu>0, \gamma_{1} \in\left[1, p-1\left[\right.\right.$ and $\gamma_{2} \in[1, q-1[$. Then we can apply theorems $1,4,5,6$.
13. J.SIMON, Régularité de solution d'un problème aux limites Non linéaires, Annales Faculté Sciences, Toulouse série 5, t 3 (1981), 247--274.

Keywords. Sub-supersolutions, comparison principle, nonlinear parabolic systems, asymptotic behaviour, $\omega$-limit set.

H. Elouardi: Laboratoire d'Analyse Numérique<br>Université Paul Sabatier 31062 Toulouse Cédex FRANCE<br>Current address: Ecole Nationale Supérieure d'Electricité et de Mécanique B.P. 8093 Oasis<br>Route d'el Jadida<br>Casablanca, Maroc<br>AFRICA<br>F. de Thelin: Laboratoire d'Analyse Numérique<br>Université Paul Sabatier<br>31062 Toulouse Cédex FRANCE

Rebut el 12 d'Abrit de 1989

